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Hierarchy is a central feature in the organization of complex 
 biological systems and particularly the structure and function of 
neural networks. While other aspects of brain connectivity such 
as regional specialization, modularity, or motif composition have 
already been discussed extensively (Sporns et al., 2004; Bullmore 
and Sporns, 2009), no comprehensive analysis has been presented 
so far on the role of hierarchy and its connection to brain dynam-
ics. Nonetheless, recent discussions among many of our colleagues 
have shown an increasing interest in the subject of hierarchy. This 
topic is an emerging key question in neuroscience, as well as gener-
ally in the field of network science, due to its links with concepts 
of control, efficiency, and development across scales (Ravasz and 
Barabasi, 2003; Barthélemy et al., 2004; Breakspear and Stam, 2005; 
Zhou et al., 2006; Dehmer et al., 2008). 

“Hierarchy” may be understood in several different ways, and 
can apply to topological, spatial, temporal as well as functional 
properties of neural networks. The papers of this Special Topic on 
hierarchy and dynamics reflect this conceptual diversity. 

One interpretation of hierarchy is that of a processing sequence. 
For example, the popular organizational scheme of the primate 
visual system (Felleman and van Essen, 1991) implies a sequential 
ordering of visual cortical areas from the visual sensory periphery 
to “higher-level” areas involved in abstract aspects of vision. This 
hierarchical concept is formalized by Krumnack, et al. (“Criteria 
for optimizing cortical hierarchies with continuous ranges”) and 
expanded from a recent paper by Reid et al. (2009). The authors 
re-analyze the anatomical constraints for the hierarchical sorting of 
visual areas, using linear optimization and mixed integer program-
ming, and demonstrate that there are multiple optimal solutions for 
visual hierarchies, as well as several alternative definitions of opti-
mality. For instance, optimal hierarchies can be based on minimiz-
ing the number of violated constraints, or minimizing the maximal 
size of a constraint violation (cf. Hilgetag et al., 2000), broadening 
the perspective for the interpretation of the anatomical data. 

Another widely used definition of hierarchy is that of a repeated 
encapsulation of smaller elements in larger ones (Kaiser et al., 2007a; 
Robinson et al., 2009), an organization which may also be charac-
terized as recursive or fractal (Sporns, 2006). In that sense, neural 
networks show a self-similar hierarchical organization across a wide 
range of metric or non-metric scales. These scales may be spa-
tial, ranging from the lobes of the brain to cortical mini-columns; 
temporal, stretching from plasticity and learning processes taking 
days and longer to neuronal firing at the millisecond scale; or topo-
logical, containing small functional elements such as “canonical 
circuits” (Douglas and Martin, 2004) in larger modules such as 
the “visual cortex.” 

The Special Topic contains several examples of such encapsu-
lated hierarchies.

For instance, Meunier, et al. (“Hierarchical modularity in human 
brain functional networks”) present techniques for the rapid detec-
tion of a hierarchy of encapsulated modules in resting-state fMRI 
data. They analyzed networks composed of 1,800 regional nodes, 
extracted from neuroimaging data for 18 human subjects, and 
found a good degree of similarity between the network hierarchies 
for different brains. Moreover, out of five modules at the highest 
level, the occipital modules demonstrated less sub-modular organi-
zation than modules comprising regions of multimodal association 
cortex. Connector nodes and hubs, with a key role in inter-modular 
connectivity, were also concentrated in cortical association areas. 
The study demonstrates the feasibility of extracting large-scale 
hierarchical networks from experimental imaging data, and pre-
pares the ground for characterizing brain function by advanced 
network analyses. 

Modules in hierarchical networks may be overlapping, rather 
than be cleanly delineated. Moreover, the individual nodes may 
differ by the topological “reach” that they have across the network. 
While most nodes have relatively few connections, some regions 
(such as amygdala and hippocampus in the cat, or the lateral intra-
parietal area (LIP) and area 7 in the macaque brain) are connected 
to many nodes of the network and thus form hubs (Kaiser et al., 
2007b). Such hubs can be further distinguished into provincial 
(intra-modular) hubs or connector (inter-modular) hubs (Sporns 
et al., 2007). Zamora-López, Zhou, and Kurths (“Cortical hubs form 
a module for multisensory integration on top of the hierarchy of 
cortical networks”) expand such previous approaches, and identify a 
new element in the cat cortical connectivity network, a hub module, 
which consists of network nodes that possess many connections 
with the rest of the network as well as each other. This set of nodes 
forms a topologically central module of the cortex that appears to 
be essential for integrating multisensory information (Figure 1). 

Several articles in the Special Topic explore the dynamic impli-
cations of hierarchical modular network architectures. Kaiser and 
Hilgetag (“Optimal hierarchical modular topologies for producing 
limited sustained activation of neural networks”) investigate the 
influence of the number of hierarchical levels (scales), as well as 
sub-modules at each level (granularity), on the spreading of activity 
in hierarchical modular networks of different sizes, using a minimal 
dynamic node model. In particular, they characterize the conditions 
leading to the biologically relevant case of limited sustained activ-
ity in which activity persists between the extremes of dying out or 
activating the whole network (Kaiser et al., 2007a). For different 
network sizes, limited sustained activity is best supported when the 



Kaiser et al. Neural Networks: Hierarchy and Dynamics

Frontiers in Neuroinformatics www.frontiersin.org August 2010 | Volume 4 | Article 112 | 2

clustered networks without inhibition. 
New J. Phys. 9, 110.

Kaiser, M., Martin, R., Andras, P., and Young, 
M. P. (2007b). Simulation of robustness 
against lesions of cortical networks. Eur. 
J. Neurosci. 25, 3185–3192.

Kaiser, M., and Hilgetag, C. C. (2010). 
Optimal hierarchical modular topolo-
gies for producing limited sustained 
activation of neural networks. Front. 
Neuroinform. 4:8. doi: 10.3389/
fninf.2010.00008. 

Kiebel, S. J., Daunizeau, J., and Friston, K. 
J. (2009). Perception and hierarchical 
dynamics. Front. Neuroinform. 3:20. 
doi: 10.3389/neuro.11.020.2009.

Krumnack, A., Reid, A. T., Wanke, E., 
Bezgin, G., and Kötter, R. (2010). 

Hütt, M.-T., and Lesne, A. (2009). 
Interplay between topology and 
dynamics in excitation patterns 
on hierarchical graphs. Front. 
Neuroinform. 3:28. doi: 10.3389/
neuro.11.028.2009.

Jaeger, H., and Haas, H. (2004). 
Harnessing nonlinearity: predicting 
chaotic  systems and saving energy 
in wireless communication. Science 
304, 78–80.

Jarvis, S., Rotter,S., and Egert, U. (2010). 
Extending stability through hierarchi-
cal clusters in Echo State Networks. 
Front. Neuroinform. 4:11. doi: 10.3389/
fninf.2010.00011.

Kaiser, M., Görner, M., and Hilgetag, C. 
C. (2007a). Functional criticality in 

hierarchical molecular networks. PLoS 
One 3, e3079. doi:10.1371/journal.
pone.0003079.

Douglas, R. J., and Martin, K. A. C. 
(2004). Neuronal circuits of the 
neocortex. Ann. Rev. Neurosci. 27, 
419–451.

Felleman, D. J., and van Essen, D. C. (1991). 
Distributed hierarchical processing 
in the primate cerebral cortex. Cereb. 
Cortex 1, 1–47.

Hilgetag, C. C., O’Neill, M. A., and 
Young, M. P. (2000). Hierarchical 
organization of macaque and cat 
cortical sensory systems explored 
with a novel network processor. 
Philos. Trans. R. Soc. Lond. Ser. B 
355, 71–89.

RefeRences
Barthélemy, M., Barrat, A., Pastor-Satorras, 

R., and Vespignani, A. (2004). Velocity 
and hierarchical spread of epidemic 
outbreaks in scale-free networks. Phys. 
Rev. Lett. 92, 178701.

Breakspear, M., and Stam, C. J. (2005). 
Dynamics of a neural system with 
a multiscale architecture. Philos. 
Trans. R. Soc. Lond. B Biol. Sci. 360, 
1051–1074.

Bullmore, E., and Sporns, O. (2009). 
Complex brain networks: graph 
theoretical analysis of structural and 
functional systems. Nat. Rev. Neurosci. 
10, 186–198.

Dehmer, M., Borgert, S., and Emmert-
Streib, F. (2008). Entropy bounds for 

 seizures). In a  previous paper, Müller-Linow et al. (2008) observed 
that two different dynamic behaviors may emerge from hierarchical 
networks: waves propagating from central nodes and module-based 
synchronization. In the present issue, Hütt and Lesne (“Interplay 
between topology and dynamics in excitation patterns on hier-
archical graphs”) analyze more formally how excitable systems 
can switch from one of such states to the other. In addition to a 
mean-field model simulation, a formalism is introduced in which 
excitation waves are described as avalanches. 

Shifting the perspective from network dynamics to network func-
tion, the flow of information in hierarchical networks is used in the 
brain for the processing of external or internal signals. Rodrigues 
and Costa (“Signal propagation in cortical networks: a digital signal 
processing approach”) show that signal flow among network nodes 
can be characterized by a finite impulse response (FIR) filter. With 
such an approach, filters underlying the cat and macaque cortical 
organization are found to be low-pass, allowing signal process-
ing to be summarized through respective cut-off frequencies. 
Furthermore, filtering intensity varies between network modules, 
and regions involved in object recognition tend to present the high-
est cut-off frequencies for both the cat and macaque networks. 

Hierarchies can also be seen in temporal aspects of brain activity. 
Natural stimuli, such as speech, possess features at different tempo-
ral scales. Therefore, models of speech recognition should be able to 
represent slowly changing neuronal states that encode trajectories 
of faster signals. Kiebel et al. (“Perception and hierarchical dynam-
ics”) present a mathematical approach that assumes that sensory 
input is generated by a hierarchy of attractors in a dynamic system. 
Future applications of this approach might emerge from modeling 
perception as non-autonomous recognition dynamics enslaved by 
autonomous hierarchical dynamics in the sensorium. 

The papers presented here offer an exciting glimpse into future 
directions of the field of hierarchical neural networks. But they also 
demonstrate that we still need a better understanding of the differ-
ent kinds of network hierarchies, paralleled by the development of 
suitable analysis techniques. Most importantly, an improved under-
standing is required of how the different aspects of topological, spa-
tial, temporal, and functional hierarchy in the brain are related to 
each other.

average number of connections per node remains similar, and the 
number of hierarchical levels or modules per level increases. This 
observation indicates that dynamic constraints may contribute to 
the evolution of network complexity in brain architecture. 

In their work, Jarvis et al. (“Extending stability through hier-
archical clusters in Echo State Networks”) also find that increased 
intricacy of network structure aids network dynamics. They dem-
onstrate that the stability of Echo State Networks (Jaeger and Haas, 
2004) is potentially enhanced, as indicated by the range of spectral 
radius values, when the networks are structured in a multi-modular, 
hierarchical way. The more clearly the ESNs are structured, the 
larger the range of spectral radius values, while increasing inter-
cluster connectivity decreases the maximal spectral radius. The 
finding suggests that insights into the organization of biological 
networks also have the potential to improve the functioning of 
networks for technical applications. 

An important feature of neural systems is the occurrence of 
sudden changes in their dynamics (a drastic example of such phase 
transitions is the shift from normal brain activity to  epileptic 

Figure 1 | The cartoon illustrates two important features of 
hierarchical brain networks: modules and hubs. Adapted from 
Zamora-López et al. (2010).

Figure 1 | The cartoon illustrates two important features of 
hierarchical brain networks: modules and hubs. Adapted from 
Zamora-López et al. (2010).
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functional connectivity in complex 
brain networks. Phys. Rev. Lett. 97, 
238103.
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