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the state of each neuron in turn is updated on an equally spaced 
time grid. We will refer to an implementation of a neuron model 
as being “time-driven” if its state is updated on the grid defined by 
the simulation algorithm (potentially also at intermediate points), 
and spikes are detected by comparison of the neuronal state before 
and after an update.

An alternative approach is to use a globally event-driven algo-
rithm. A prerequisite for this approach is that a neuron model 
can predict when it will next spike. Unfortunately, most popular 
integrate-and-fire models do not have invertible dynamics, and so 
the next spike time cannot be expressed in closed form. This state of 
affairs has encouraged the development of elegant spike prediction 
methods for specific neuron models. Brette (2007) addresses the 
problem of spike prediction for the linear leaky integrate-and-fire 
neuron with exponentially decaying post-synaptic currents (PSCs) 
by converting the dynamics of the membrane potential into a poly-
nomial equation, and finding the largest root. Common numeri-
cal means like Descartes’ rule and Sturm’s theorem are applicable. 
The solution of D’Haene et al. (2009) is to generate an invertible 
function which acts as an upper limit for the membrane potential 
excursion. If the upper limit exhibits a threshold crossing, a modi-
fied Newton–Raphson technique is applied to localize the spike in 
the relevant interval. A similar scheme was independently proposed 
by van Elburg and van Ooyen (2009). In the following, we will refer 

1 IntroductIon
Discrete-time neuronal network simulation strategies typically 
 constrain spike times to a grid determined by the computational 
step size. For many scientific questions this does not seem to present 
a problem, as long as the computational step size is chosen suffi-
ciently small. However, in a worst case scenario, this can have the 
effect of introducing artificial network synchrony (Hansel et al., 
1998). Moreover, it is difficult to make theoretical predictions about 
the required degree of spike time accuracy for a given scientific 
question. For these reasons, it is necessary to have efficient tech-
niques available to calculate spike times in continuous time.

There are at least two approaches that can be employed to achieve 
this. One approach is to incorporate additional techniques to han-
dle off-grid spikes in a globally time-driven algorithm (Hansel et al., 
1998; Shelley and Tao, 2001). Morrison et al. (2007) presented a 
general method of handling off-grid spiking in combination with 
exact subthreshold integration of integrate-and-fire neuronal 
models in discrete time-driven simulations. The general princi-
ple is to process incoming spikes sequentially within a time step. 
The dynamics is propagated from spike to spike and then to the 
end of the time step. If any of these propagation steps results in a 
superthreshold value for the membrane potential, then an outgoing 
spike is calculated by interpolation. For the purposes of this work 
we will refer to a global simulation algorithm as “time-driven” if 
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to a global simulation algorithm as “event-driven” if it maintains a 
central queue of events and only updates neurons when they receive 
an event. We consider an implementation of a neuronal model to 
be “event-driven” if it is capable of predicting its next spike time 
(if any) on receiving an event.

A third approach is taken by Zheng et al. (2009). They abandon 
time as the stepping variable and present a technique to discre-
tize the voltage state space. As fewer integration steps are needed 
when the membrane potential does not exhibit large fluctuations, 
they show that their voltage-stepping technique can result in bet-
ter efficiency than time-stepping methods. A thorough analysis 
of this approach lies outside the scope of the current manuscript; 
in the following we restrict our investigations to time-driven and 
event-driven techniques.

In this paper, we present a generalized and improved version of 
one of the techniques presented in Morrison et al. (2007): in the case 
of linear model dynamics, the neuron state is propagated between 
spikes using Exact Integration (Rotter and Diesmann, 1999) and 
iterative techniques are used to locate outgoing spikes. Unlike the 
previous study, the accuracy of the spike time calculation does not 
depend on the computation step size. In the case of non-linear 
model dynamics, the state integration is carried out by a standard 
numerical solver.

In order to compare the performance of our approach with 
event-driven implementations of the same model, we develop a 
method of embedding event-driven neuron model implementa-
tions in the globally time-driven framework provided by NEST 
(Gewaltig and Diesmann, 2007; Eppler et al., 2009). We can there-
fore implement the same neuronal model using our technique, the 
technique presented in Brette (2007) and a technique based on the 
idea described in D’Haene et al. (2009) and compare their accuracy 
and run time costs, and thus their efficiency. This analysis does 
not disadvantage the event-driven techniques, for the following 
reasons. First, both time-driven and event-driven algorithms have 
complexity which is linear with respect to the number of neurons, 
but the multiplicative factor is typically higher for event-driven 
simulations, particularly in the regime of realistic connectivity and 
spike rates considered here (for complexity analysis, see Brette et al., 
2007). Thus embedding event-driven implementations in a globally 
time-driven framework should not result in a poorer run time 
performance than in an event-driven framework. Second, we have 
taken great care to embed the implementations in such a way that 
they benefit from the advantages of the time-driven framework 
(e.g., greater cache efficiency through local buffering of imminent 
incoming events) without suffering any of the disadvantages (e.g., 
no additional state updates dependent on the computation step 
size). This is described in greater detail in Section 2.2.2.

All the implementations of the specific neuron model inves-
tigated use an iterative search technique to locate the threshold 
crossing, for which the target precision must be specified (Section 
2.3.1). This value cannot be chosen arbitrarily small, as only a 
limited number of significant digits are available in the double 
representation of floating point numbers used in our simulations 
(Press et al., 1992). The finest target precision that can be required 
without causing the search algorithm to enter an infinite loop yields 
14 reliable decimal places for the determination of the membrane 
potential (in mV). This is two orders of magnitude greater than 

the machine epsilon , the smallest number such that 1 +  can be 
distinguished from 1 in double representation. Similarly, in our 
previous study, we discovered that when spike times are expressed 
as fractional and integer components expressing, respectively, the 
offset in milliseconds to the right border of a 1ms time interval, 
their differences achieve a maximum of 13 reliable decimal places 
(Morrison et al., 2007). This is due to the two to three decimal 
places that are lost from the theoretical maximum in calculating 
the neuronal dynamics as a result of the repeated floating point 
operations involved (Press et al., 1992). Therefore, in the absence of 
an analytical solution, if an implementation produces spike times 
that cannot be distinguished from the spike times generated by 
an appropriate reference implementation in the first 13 decimal 
places, we refer to this implementation as being accurate up to 
the non-discrimination accuracy. As a corollary, we can compare 
absolute spike times less than 1 s in units of milliseconds using 
double representation without loss of accuracy.

Whereas the accuracy of an implementation can be easily deter-
mined by comparing the spike trains it generates in a single neuron 
simulation to that of a reference implementation, to determine 
the computational costs of an implementation it is more useful 
to measure the simulation time of a reasonably sized network. 
Single neuron simulations may not give a reliable measure of com-
putation costs, as the entire data will fit into a computer’s cache 
memory, causing differences in the demands on memory band-
width to be overlooked. However, recurrent networks typically 
exhibit chaotic dynamics, such that the slightest difference will lead 
to completely different spike trains in a short time, irrespective of 
whether time-driven or event-driven methods are used. Therefore, 
no measurement of accuracy can be defined for such systems. To 
overcome this problem, we treat a recurrent network simulation as 
a stand-in for a model in which a high degree of accuracy would be 
both meaningful and desirable. As in our earlier study (Morrison 
et al., 2007), we consider the simulation time of a recurrent net-
work as a function of the accuracy measured in a single neuron 
simulation with the same input statistics. The efficiency of a given 
implementation is then defined as the run time cost to achieve a 
particular accuracy goal.

When no spikes are missed, our time-driven implementation of 
the linear model is accurate up to the non-discrimination accuracy 
for a lower computational cost than the event-driven implemen-
tations. This holds even if the neuronal parameters are chosen in 
a biologically unrealistic fashion in order to provide a best-case 
scenario for an event-driven implementation and the time step is 
chosen to be very large (e.g., 1 ms). We investigate the probability 
of missing a spike for a wide range of input and output rates and 
quantitatively identify operating regimes in which event-driven 
algorithms could potentially exhibit better performance than time-
driven algorithms. We further show that, unlike the event-driven 
approaches, which are tailored to a specific neuronal model, our 
technique is generally applicable to all integrate-and-fire point-
neuron models, including non-linear models.

The conceptual and algorithmic work described here is a module 
in our long-term collaborative project to provide the technology 
for neural systems simulations (Gewaltig and Diesmann, 2007). 
Preliminary results have been published in abstract form (Diesmann 
et al., 2008; Hanuschkin et al., 2008; Kunkel et al., 2009).
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and

τww a V E w = −( ) −L ,

where g
L
 is the leak conductance, E

L
 the resting potential, ∆

T
 a slope 

factor, V
th

 the threshold potential and τ
w
 the time constant of adap-

tation. When the membrane potential reaches V
peak

, it is reset to V
reset

 
and the adaptation current is increased: w ← w + b. I describes the 
synaptic current and is expressed by
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where E
e
 and E

i
 are the reversal potentials for excitation and inhi-

bition. In our implementation a single input spike introduces 
a change in synaptic conductance modeled as an α-function: 
g t J e tex x x

t x( ) = ⋅ −/ /τ τ , with x ∈ [e,i]. J
x
 is the peak amplitude of 

the conductance and is given by the synaptic weight. Hence, the 
synaptic conductances g

e
 and g

i
 fulfill  g g gx x x+ + =2 02/ /τ τx x . 

This second order linear time-invariant differential equation can 
be transformed into two coupled first order differential equations 
(for a review see Plesser and Diesmann, 2009). The whole set of 
first order differential equations is integrated with a fourth order 
Runge–Kutta–Fehlberg solver with adaptive step-size control 
based on the fifth order error estimate to ensure the target pre-
cision. Convenient routines are provided by the GNU Scientific 
Library (Galassi et al., 2006). The dynamics of the AdEx neuron 
is determined by the four bifurcation parameters a,b,τ

w
 and V

reset
. 

We set these parameters such that tonic spiking is generated in 
response to constant input current, as described by Naud et al. 
(2008): a = 0.001 nS, b = 5 pA, τ

w
 = 5 ms, and V

reset
 = −70 mV. The 

scaling parameters are set to C
m

 = 250 pF, g
L
 = 16 nS, E

L
 = −70 mV, 

∆
T
 = 2 mV, V

th
 = −50 mV, and V

peak
 = 0 mV. The synaptic input is 

characterized by the reversal potentials E
e
 = 0 mV, E

i
 = −80 mV and 

the time constants τ
e
 = τ

i
 = 1 ms.

2.2 ProcessIng contInuous sPIke tImes In globally tIme-drIven 
algorIthms
To understand the similarities and differences between the time-
driven and embedded event-driven methods, we first need to clarify 
the underlying globally time-driven scheduling algorithm. The 
simplest possible time-driven algorithm integrates the dynamics 
of each neuron in turn in time steps of h, sometimes also referred 
to as the computation step size or resolution. In this study, we 
use the simulator NEST (Gewaltig and Diesmann, 2007) which 
improves on this simple algorithm by introducing a communica-
tion interval, T

comm
 = kh for k ≥ 1, which is the minimum interval 

in which spikes must be communicated to preserve causality. The 
communication interval is determined by the shortest synaptic 
delay in the network to be investigated (Morrison et al., 2005; 
Plesser et al., 2007; Morrison and Diesmann, 2008). Typically, the 
communication interval is substantially larger than the time step 
(e.g., 1 ms compared to 0.1 ms). Instead of visiting each neuron in 
turn in steps of h, the simulator visits each neuron in macro-steps 
of length T

comm
, each macro-step consisting of k micro-steps of 

length h. This is illustrated in Figures 1A,C for the case that k = 2. 
Note that all incoming spikes that are due to arrive at a neuron in 
a given communication interval are already queued locally at the 
neuron before the integration of that interval begins. After each 

2 materIals and methods
2.1 examPle neuron models
In order to compare like with like, the main part of our work 
focuses on the leaky integrate-and-fire model with exponentially 
decaying PSCs that can be implemented by all three of the meth-
ods considered here: the event-based techniques of Brette (2007) 
and D’Haene et al. (2009) and the time-driven technique based 
on Morrison et al. (2007). We restrict the linear subthreshold 
dynamics to a single synaptic time constant to obtain a bench-
mark model that is favorable for the event-driven strategies. The 
details of this model are given in Section 2.1.1. To demonstrate 
the generality of our technique, we also apply it to the non-linear 
adaptive exponential integrate-and-fire neuron model described 
in Section 2.1.2.

2.1.1 Neuron model with linear subthreshold dynamics
The subthreshold membrane potential dynamics follows the 
equation

V V
C

I I= − + +( )1 1

τm m
syn x ,

 
(1)

where C
m

 is the capacitance, τ
m

 the membrane time constant, I
x
 is 

an external direct current, I
syn

 is the synaptic input current and the 
resting potential is set to 0. The synaptic current follows

I t I e e H t tt
j

t t

k
j

j k

k
j

syn syn
( ) = ( ) + −( )− − −( )∑0 τ τι̂ ,

,

where tk
j denotes the k-th spike of the incoming synapse j with 

synaptic amplitude ι̂ j, Isyn
(0) is the initial value and H denotes the 

Heaviside step function.
The neuron model is characterized by the resting potential 

V
0
 = 0 mV, the membrane time constant τ

m
 = 10 ms, the capaci-

tance C
m

 = 250 pF and the threshold Θ = 20 mV. When the mem-
brane potential crosses the threshold a spike is emitted and the 
membrane potential is clamped to V

reset
 = V

0
 for the duration 

of the refractory period, τ
ref

 = 2 ms. The synaptic time constant 
τ = 1 ms is identical for all synapses and results in a biologi-
cally realistic value of 2.6 ms for the rise time of the post-synaptic 
potential (PSP) starting from resting potential. The peak ampli-
tudes of excitatory and inhibitory PSCs are set to ˆ .ιe = 32 29pA 
and ˆ .ιi = −201 81pA respectively. The solution to the differential 
equation (Eq. 1) describing the membrane potential trajectory of 
the model neuron is derived in the Appendix.

2.1.2 Neuron model with non-linear subthreshold dynamics
We choose the adaptive exponential integrate-and-fire neuron 
model (Brette and Gerstner, 2005; Gerstner and Brette, 2009), which 
is used as a standard model in the large-scale European research 
project FACETS (2009), to demonstrate the compatibility of our 
approach with non-linear neuron models. Following Naud et al. 
(2008), we refer to this as the AdEx model. The membrane poten-
tial V and the adaptation current w are described by the coupled 
ordinary differential equations (ODEs)

C V g V E g e w IV V
m L L L T

th T
 = − −( ) + − +−( )∆ ∆/



Frontiers in Neuroinformatics www.frontiersin.org October 2010 | Volume 4 | Article 113 | 4

Hanuschkin et al. Exact spiking in time-driven simulations

ways. Firstly, spikes can be delivered to their targets immediately 
after generation; no global event queue is required and a neuron 
always has all the incoming spikes due to become visible in the 
next communication interval available in its local buffer before 
it begins to integrate its dynamics. Secondly, as the neuron state 
is updated at the end of each time step regardless of whether any 
spikes arrived in that period, no spike prediction algorithm is 
necessary. Instead, spike detection is performed retrospectively 
each time the neuronal state is updated, i.e., when processing a 
buffered incoming spike or at the end of a time step (see Figure 
1A). In the case of the neuron models described in Section 2.1, the 
detection of a spike is simply checking the membrane potential 
at the right border of the most recently processed subinterval: if 
V(t) ≥ Θ, a spike occurs in that subinterval. It is possible to miss 
a spike if the membrane potential only has a brief superthresh-
old excursion and returns to subthreshold values before the end 
of the subinterval. However, given biologically realistic synaptic 
time constants and input rates, the time difference between the 
arrival of a spike and the maximum of the subsequent membrane 
potential excursion is usually greater than the typical length of 
a subinterval (i.e., the interspike interval of the incoming spike 
train) and so this case is rare. This issue is investigated in greater 
depth in Section 3.1.

Once a spike is detected, its location within the subinter-
val must be determined. In Morrison et al. (2007) the spike is 
located using interpolation. Since the values of both the mem-
brane potential and its derivative are known at both borders of 
the subinterval, polynomials of order up to cubic can be fitted 

neuron has been advanced by T
comm

, the network time is advanced 
and any spikes that were generated in the most recent interval are 
communicated. This reordering of update steps maximizes the 
number of operations performed sequentially on each neuron, 
which enhances cache efficiency and thus performance.

2.2.1 Time-driven implementations
The framework enabling continuous spike times to be processed in 
the globally time-driven simulator NEST (Gewaltig and Diesmann, 
2007) has been previously described in great detail (Morrison et al., 
2007). To summarize briefly, each spike is represented by an inte-
ger time stamp, which identifies the right border of the time step 
in which it was generated, as well as a floating point offset δ with 
double precision, which expresses the temporal difference between 
the calculated spike time and the integer time stamp. In Figure 1A, 
the time stamp of the generated spike is t + 2h and the offset is 
δ = t + 2h − tΘ. The sum of the time stamp and the synaptic delay 
gives the right border of the time step in which the spike becomes 
visible at the target neuron. Each time a neuron updates its dynam-
ics by h, it processes all incoming spikes that become visible in 
that time step. In the case of linear dynamics, exact integration 
techniques (Rotter and Diesmann, 1999) can be applied; most non-
linear neuron models require an efficient numerical solver.

The “canonical” implementation (Morrison et al., 2007) pre-
serves the temporal order of the incoming spikes, and the neuron 
dynamics is propagated from one incoming spike to the next. 
Although this resembles an event-driven scheme on the level 
of the individual neurons (see Figure 1B), it differs in crucial 

A Time-driven B Event-driven C Embedded event-driven

Figure 1 | Propagation of the neuronal membrane potential V over 
time t according to different simulation strategies. Single vertical gray 
lines denote the borders of time steps of size h; double gray vertical lines 
indicate the communication intervals of size Tcomm. To simplify the 
illustrations, we let Tcomm = 2h. Vertical black bars indicate the arrival times of 
incoming spikes, and the horizontal red line shows the firing threshold Θ. 
Each filled circle denotes the final result of a neuronal dynamics calculation; a 
black cross indicates an intermediate result that is modified later. Dashed 
black curves indicate the trajectory of the membrane potential between 
calculation points to assist visualization. (A) Time-driven implementation 
(Section 2.2.1). The neuron advances in steps of h, while spikes are 
communicated after every communication interval, here 2h. All incoming 
spikes for the current interval Tcomm are buffered at the neuron before the 
start of the interval. The neuron integrates its dynamics from each incoming 
spike to the next and to the end of every time step. At the end of each 
update, a retrospective detection of threshold crossings in the preceding 
subinterval is performed. If the membrane potential is superthreshold at the 
right interval border, here indicated by the black cross at time t + 2h, an 
outgoing spike occurred within the interval. The spike time tΘ can be 

determined using interpolation techniques based on the neuronal state at 
the left and right interval states, or using an iterative technique (illustrated as 
a solid black curve) starting from the left border. The offset of the spike with 
respect to the next time step boundary is indicated by δ. The neuron state at 
the right interval border is then re-calculated by integrating its dynamics 
assuming a state reset at tΘ. (B) Event-driven implementation. The neuron 
state is updated every time the global event queue delivers a spike to it. 
Each time an incoming spike has been processed, a prediction strategy is 
applied in order to check for future threshold crossings. If an outgoing spike 
is predicted, an iterative technique is applied (solid line) to locate the 
threshold crossing, where the most recent spike defines the left border of 
the search. The search converges at tΘ unless it is aborted due to the arrival 
of another input spike. (C) Embedded event-driven implementation (Section 
2.2.2). The simulation advances as described in (A), i.e., all incoming spikes 
for the next Tcomm interval are already buffered at the neuron. However, the 
neuronal state is updated according to those spikes as in (B), i.e., a threshold 
crossing prediction is performed for every incoming spike, followed by an 
iterative location technique (solid line) if necessary. No additional updates are 
performed at the end of each time step.
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time determined by the search algorithm. Regardless of whether 
a spike was predicted, the neuronal state is then propagated up 
to the current update event, the new incoming spike is inte-
grated and the prediction algorithm is performed to determine 
whether the neuron can become superthreshold in the absence 
of further input. At the end of each communication interval 
T

comm
, the embedded implementation checks whether a spike 

has been predicted. If so, it performs a search using the previous 
incoming spike as the left border and the end of the communi-
cation interval as the right border; this is necessary to preserve 
causality in the network. However, if in this case no outgoing 

to the course of the membrane potential; the first root of the 
polynomial is used as an approximation for the spike time. The 
accuracy of the interpolation is dependent on the size of the 
interval and thus determined by the time step at fine resolutions 
and by the average interspike interval at coarse resolutions. In this 
manuscript we improve on the interpolation method by utiliz-
ing the iterative methods described in detail in Section 2.2.3 to 
progressively approximate the threshold crossing until a target 
precision is reached.

For the non-linear neuron model described in Section 2.1.2, it 
turns out that no iterative spike location is necessary due to the 
adaptive step size of the numerical solver. The neuron approaches 
the threshold so steeply that the step size chosen by the solver is 
much smaller than the interspike interval of the incoming spike 
train or the time step h. If the superthreshold condition is detected 
after an iteration of the solver, a linear interpolation is sufficient to 
localize the outgoing spike accurately.

The time-driven framework developed in Morrison et al. (2007) 
and improved here is applicable to any spiking neuron model for 
which a superthreshold condition can be detected and to any net-
work in which spikes are subject to transmission delays; here we 
demonstrate its use in both the linear and non-linear neuron mod-
els described in Section 2.1.

2.2.2 Embedded event-driven implementations
To compare the performance of event-driven implementations 
(see Figure 1B) with that of time-driven implementations we 
construct a method of embedding the event-driven implementa-
tions proposed by Brette (2007) and D’Haene et al. (2009) in a 
globally time-driven simulator. This is illustrated in Figure 1C. An 
embedded event-driven implementation functions very similarly 
to a purely event-driven implementation, but differs from it in one 
key feature. In a purely event-driven scheme, the neuron is visited 
by the scheduling algorithm every time the global event queue 
sends a spike to it. All calculations, including predicting the next 
spike time, take place at these times. In an embedded event-driven 
scheme, due to the synchronization in intervals of T

comm
, all spikes 

that are due to arrive at a neuron within the next T
comm

 interval 
are already buffered at the neuron at the start of that interval and 
can thus be processed sequentially in one visit of the scheduling 
algorithm. The cost for this is that the model has to check at the 
end of each T

comm
 interval whether the neuron can spike without 

further input. If so, the neuron additionally has to check whether 
the spike is before the end of the interval (in which case it must be 
located and sent out) or not (in which case it can be ignored until 
the next T

comm
 interval).

This approach results in the algorithm described in pseu-
docode in Algorithm 1. In the case of an embedded event-driven 
implementation, the algorithm proceeds as follows. On the 
arrival of each incoming spike a check is performed whether a 
future output spike had previously been predicted, i.e., whether 
after the last incoming spike was integrated, the neuronal state 
was such that it could become superthreshold without further 
input (spike_predicted is true). If so, an iterative search 
is made for the threshold crossing in the interval defined by the 
previous (left border) and current (right border) update events. 
If the search is successful, an output spike is emitted with the 

Algorithm 1 | Algorithm to embed event-driven neuron model 
implementations into our time-driven simulator (gewaltig and 
Diesmann, 2007). The methods update_neuron_dynamics() and try_emit_
spike() as well as the variables tlast_event, tpred, spred, and spike_predicted are 
members of the neuron model class. tlast_event is the time of the last update, 
tpred is the predicted time of the next outgoing spike, spred is the predicted 
state of the neuron at time tpred and spike_predicted is a Boolean variable 
indicating whether the neuron can fire without receiving additional excitatory 
input. Globally, the simulation advances in communication steps. Each 
neuron model instance is updated according to the currently processed 
communication step by calling its method update_neuron(comm step) once. 
Spike prediction is performed according to either the polynomial (Section 
2.2.2.1) or the envelope (Section 2.2.2.2) method and results in the variable 
spike_predicted being set to true or false. This algorithm is based on the 
preconditions that the spike prediction strategy does not produce any false 
positives and that the Newton–Raphson technique converges at the first 
threshold crossing. For convenience pseudocode handling refractoriness is 
neglected. See also Figure 1.

method update_neuron(comm step)
    for each incoming spike within the comm step
        t

event
←: time of incoming spike

        if spike_predicted is true
            try_emit_spike(t

event
)

        propagate neuron dynamics for the interval 
          (t

last_event
 ← t

event
]

        integrate incoming spike
        perform spike prediction for (t

event
,∞)

        t
pred

 ← t
event

        s
pred

 ← current neuron state
        t

last_event
 ← t

event

    if spike_predicted is true
        try_emit_spike (end of comm step)

method try_emit_spike(t
max
)

    repeat
        if t

pred
 > t

max

            return
        update t

pred
 and s

pred
 by one Newton-Raphson 

          iteration
    until reached target precision
    propagate neuron dynamics for the interval  
      (t

last_event
, t

pred
]

    emit spike at t
pred

    reset neuron state
    t

last_event
 ← t

pred

    spike_predicted ← false
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introduction of the communication interval T
comm

 as described 
above. All the incoming spikes for the next communication inter-
val are already stored locally at the neuron before the interval 
is processed. This means that a neuron can integrate all those 
incoming spikes in one visit from the scheduling algorithm. 
This is more cache-efficient than visiting each neuron in turn 
in time steps of h, as is the case for a naive time-driven algorithm. 
Assuming the rate of incoming spikes is such that at least one 
spike per communication interval is expected (e.g., 1000 Hz for 
T

comm
 = 1 ms), this approach is also more cache-efficient than 

visiting each neuron in the network in the order determined by 
the times of incoming spikes, as is the case for a globally event-
driven algorithm. Finally, as no neuronal state updates are car-
ried out at the end of each time step, the number of operations 
performed on the global time grid is reduced to the minimum, 
thus the algorithmic complexity of the embedded implementa-
tion depends only on the communication interval T

comm
 and not 

on the time step h.

2.2.2.1 Polynomial algorithm. The technique of Brette (2007) can 
be applied to linear integrate-and-fire neuron models with expo-
nential synaptic currents. For the benchmark model described in 
Section 2.1.1 with equal synaptic time constants for excitation and 
inhibition and where the membrane time constant is an integer 
multiple of the synaptic time constant, the technique of Brette 
(2007) can be applied as follows. Setting V(t) = Θ and applying 
the substitution term X e t= − /τm, The solution to the membrane 
potential dynamics is transformed into the polynomial

P X V
C

I V X V X( ) .
/= + − + +0

τ τ τm

m
x m syn

m synΘ
 

(2)

See the Appendix for a derivation of the solution to the dynamics 
(Eq. 1) and the definition of the multiplicative factors V

m
 and V

syn
. 

For a complete treatment, see Brette (2007).
The roots of this polynomial correspond to the threshold 

crossings of the membrane potential and can be located using 
numerical methods. However, as solving the polynomial can be 
computationally expensive, especially for polynomials of higher 
order, it is advantageous to perform a quick spike test to determine 
whether it is possible that the neuron would fire without further 
input. The quick spike test is based on Descartes’ rule of signs. 
For the general case of the neuron model described in Section 
2.1.1 with differing synaptic time constants, the quick spike test 
can only be usefully applied for the case that τ

e
 > τ

i
, which is not 

a typical parameter choice. In the case of our simplified neuron 
model with equal synaptic time constants, the quick spike test 
reduces to examining whether V

m
 > 0 and V

syn
 < 0 are both true. 

If not, the neuron cannot spike without further input. If true, a 
full spike test based on Sturm’s algorithm is carried out to deter-
mine whether a threshold crossing will occur. For the technical 
details, see Brette (2007). In the original formulation, if a threshold 
crossing is predicted, a bisectioning algorithm is applied to define 
an interval in which the faster Newton–Raphson technique can 
be applied to finding the largest root of the polynomial given in 
Eq. 2. For the chosen benchmark model, we optimize perform-
ance by leaving out the bisectioning algorithm; this is justified in 

spike occurs between the final incoming spike of a communi-
cation interval and the end of the interval, the variables t

pred
 

and s
pred

 store the preliminary results of the Newton–Raphson 
search. These variables can be used to initialize the search at the 
first update event in the next communication interval. The spike 
prediction algorithms employed in the approaches proposed by 
Brette (2007) and D’Haene et al. (2009) are briefly summarized 
in Sections 2.2.2.1 and 2.2.2.2, respectively; the iterative spike 
location techniques are described in Section 2.2.3.

Separating the spike prediction and spike location algorithms 
represents a deviation from a purely event-driven algorithm, in 
which a spike location algorithm is performed immediately after 
a positive spike prediction. However, deferring the location pro-
cedure until the next incoming event or end of a communication 
interval enhances the performance of the implementation. If the 
new incoming spike would arrive before the predicted outgoing 
spike, an iterative search using the previous spike as a left border 
and the new spike as a right border will fail much more rapidly 
than a full iterative search based solely on the left border will 
succeed, so the run time is reduced. If the new incoming spike 
would arrive after the predicted outgoing spike, then it costs no 
more to defer the actual search until later. We thus optimize for 
the common case that the next incoming spike will alter or cancel 
a previously predicted spike time. The cost of this optimization 
is an additional call to the try_emit_spike routine in the com-
paratively rare case that the neuronal state at the last incoming 
spike in a communication interval predicts a spike that lies beyond 
the border of that interval. Note that the use of the intermedi-
ate variables t

pred
 and s

pred
 ensures that no additional search steps 

are carried out; the sole cost is the additional function call. This 
optimization is only possible in the embedded context; in a purely 
event-driven simulation, either a full search (Brette, 2007) or at 
least a scheduling of preliminary search results (D’Haene et al., 
2009) must be performed after every positive spike prediction 
in order to maintain causality. Note that no operations are per-
formed at the end of each computational time step h and so 
the complexity of the algorithm is dependent only on T

comm
 and 

not on h. To achieve maximum performance of the embedded 
event-driven implementations we have reduced the algorithm 
to the most simple case. If the preconditions of reliable spike 
prediction and Newton–Raphson convergence cannot be met for 
a given neuron model, it is simple to develop a more general and 
robust form of Algorithm 1 that ensures correct integration of 
the model.

Embedding an event-driven neuron model implementation 
into a globally time-driven scheduling algorithm should result 
in an equal or better performance than a purely event-driven 
scenario under most circumstances. As discussed in Brette et al. 
(2007), the complexity of both time-driven and event-driven 
global scheduling algorithms is linear with respect to the number 
of neurons. However, a higher multiplicative factor is expected 
for event-driven simulations, particularly in the regime of real-
istic connectivity and spike rates leading to a total input rate 
in the order of 10 kHz. Moreover, a lower multiplicative fac-
tor is expected for the  scheduling algorithm employed by NEST 
(Gewaltig and Diesmann, 2007) than for the naive time-driven 
algorithm on which the complexity analysis is based, due to the 
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threshold) and not the second threshold crossing (i.e., where the 
membrane potential relaxes back into the subthreshold regime). 
This means that any additional algorithm to ensure convergence 
at the first threshold crossing at the cost of slowing down the 
spike location is unnecessary. To optimize the speed of the embed-
ded event-driven implementations, we deviate from their origi-
nal formulations as follows. In case of the polynomial algorithm 
(Brette, 2007), the supplementary bisectioning algorithm is left 
out (compare Section 2.2.2.1). Additionally, the Newton–Raphson 
technique is directly applied to the membrane potential func-
tion instead of to its polynomial representation. In the case of 
the envelope algorithm of D’Haene et al. (2009), the generated 
envelope function is identical to the trajectory of the membrane 
potential and so the adapted Newton–Raphson technique (see 
Section 2.2.2.2) reduces to its best-case, which is the conventional 
Newton–Raphson technique.

Unlike the embedded event-driven implementations, which 
must perform a search after every positive prediction of a spike 
even if further input invalidates the search, the time-driven imple-
mentation presented in Sec. 2.2.1 localizes a threshold crossing 
only if a spike has been retrospectively detected in the previous 
subinterval. Consequently, the contribution of the spike loca-
tion algorithm to the total run time can be considered independ-
ently from the spike detection. As most neuron models do not 
ensure correct convergence of the Newton–Raphson technique, 
it is useful to gain insight into the performance of different spike 
location algorithms. Therefore, we use the time-driven imple-
mentation of the benchmark neuron model to investigate the 
effect on the total run time of the previously used interpolation 
method (Morrison et al., 2007) which generates a solution in 
constant time, the Newton–Raphson technique which converges 
quadratically to a predefined target precision and the bisectioning 
technique which converges linearly. The interpolation method as 
well as the bisectioning technique are applicable to virtually all 
neuron models.

2.3 analysIs of the lInear model
2.3.1 Single neuron simulations
Each experiment consists of 40 trials of 500 ms each at a given 
time step h, where h is varied systematically in base 2 representa-
tion between 20 and 2−14 ms (1 ms and approximately 0.06 μs). 
In each trial the neuron receives a unique realization of an exci-
tatory Poissonian spike train at rate 1000·ν

sn
 and an inhibitory 

Poissonian spike train at 252·ν
sn

, corresponding to input from 
1008 excitatory and 252 inhibitory neurons firing independently 
at ν

sn
. Additionally, the neuron receives either a constant external 

direct current I
x
 of 499 pA to drive the membrane potential to 

just below the firing threshold and a unique excitatory Poissonian 
spike train at ν

ext
 = 2.71 kHz, or no external current (I

x
 = 0) and 

ν
ext

 = 18.17 kHz. The choice of a high input current is intended to 
create a “best-case” stimulation protocol for the embedded event-
driven implementations in terms of computation time, as the 
costs to process each incoming spike are higher for an embedded 
event-driven implementation than for a time-driven implemen-
tation (Section 2.2). Unless otherwise stated, ν

sn
 = 10 Hz and all 

neuronal parameters are set as in Section 2.1.1. This results in an 
input  firing rate of 15.31 kHz for I

x
 = 499 pA and 30.77 kHz for 

Section 2.2.3. To enhance its performance further we “hardwire” 
the polynomial representation to the order determined by the 
chosen neuronal parameters.

2.2.2.2 Envelope algorithm. D’Haene et al. (2009) proposed an 
alternative technique to simulate linear integrate-and-fire neu-
ron models with synaptic currents that can be expressed as sums 
of exponentials in an event-driven scheme. In D’Haene and 
Schrauwen (2010) they demonstrate that their method can easily 
be applied to the neuron model proposed in Mihalas and Niebur 
(2010), which can generate richer neuronal dynamics than most 
other linear models.

Here, we briefly summarize the technique as applied to our 
simplified neuron model. After each incoming spike is integrated, 
a prediction must be made as to whether the neuron can fire 
without further input. As for the polynomial algorithm described 
above, in the case of our simplified neuron model a quick spike 
test consists of examining whether V

m
 > 0 and V

syn
 < 0 in Eq. 2 

are both true. If so, a full spike prediction is performed. The 
full spike prediction is based on approximating the maximum 
value of a function that is equal to or greater than the membrane 
potential excursion. We refer to this overshooting function as 
the envelope function. If the approximated maximum is sub-
threshold, the neuron will not spike without further input. If it is 
superthreshold, it is not certain whether the neuron would spike 
without further input and a method to localize the potential spike 
is initiated. Spike location is performed by a Newton–Raphson 
technique, which is adapted in such a way that it converges at the 
first threshold crossing of the membrane potential. For the details 
of the generation of the envelope function and the adaptation of 
the Newton–Raphson technique, see D’Haene et al. (2009). As the 
spike location method is an iterative method, intermediate results 
can be scheduled as preliminary spikes in the event queue and 
refined if they reach the front of the event queue without being 
invalidated by further input.

In the case of the chosen linear benchmark model, which has 
only one synaptic time constant, the maximum of the membrane 
potential can be analytically determined as given in Eq. 5 and the 
conventional Newton–Raphson technique converges at the first 
threshold crossing. We therefore implement the envelope algorithm 
of D’Haene et al. (2009) such that the envelope function is identi-
cal to the membrane potential trajectory and employ only a con-
ventional Newton–Raphson technique. This represents a best-case 
scenario for this algorithm for the purposes of performance testing, 
but naturally does not permit the full flexibility of the original for-
mulation of the method, which includes optimizations to facilitate 
partial state updates and speed up the simulation when the neuron 
model has multiple synaptic time constants.

2.2.3 Iterative spike location techniques
The benchmark neuron model described in Section 2.1.1 with 
equal synaptic time constants for excitation and inhibition has 
the property that whenever sufficient excitatory input causes a 
threshold crossing, the membrane potential function is concave. 
Consequently, a Newton–Raphson search starting at the left border 
is guaranteed to locate the first threshold crossing in an interval 
(i.e., the point where the membrane potential becomes super-
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replace the recurrent input each neuron receives an excitatory 
Poissonian spike train at 1008·ν

sn
 and an inhibitory Poissonian 

spike train at 252·ν
sn

. The input rate ν
sn

 and the peak amplitudes 
of the excitatory and inhibitory PSCs are set corresponding to the 
configurations determined for the empirical mapping described 
above. We perform three trials for each configuration of ν

sn
, ι̂

e
, 

and ν
out

 and determine the average time T required to simulate 
one biological second. The performance gain of an implementa-
tion y with respect to a reference implementation x is thus given 
by 100 × (T

x
 − T

y
)/T

x
.

2.4 analysIs of the non-lInear model
The dynamics of the non-linear neuron model is integrated using 
a 4th order Runge–Kutta–Fehlberg solver employing the adaptive 
step-size control function gsl_odeiv_control_yp_new from the 
GNU Scientific Library (Galassi et al., 2006). This function takes 
two arguments: eps_abs determines the absolute maximum local 
error on each integration step and eps_rel determines the relative 
maximum local error with respect to the derivatives of the solution. 
For all simulations we set eps_rel=eps_abs as this results in a 
fast and reliable performance of the solver.

The analysis of the non-linear model follows the analysis of 
the linear model set out above: integration error is determined 
in a single neuron simulation; run time in a network simula-
tion. The network simulation is based on the random balanced 
network investigated in Kumar et al. (2008), but having the same 
size, connectivity and delays as described in Section 2.3.2. The 
weights of the excitatory synapses are adjusted to result in a peak 
amplitude in conductance of J

e
 = 0.68 nS. The peak amplitude 

of the inhibitory synapses is given by J
i
 = g · J

e
, with g = 13.3. 

Each neuron receives an additional external Poisson input with 
rate ν

ext
 = 8 kHz and peak conductance amplitude J

e
, result-

ing in an average firing rate of 8.8 Hz and network activity in 
the asynchronous irregular regime. We measure the run time in 
dependence on the simulation time step h, varied between 20 
and 2−14 ms and on the absolute error parameter of the adaptive 
step-size control function eps_abs (

abs
), varied between 10−3 

and 10−12. The run time cost for a particular time step h or maxi-
mum local error 

abs
 is defined as the average length of time over 

three trials to simulate the network for one biological second at 
that time step or error.

The integration error is measured in a single neuron simula-
tion in which the network input is replaced by Poissonian spike 
trains of the appropriate rates and synaptic weights (excitatory: 
1008 × 8.8 Hz, J

e
; inhibitory: 252 × 8.8 Hz, J

i
; external: 8 kHz, J

e
). 

As for the linear neuron model, the integration error is defined 
as the median error in spike times over 40 trials of 500 ms with 
respect to the spike train of the iterative time-driven implementa-
tion simulated at h = 2−14 ms and 

abs
 = 10−12.

2.5 hardware and software detaIls
All simulations except those for Figure 8 were carried out using 
a single core of a SUN X4440 4 quad core machine (AMD 
Opteron Processor 8356, 2.3 GHz, 64 GB) running Ubuntu 
8.10. The simulations for Figure 8 were carried out on a single 
core of a SUN X4600 8 quad core machine (AMD Opteron 
Processor 8384, 2.7 GHz, 128 GB) running Ubuntu 8.10. The 

I
x
 = 0 pA. In both cases the mean input current is 403.48 pA and 

the mean membrane potential is 16.14 mV, resulting in an output 
firing rate of approximately 10 Hz.

The spike times of the neuron are recorded in each trial. The 
integration error for a particular time step h is given by the 
median error in spike timing over all trials with respect to a 
reference spike train. Since the spike times cannot be calculated 
analytically, the reference spike train is defined to be the output 
of the envelope method (Section 2.2.2.2) at the finest resolution, 
i.e., 2−14 ms. The precision target for the iterative techniques to 
locate the threshold crossing, and thus the spike time, is 10−14 mV: 
the smallest value that can be specified that does not cause the 
search algorithm to enter an infinite loop due to the unreliability 
of the remaining decimal places in the double representation 
of floating point numbers.

2.3.2 Network simulations
The network simulation is based on the balanced random network 
model of Brunel (2000). It consists of N

E
 = 10,080 excitatory and 

N
I
 = 2,520 inhibitory neurons; each neuron receives 1008 synaptic 

connections randomly chosen from the excitatory population, 252 
connections randomly chosen from the inhibitory population and 
an additional excitatory Poissonian spike train at ν

ext
 = 2.71 kHz; 

peak PSC amplitudes are chosen as in Section 2.3.1. All synap-
tic delays in the network are set to 1 ms. The network activity 
is approximately asynchronous irregular (Brunel, 2000) with an 
average firing rate of 10 Hz. Note that the input and output firing 
rates of each neuron in the network are the same as for the single 
neuron simulation with ν

sn
 = 10 Hz. The simulation time step h 

is varied between 20 and 2−14 ms; the run time cost for a particular 
time step h is defined as the average length of time over five trials 
taken to simulate the network for one biological second at that 
time step.

2.3.3 Performance gain
To determine the performance gain of one neuron model imple-
mentation over another with respect to input and output rates, 
the simulation set-ups described above are altered as follows. The 
rate of the external Poissonian stimulation of the single neuron 
simulation (Section 2.3.1) is reduced to ν

ext
 = 1 kHz and the peak 

amplitude of the resultant PSCs is increased to 87.18 pA. The single 
neuron input rate ν

sn
 is systematically varied to give a total rate of 

incoming spikes between 5 and 65 kHz. For each input rate the 
peak amplitude of the excitatory PSCs is systematically varied; the 
peak amplitude of the inhibitory PSCs is varied in proportion with 
ˆ . ˆ .ι ιi e= − ⋅6 25  Each choice of synaptic strength leads to a different 
output rate ν

out
; by averaging over 10 trials an empirical mapping 

ν
out

 (ν
sn

, ι̂
e
) is constructed. Note that by disentangling the input 

and output rates in a network simulation we can treat them as 
independent variables. This technique is equivalent to investigating 
a series of networks with varying self-consistent rates, but without 
requiring the laborious tuning of connection strengths entailed 
by the latter approach.

The rate of the external Poissonian stimulation of the network 
(Section 2.3.2) is similarly reduced to ν

ext
 = 1 kHz and the peak 

amplitude of the resultant PSCs is increased to 87.18 pA. The 
inter-neuron spike communication mechanism is disabled; to 
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bisectioning methods for all values of h ≥ 2−11 ms; as for the 
cubic interpolation implementation, reducing the time step fur-
ther causes the accuracy to deteriorate slightly. As expected, both 
embedded event-driven algorithms also attain non-discrimina-
tion accuracy for all values of h. For greater clarity we do not 
plot the individual data points of implementations that generate 
spike times accurate up to the non-discrimination accuracy in 
Figure 2. Here, and in the rest of the analysis, we represent their 
accuracy with the constant value 

spk
.

All investigated methods reproduce all the spikes in the reference 
spike train for all values of h except the traditional grid constrained 
method. The number of added or missed spikes as a function of h is 
shown in the upper panel of Figure 2. One factor which can cause 
missed spikes is the occurrence of brief superthreshold excursions 
that become subthreshold again before the end of the time step. 
Another factor is that all excitatory and inhibitory input within a 
time step is treated as synchronous in the grid constrained imple-
mentation, which has a different effect on the membrane potential 
than when the actual arrival times of spikes is taken into consid-
eration. This can cause both missed spikes and erroneously added 
spikes. Simply preserving the temporal order of incoming spikes 
without performing any calculations to localize outgoing spikes 
prevents losses and gains with respect to the reference spike train 
(data not shown).

As described in Section 2.2.1, a  time-driven implementation 
can miss an outgoing spike if the superthreshold excursion of 
the membrane potential is of too short a duration to be detected 
by the V(t) ≥ Θ test at the next incoming spike or the end of 
the time step h. To investigate the likelihood of this occurrence, 
we repeat the single neuron simulation (Section 2.3.1) with the 
configuration I

x
 = 499 pA, ν

ext
 = 2.71 kHz, ˆ .ιext pA= 32 29 , and 

the configuration I
x
 = 0 pA, ν

ext
 = 18.17 kHz, ˆ .ιext pA= 32 29  for 

a wide range of input rates ν
sn

 and excitatory synaptic strengths 
ι̂e, whilst maintaining a constant proportion between inhibitory 
and excitatory synaptic strengths: ˆ ˆι ιi e= − ⋅g  with g = 6.25. For 
each configuration (I

x
,ν

ext
,ν

sn
,ι̂e) we perform 50 trials of 10,000 s 

each with the iterative time-driven implementation and record 
the mismatch between the number of spikes produced and the 
number of spikes in the reference spike train simulated with an 
embedded event-driven technique.

In the case that a strong subthreshold current is applied 
(I

x
 = 499 pA, ν

ext
 = 2.71 kHz), the iterative time-driven implemen-

tation does not miss a single spike for any choice of (ν
sn

,ι̂e). In the 
case that the subthreshold current is replaced by a  corresponding 
Poisson input (I

x
 = 0 pA, ν

ext
 = 18.17 kHz), spikes are occasion-

ally missed. Figure 3 shows the proportion of spikes lost, i.e., the 
average (over trials) mismatch in spike number divided by the 
number of spikes in the reference spike train, as a function of the 
mean and the standard deviation of the free membrane poten-
tial (see Kuhn et al., 2004). The proportion of spikes missed is 
very low for all tested configurations. It does not critically depend 
on whether the mean free membrane potential is subthreshold, 
resulting in irregular, fluctuation-driven firing, or superthreshold, 
resulting in regular, mean-driven firing. The very low values indi-
cate that missing a spike is a localized problem. Once a spike has 
been missed, the leaky integrator swiftly returns to the reference 
trajectory. If this were not the case, we would expect to see multiple 

software used to perform the simulations was NEST revision 
8050 compiled with gcc 4.3.2 (O3, DNDEBUG) and utilizing 
GSL version 1.11.

3 results
3.1 accuracy of lInear neuron model ImPlementatIons
The accuracy of the time-driven and embedded event-driven 
implementations of the linear neuron model described in Section 
2.1.1 is evaluated by determining the median spike time error 
with respect to a reference spike train in a single neuron simula-
tion (Section 2.3.1) as a function of the time step h. The results 
are summarized in the lower panel of Figure 2. The accuracy 
of the traditional grid constrained implementation improves 
only gradually with decreasing h. The time-driven implementa-
tion employing cubic interpolation (i.e., the “canonical” method 
originally presented in Morrison et al., 2007) exhibits a more 
rapid improvement of accuracy for decreasing h (fourth order; 
compare with the gray line in the lower panel of Figure 2). For 
h < 2−8 ms ≈ 4 μs, the spike times generated by this implementa-
tion can no longer be reliably distinguished from those in the 
reference spike train, as they differ by less than 

spk
 = 10−13 ms, 

the non-discrimination accuracy (Section 2.3.1). For h < 2−11 ms 
the error gradually starts increasing again due to the cumulative 
effect of rounding errors when calculating the neuron dynam-
ics in such small steps (not shown). The improved time-driven 
technique employing iterative spike location  algorithms yields 
non-discrimination accuracy for both Newton–Raphson and 
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Figure 2 | integration error in the single neuron simulation (Section 
2.3.1) for different implementations of the linear neuron model as a 
function of the time step h. Upper panel: number of spikes incorrectly added 
(positive) or missed (negative) by the grid constrained implementation with 
respect to the spike train generated by the envelope method at the finest 
resolution (2−14 ms). None of the other implementations added or missed 
spikes. Lower panel: spike time error with respect to the reference spike train 
as a function of the time step h in double logarithmic representation. 
Non-iterative implementations: grid constrained (black squares) and cubic 
interpolated (gray triangles). The gray line indicates the slope expected for an 
error proportional to the fourth power of h. The blue line indicates the 
non-discrimination accuracy spk = 10−13 ms.
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to 0.125 ms reduces the single neuron spike loss probability to 
approximately 1.35 × 10−5, leading to a network loss of up to two 
spikes per second. These results suggest that when using iterative 
time-driven or embedded event-driven techniques, the largest 
time step compatible with the constraints of the neuronal system 
under investigation should be used.

To give better insight into the relationship between the input 
rate, the statistics of the membrane potential, the time step and 
the probability of missing a spike, we choose two input regimes 
to investigate in greater detail (points A and B in Figure 3).For a 
simulation of 1000 s we record the membrane potential and the 
net current at each incoming spike. For each point (I(0),V(0)), 
the rise time t

rise
(I(0),V(0)) of a PSP starting from that point can 

be determined (see Eq. 5 in Appendix) and thus the maximum 
of the membrane potential V(t

rise
). Figures 4A,B show the den-

sity of states P(I(0),V(0)) for the two chosen input regimes and 
the areas in state space for which V(t

rise
) > Θ, i.e., the areas in 

state space which result in a membrane potential trajectory that 
exceeds threshold. From the density of states in these areas we 
can calculate the cumulative probability of t

rise
; this is shown in 

Figure 4C. The smaller the rise time, the greater the probability 
of missing a superthreshold excursion for a given sampling rate 
of the membrane potential. For both input regimes, the rise 
times of all membrane potential excursions that can cause a 
threshold crossing are less than 1 ms, but the probability of very 
small rise times is greater for the high mean membrane poten-
tial regime shown in Figure 4A. For the low mean membrane 
potential regime (Figure 4B), the mean interspike interval of the 
incoming spike rate is smaller than the smallest rise times that 
occur, thus the probability of a brief superthreshold excursion 
occurring between two sample points is very low (2.7 × 10−5 for 
h = 1 ms). For the high mean membrane potential regime, the 
mean interspike interval of the incoming spike rate is greater 
than the smallest rise times that occur, thus the probability of a 
superthreshold excursion occurring between two sample points 
is greater (1.4 × 10−4). The sampling of the membrane potential 
due to the time step h is at a much lower rate than the sampling 
due to the incoming spike train, thus the effect of the time 
step h on the probability of missing a spike is weak as shown 
in Figure 3.

3.2 sImulatIon tImes of lInear neuron model ImPlementatIons
In order to compare time-driven and event-driven implementations 
fairly it is necessary to show that an event-driven implementation 
can be successfully embedded in a globally time-driven simulation, 
i.e., that its performance does not depend critically on the time 
step h. The single neuron simulations investigated above would 
not necessarily help us to obtain a clear idea of the difference in 
performance between implementations, as the entire data can fit 
into the cache memory. Instead, we measure the simulation time 
for the test case of a moderately large recurrent network model, 
thus ensuring that disparities between the memory bandwidth 
requirements of the different implementations are included in the 
measurement of computational costs. Figure 5 shows the simula-
tion time for a network simulation (Section 2.3.2) as a function 
of h for all the implementations of the linear benchmark neuron 
model described in Section 2.1.1.

spike mismatches once the first spike error had been made. The 
probability of missing a spike is greatest (2.3 × 10−4) when the 
input rate is low, the time step is large (1 ms in Figure 3A) and 
the mean membrane potential is high. This is unsurprising, as a 
high membrane potential is necessary for a spike to induce a brief 
superthreshold excursion and the combination of low input rate 
and large step size reduces the chances that the excursion will be 
detected. Simulating with a smaller time step (0.125 ms in Figure 
3B) weakly decreases the proportion of missed spikes in general 
but has the strongest effect in the regimes where the probability 
of missed spikes is highest: the maximum probability of missing 
a spike is 4.6 × 10−5.

To put these probabilities into context, let us consider our 
benchmark network of 12,600 neurons as described in Section 
2.3.2. For the case that I

x
 = 0 pA, the total input rate is 30.8 kHz 

and the output rate is approximately 10 Hz. The resulting mem-
brane potential statistics is indicated by point C in Figure 3. 
Due to the chaotic network dynamics, there is no way to directly 
determine the number of missed spikes. However, by scaling up 
from the measurements on the single neuron simulation, we can 
make a theoretical estimate of the number of spikes lost per sec-
ond by using the time-driven implementation. For a time step 
of 1 ms, the probability of missing a spike in the single neu-
ron is approximately 3.81 × 10−5, suggesting a loss of up to five 
spikes per second for the entire network. Reducing the time step 
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Figure 3 | Proportion of false spikes generated in the single neuron 
simulation by the iterative time-driven implementation with respect to 
the spike train generated by the envelope method as a function of the 
mean and standard deviation of the free membrane potential. Spike 
trains are generated with Ix = 0 pA and νext = 18.17 kHz and the error is 
averaged over 50 trials of 10,000 s. Values capped at 1 × 10−4 to preserve 
visual clarity for lower values. (A) Simulation using a time step h = 1 ms. 
White contour lines indicate total input rates of 20, 30, and 50 kHz. (B) As in 
(A) but for h = 0.125 ms. Black contour lines indicate resulting output firing 
rates of 1, 10, and 40 Hz. Points A and B are chosen for more detailed 
analysis in Figure 4, point C indicates the statistics of the membrane 
potential in our standard network simulations as described in Section 2.3.2. 
Dashed vertical lines separate the region where the mean membrane 
potential is subthreshold from the region where it is superthreshold. In the 
white areas no measurement could be made due to extremely low or zero 
output rate.
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slower than the interpolation or Newton–Raphson techniques, 
but this accounts for less than 1.2% of the run time. This demon-
strates that for time-driven implementations, the choice of spike 
location algorithms is not critical: the run time depends almost 
exclusively on the complexity of the operations that have to be 
performed for each incoming spike. Therefore, if implementing 
a neuron model for which straightforward Newton–Raphson is 
not appropriate, a more sophisticated and robust algorithm to 
locate the spikes can be used without fear of incurring a significant 
run time penalty.

The interpolated and iterative time-driven implementations 
are faster than the polynomial and envelope embedded event-
driven implementations for large values of the time step, but 
due to the increase in the simulation times of the time-driven 
implementations with decreasing h, a cross-over occurs at around 
h = 2−3 ms = 0.125 ms; this is shown more clearly in the inset of 
Figure 5. However, as all the implementations employing iterative 
techniques to locate spikes achieve non-discrimination accuracy 
in locating a spike for all time steps h and the already small prob-
ability of missing a spike decreases only weakly with decreasing 
h, the choice of a small h for network simulations should not be 
dictated by accuracy concerns. A valid reason for reducing the 
time step is if it is constrained by some property of the network, 
for example the minimum synaptic delay. Therefore, in order to 
gain a better insight into which regimes are more appropriate for 
time-driven or event-driven simulation, we repeated the previous 
experiment whilst systematically varying the minimal synaptic 
delay by introducing one (non-functional) synaptic connection 
of the desired duration. As described in Section 2.2, the minimum 
synaptic delay determines the communication interval T

comm
, and 

we set the time step h = T
comm

 for each value of T
comm

. Figure 6 

The simulation times of the two embedded event-driven 
algorithms are constant across the range of time steps tested, 
demonstrating that the embedding technique does not impose 
additional costs related to the time step h on the performance of 
the algorithms. Unsurprisingly, the traditional grid constrained 
 implementation is faster than all other implementations, but 
its simulation times converge to those of the time-driven inter-
polated and iterative implementations for very small h, as was 
previously observed in Morrison et al. (2007). The three differ-
ent spike location algorithms of the interpolating and iterative 
time-driven implementations yield very similar run times. The 
inset of Figure 5 shows that the bisectioning algorithm is slightly 
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excursion. (A) Density of states P(I(0),V(0)) for a neuron receiving a total input 
spike rate of 20.7 kHz with mean μ = 22 mV and standard deviation 
σ = 1.73 mV of the free membrane potential. The black edged area indicates 
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threshold and the vertical dashed line indicates the minimum current that can 
cause a threshold crossing. (B) As in (A) but for a total input spike rate of 
33.8 kHz with μ = 14.4 mV and σ = 3.39 mV. (C) Cumulative probability of trise 
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approach is more general, this suggests it should be the preferred 
technique for simulations in which high accuracy for the spike 
timing is required. If the interspike interval of the incoming spike 
train is greater than the minimal synaptic delay in the network, 
event-driven techniques may be more advantageous.

The envelope method of D’Haene et al. (2009) is faster than the 
polynomial approach of Brette (2007) for the parameters chosen, 
however parameters can be found that reverse the relationship. 
Figure 6C shows the same section as Figure 6B but for a network 
simulation with the following deviations from the parameters given 
in Section 2.3.2: ι̂e pA= 10 , ˆ .ιi pA,= −62 5  ν

ext
 = 3.498 kHz, and 

τ
syn

 = 5 ms. The increased synaptic time constant reduces the order 
of the polynomial mapping of the membrane potential to 2, which 
increases the efficiency of the algorithm presented in Brette (2007) 
and summarized in Section 2.2.2.1.

3.3 effIcIency of lInear neuron model ImPlementatIons
In Section 3.1 we investigated the accuracy of time-driven and 
event-driven implementations of the linear benchmark neuron 
in single neuron simulations. In Section 3.2 we measured the 
simulation time for the various implementations in the test 
case of a recurrent network model. However, in order to choose 
between candidate implementations of a neuron model for a 
specific scientific question, a researcher needs to know which 
implementation will achieve a given accuracy goal for the low-
est run time cost. We therefore follow the definition developed 
in Morrison et al. (2007), i.e., the efficiency of a neuron model 
implementation is the run time cost to achieve a particular 
accuracy goal, rather than the run time costs at a particular 
time step. As the dynamics of our benchmark network model 
exhibits chaotic behavior (Brunel, 2000), it is not possible to 
define a single reference spike train. However, although no 
accuracy measurement can be made for the recurrent network 
model, the run time costs measured give a fair reflection of the 
costs of using a particular neuron model implementation. We 
therefore conjoin the run time costs measured for the recurrent 
network with an accuracy goal defined as the integration error 
obtained for a single neuron simulation with the same input 
statistics. In other words, we combine the information displayed 
in Figures 2 and 5 to derive the run time cost as a function of 
the single neuron integration error, eliminating the time step 
h. The results of this analysis are shown in Figure 7A; Figure 
7B shows an enlarged view of the section indicated by the black 
rectangle to illustrate more clearly the relationships between 
the various implementations that obtain non-discrimination 
accuracy at all time steps.

The analysis demonstrates that an accuracy goal of 10−13 can be 
most efficiently obtained by a time-driven implementation employ-
ing iterative spike location techniques. The  Newton–Raphson 
 technique proves to be marginally more efficient than the 
 bisectioning technique. For the parameters used, the analysis also 
confirms a central result of D’Haene et al. (2009), i.e., that their 
envelope method is more efficient than the polynomial method of 
Brette (2007), although parameters can be found that are prefer-
ential for the Brette (2007) approach (see Figure 6C). The differ-
ence seen in efficiency between the two embedded event-driven 
methods (1.2%) is substantially smaller than that between the more 

shows the simulation times for the network simulation (Section 
2.3.2) as a function of the communication interval T

comm
 for all 

implementations of the linear neuron model employing iterative 
spike location algorithms.

Similarly to Figure 5, the iterative time-driven implemen-
tations are faster than the embedded event-driven implemen-
tations for large values of the communication interval. At 
T

comm
 = 20 ms = 1 ms, the time-driven implementations are 10% 

faster than the embedded event-driven implementations. As the 
communication interval decreases, all simulation times increase. 
This is because the cache efficiency advantage of integrating a 
neuron’s incoming spikes for a complete communication interval 
in only one visit from the scheduling algorithm diminishes as the 
communication interval decreases, which affects all implemen-
tations in the same manner. For small communication intervals 
the simulation times converge, with a slight speed advantage 
to the embedded event-driven implementations. However, the 
introduction of the communication interval optimization only 
guarantees a performance advantage to event-driven meth-
ods if at least one spike per communication delay is expected, 
as discussed in Section 2.2.2. At a communication interval of 
2−4 ms = 0.0625 ms, the communication step is smaller than the 
interspike interval of the incoming spike train each neuron in 
the network sees (1/15.31 kHz = 0.0653 ms). This means that the 
time-driven scheduling algorithm visits the neuron more often 
than an event-driven scheduling algorithm would, and so could 
be disadvantaging the performance of the event-driven methods. 
In summary, the time-driven implementations are either signifi-
cantly faster than the event-driven methods or are similarly fast, 
depending on the communication interval. As the time-driven 

 100

 125

 150

 175

 200

 225

2−4 2−2 20

C
P

U
 T

im
e 

[s
]

Communication Interval Tcomm [ms]

A B

C

 105

 120

 135

2−1 20

A B

C

 105

 120

 135

2−1 20

A B

C

Figure 6 | Simulation time for the network simulation (Section 2.3.2) for 
different implementations of the linear neuron model as a function of the 
communication interval Tcomm. (A) Simulation time for the iterative 
time-driven Newton–Raphson (light red triangles) and bisectioning (dark red 
triangles) implementations and embedded event-driven polynomial (blue 
circles) and envelope (green circles) implementations. (B) Enlarged view of 
the section indicated by the black rectangle in (A). (C) Same section as (B), 
but with results obtained for an alternative synaptic time constant τsyn = 5 ms. 
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and output rates can be cleanly disentangled (see 2.3.3). Figure 8 
shows the results of this analysis. The time-driven implementation 
with iterative spike location is faster than the embedded event-
driven algorithm employing the envelope method of D’Haene et al. 
(2009) for all tested input and output rates (see Figure 8A). The 
time-driven method becomes comparatively more advantageous 
for increasing input and output rates. The dependence on the 
input rate can be explained as follows. As already demonstrated in 
Figure 5, the run time depends not on the computational expense 
of the method used to locate the spikes but on the expense of the 
operations performed on receiving each input spike. The itera-
tive time-driven and the embedded event-driven implementations 
have the common cost of propagating the neuron state from one 
input spike to the next. Beyond that cost, the minimal opera-
tion performed by a  time-driven implementation is to check for 
the superthreshold condition, which is less expensive than the 

efficient of the embedded event-driven implementations and the 
more efficient of the iterative time-driven implementations that 
we propose (7.9%).

Although this efficiency advantage of the time-driven imple-
mentation is relatively modest, it was determined for a network 
simulation that is parameterized to provide a best-case for the 
embedded event-driven implementations in terms of speed, and 
the implementations themselves are reduced to their simplest 
and least general cases (Section 2.2.2.1 and 2.2.2.2), whereas the 
time-driven implementation is not optimized for the specific 
neuron model. Figure 7C shows the results of a network simu-
lation in which the subthreshold input current is replaced by 
an external Poisson input of rate ν

ext
 = 18.17 kHz and strength 

ˆ .ιext pA= 32 29 . The greater complexity of the embedded event-
driven algorithms with respect to the treatment of incoming 
spikes results in a 29.0% difference between the more efficient 
of the embedded event-driven implementations and the more 
efficient of the iterative time-driven implementations. Although 
there is a small probability of the time-driven implementation 
missing a spike (see Figure 3), this event did not occur.

If the scientific question under investigation requires a lesser 
degree of precision, a non-iterative method can be more appro-
priate. Figure 7A shows that if median errors greater than 10−2 ms 
are acceptable, the grid constrained implementation remains the 
method of choice.

To demonstrate that the results obtained above are robust with 
respect to the total rate of incoming spikes a neuron implemen-
tation processes and the rate of outgoing spikes it generates, we 
performed a series of network simulations in which the input 
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The accuracy of the grid constrained implementation in the 
single neuron simulation improves gradually with decreasing 
time step h. For h ≤ 2−6 ms (black vertical line in the lower panel 
of Figure 9A) the reference spike train is faithfully reproduced, 
i.e., there are no missed or added spikes. For smaller time steps, 
the error in locating the individual spike times decreases further. 
The simulation time for the network simulation when using the 
grid constrained implementation (Figure 9B) remains constant 
for h ≥ 2−4 ms and then increases steadily with decreasing h. 
These results were obtained with the absolute maximum local 
error of the solver 

abs
 set to 10−6. Reducing 

abs
 further does not 

improve the accuracy of the integration but does increase the 
run time, whereas increasing 

abs
 leads to unacceptably high 

numbers of missed spikes with respect to the reference spike 
train (data not shown).

In contrast, the linear interpolating implementation generates 
spike trains identical to the reference spike train in the single 
neuron simulation for all values of h. As no error can be defined 
in this case, the best achievable accuracy of 10−12 ms is shown as 
a visual guide in Figure 9A. Similarly, the run time performance 
for the network simulation was constant for all values of h (Figure 
9B). These results were obtained with the absolute maximum 
local error of the solver 

abs
 set to 10−12. To investigate the role 

of 
abs

 we repeated the single neuron and network simulations 
for the linear interpolating implementation for h = 20 ms whilst 
systematically varying 

abs
. The results are shown in Figures 9C,D. 

As 
abs

 increases the integration error in the single neuron error 
increases steadily but the simulation time for the network simu-
lation decreases steadily. For 

abs
 ≤ 10−6 (gray vertical line in the 

lower panel of Figure 9C) the reference spike train is faithfully 
reproduced; above this value many spikes are missed with respect 
to the reference spike train.

To compare the efficiency of the two implementations of the 
 non-linear neuron model, we once again plot the simulation time 
for the network simulation as a function of the integration error 
in the single neuron simulation, eliminating h as the independent 
variable for the grid constrained implementation, and 

abs
 for the 

linear interpolating implementation (Figure 9E). The horizontal 
lines, corresponding to the vertical lines in Figures 9A,C, indicate 
the least expensive simulation in terms of run time for which the 
reference spike train in the single neuron simulation is reliably 
reproduced. The gray line runs below the black line, which demon-
strates that our technique is more efficient in terms of generating 
reliable spike trains than the standard grid constrained implemen-
tation. Moreover, the marker bisected by the gray line lies to the 
left of the marker bisected by the black line, which shows that the 
accuracy of the individual spikes is better using the linear interpo-
lating implementation at 

abs
 = 10−6 than using the grid constrained 

implementation at h = 2−6 ms. Improved accuracy for the spike 
timing is achievable for the linear interpolating implementation 
at the cost of increasing the run time by reducing the maximum 
local error of the solver 

abs
.

4 dIscussIon
We have compared several different methods of accurately calculat-
ing the spike times of the linear integrate-and-fire neuron model 
with exponentially decaying synaptic currents, for which the next 

minimal operation performed by an event-driven implemen-
tation, namely performing a prediction of whether the neuron 
can fire in the future without additional input. Therefore as the 
number of incoming spikes increases, so too does the comparative 
advantage of the time-driven approach, as can be seen in Figure 
8B. The dependence on the output rate is due to the number 
of times the spike location method is called. In the time-driven 
implementations, the spike location method is only carried out if 
a superthreshold condition was detected, i.e., when an outgoing 
spike should definitely be generated. In contrast, an event-driven 
method must at least start the search algorithm every time the 
spike prediction algorithm indicates that a spike is possible without 
further input. In many cases, the spike location algorithm will be 
aborted or invalidated by the arrival of the next incoming spike. In 
a high rate regime, positive predictions are more common than in 
a low rate regime, so the complexity of the event-driven algorithm 
is also dependent on the output rate, whereas the complexity of 
the time-driven implementations are essentially independent of 
it. The dependence of the run time on the output rate is dem-
onstrated in Figure 8C. The computation time of the embedded 
event-driven implementation increases linearly with the output 
rate whereas the computation time of the time-driven implemen-
tation remains roughly constant. The statistics of the output spike 
train, i.e., irregular, fluctuation-driven firing when the mean free 
membrane potential is subthreshold, and regular, mean-driven 
firing in the superthreshold regime, does not affect the compara-
tive advantage of the time-driven implementation.

The range of output rates generated by the method used to 
locate appropriate parameter configurations (Section 2.3.3) is 
dependent on the input rate, resulting in the white areas where 
no measurements could be made. In particular, it is difficult in this 
framework to produce low rate output when the input rate is very 
low. As the comparative advantage of the time-driven implementa-
tion decreases with decreasing input and output rates, event-driven 
methods may prove advantageous for scientific questions where 
sparse activity can be assumed, either due to low firing rates or 
low connectivity.

3.4 Performance of the non-lInear neuron model
To demonstrate the generality of our approach we apply it to the 
non-linear AdEx model (Brette and Gerstner, 2005) described in 
Section 2.1.2. The adaptation of our technique to a non-linear 
model is given in Section 2.2.1: a standard adaptive ODE solver 
is used to integrate the dynamics between incoming spikes. If the 
superthreshold condition is detected after an integration step, a 
linear interpolation is performed across the integration step to 
locate the spike. To measure accuracy, we define the reference spike 
train to be that generated by our linearly  interpolating  technique 
simulated at the finest resolution (h = 2−14 ms) and with the  lowest 
absolute maximum local solver error (

abs
 = 10−12). Reducing 

abs
 

further than this does not result in better accuracy, i.e., the median 
spike error saturates at 10−12 ms for any choice of 

abs
 ≤ 10−12 for the 

reference and test spike trains (data not shown). We will therefore 
consider 10−12 ms to be the best achievable accuracy for this model. 
The results of the comparison of our technique with a standard grid 
constrained implementation are shown in Figure 9 (see Section 2.4 
for the details of the protocol).
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holds as long as at least one input event per communication inter-
val is expected. The globally time-driven simulation algorithm 
also scales well when distributing an application over multiple 
machines (Morrison et al., 2005); communicating precise spike 
times only increases the size of the packets by a constant factor, 
but does not increase the frequency or overhead of communica-
tion (Morrison et al., 2007). Distributing a globally event-driven 
simulation algorithm requires additional mechanisms to maintain 
consistency between the event queues on each machine (Lytton 
and Hines, 2005; Migliore et al., 2006). The temporal separa-
tion of the invocation of spike prediction and the spike loca-
tion algorithms represents another optimization that can only 
be realized in a time-driven environment. This feature reduces 
the search costs that occur in an event-driven environment in 
the common case that subsequent input would alter or cancel the 
spike time that has been calculated for a neuron. Due to the use 
of intermediate variables to store the state of the spike location 
algorithm, the only additional costs that accrue to the event-
driven methods as a result of being embedded in a time-driven 
scheduling algorithm is an additional function call at the end 

spike time cannot be expressed in closed form. In order to evalu-
ate the performance of different approaches, it was necessary to 
implement all techniques within the same simulation environment. 
Initially, this may seem paradoxical – how can an event-driven 
method be fairly implemented in a globally time-driven simula-
tion environment? However, we have taken great care to ensure 
that the event-driven methods of Brette (2007) and D’Haene et al. 
(2009) were embedded, parameterized and stimulated in such a 
way as to meet or surpass their efficiency in a purely event-driven 
environment.

Let us first consider their implementation (Section 2.2.2). In 
our versions, the event-driven methods do not perform any addi-
tional calculations at the grid points defined by the time step h, 
and so the run times of these implementations are independent of 
h (see Figure 5). The run time is dependent on the communica-
tion interval T

comm
, however the introduction of this variable is an 

optimization that improves the performance of all implementa-
tions. By allowing the greatest possible number of operations for 
a given neuron instance to be performed sequentially, the cache 
efficiency is improved and the run time is lowered. This advantage 
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Figure 9 | Accuracy, simulation time, and efficiency for the grid 
constrained (black squares) and linear interpolating (gray triangles) 
implementations of the non-linear neuron model. Accuracy is determined 
with respect to the reference spike train generated by the linear interpolating 
implementation at the finest resolution (h = 2−14 ms) and lowest absolute 
maximum local solver error (abs = 10−12). (A) Lower panel: integration error in a 
single neuron simulation as a function of the time step h in double logarithmic 
representation. For the grid constrained implementation abs = 10−6. The linear 
interpolating implementation with abs = 10−12 generates identical spike trains to 
the reference train for all h; the error is therefore represented by the gray dashed 
line indicating the best achievable accuracy, 10−12 ms. For h > 2−6 ms (vertical 
black line) the grid constrained implementation misses or adds spikes with 
respect to the reference spike train. Upper panel: number of spikes incorrectly 
added (positive) or missed (negative) by the grid constrained implementation 
with respect to the reference spike train. (B) Simulation time for the network 

simulation as a function of the time step h in double logarithmic representation, 
abs as in (A). (C) Lower panel: integration error of the linear interpolating 
implementation in a single neuron simulation at h = 20 ms as a function of the 
solver maximum error abs in double logarithmic representation. Error for 
abs = 10−12 (open triangle) represented by the best achievable accuracy, 10−12 ms. 
For abs > 10−6 (vertical gray line) spikes are missed. Upper panel: number of 
spikes missed with respect to the reference spike train. (D) Simulation time for 
the network simulation as a function of the solver error. (e) Simulation time for 
the network simulation as a function of the integration error in the single neuron 
simulation in double logarithmic representation. The data for the grid constrained 
implementation are consolidated from (A,B), eliminating h; the data for the 
linear interpolating implementation are consolidated from (C,D), eliminating abs. 
Horizontal lines (h = 2−6 ms: black, abs = 10−6: gray) correspond to the vertical 
lines in (B) and (D). Vertical gray dashed line corresponds to the horizontal gray 
dashed line in (A).
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by replacing the double representation with quad representation. 
Independent of the representation, care should be taken to select 
appropriate library functions for computing exponentials and to 
sort terms with respect to their magnitudes (Morrison et al., 2007). 
Moreover, instead of expressing the system state in the natural 
variables of potential and current suggested by the biophysics, it 
can be transformed to obtain a better conditioned time-evolution 
operator (Deuflhard and Bornemann, 2010). An example of such a 
transformation in the context of neuronal dynamics is provided in 
Appendix B of Guerrero-Rivera et al. (2006), although the motiva-
tion for that study was to reduce the number of multiplications 
rather than to increase the accuracy.

Through our experiments we were able to establish categories 
of atypical situations in which event-driven simulation may prove 
more efficient. If even a very low probability of missing a spike is 
unacceptable for the scientific question at hand, an event-driven 
algorithm provides the required guarantee for the linear neuron 
model we investigated. By investigating a wide range of input and 
output rates (see Figure 8) we determined that the comparative 
speed advantage of the time-driven implementation decreases with 
decreasing input and output rate. A further example of a situa-
tion in which event-driven simulation may be more efficient is 
therefore the limit of extremely low input and output rates beyond 
our tested range. However, such a simulation is likely to run very 
quickly regardless of which approach is used, and so the decision 
of which approach to take is not as crucial as for a network of the 
same size with higher input and output rates. As the iterative time-
driven implementation attains non-discrimination accuracy at all 
time steps given correct spike detection, the size of the time step 
is more constrained by features of the neural system under inves-
tigation than by accuracy requirements. The most likely reason 
for requiring a small time step is that the synaptic delays are very 
short, as the minimum synaptic delay constrains the time step. If 
the activity of the network and the minimum synaptic delay are 
such that less than one incoming spike per communication interval 
can be expected, then an event-driven simulation may be more 
efficient (see Figure 6). For example, this situation could arise if 
gap junctions are considered, which have a much lower trans-
mission delay than chemical synapses. A final example depends 
on the specific neuron model. The envelope method of D’Haene 
et al. (2009) can integrate neuron models with a large number of 
different synaptic time constants. A thorough investigation of the 
time-driven performance of such models lies outside the scope of 
this manuscript. Furthermore, our investigations have dealt with 
neuron models with non-invertible dynamics, such that the time 
of the next spike cannot be expressed in closed form. For neuron 
models with invertible dynamics [e.g., the Theta-neuron model 
(Ermentrout and Kopell, 1986; McKennoch et al., 2009) and the 
Mirollo–Strogatz model (Mirollo and Strogatz, 1990)] the costs of 
future spike location can be expected to be lower, thus expanding 
the regimes in which event-driven simulation is more efficient.

Similarly, there is also a large class of network models for which 
time-driven simulation without iterative spike location is more 
appropriate. As demonstrated in Figure 7, if a large error in the 
timing of spikes is acceptable, a grid constrained implementation 
is substantially faster. For networks with chaotic dynamics such as 
those used here to measure the computational costs of the various 

of each  communication interval. We assert that the cost of this 
function call is more than compensated for by the time-driven 
optimizations described above.

Secondly, let us consider the parameterization and stimula-
tion. By using identical time constants for all synaptic currents 
and choosing the time constant of the membrane potential to be 
an integer multiple of the synaptic time constant, we simplify the 
prediction and spike location algorithms of both the polynomial 
method of Brette (2007) and the envelope method of D’Haene et al. 
(2009) to their best cases. The high subthreshold current (Section 
2.1.1) which drives the neurons to just below their firing threshold 
reduces the number of inputs a neuron must receive in order to fire. 
This is advantageous for the event-driven techniques, as they incur 
higher costs for an incoming event than a time-driven technique. 
An even higher current cannot be applied due to the limitations of 
the Brette (2007) algorithm. Finally, in the case of the event-driven 
implementations, the timing of events in the Poissonian input spike 
trains was defined with respect to a T

comm
 basis rather than a h 

basis to avoid unnecessary numerical conversions. To enable other 
researchers to perform their own experiments, we are making a 
NEST module available for download from www.nest-initiative.
org that contains all used implementations.

Despite all the care taken to enhance the efficiency of the event-
driven implementations of the linear integrate-and-fire model, they 
proved to be less efficient for all tested input and output rates than 
the time-driven implementations based on the “canonical” tech-
nique first presented in Morrison et al. (2007) but incorporating 
iterative algorithms to locate outgoing spikes. By replacing the 
subthreshold input current with a corresponding Poisson spike 
train, the network simulation is less specifically designed to favor 
the event-driven approach and the comparative speed advantage 
of the time-driven technique is substantially greater. The better 
performance of the time-driven implementation is because the 
run time depends on the cost of the operations performed for 
each incoming spike and not for each outgoing spike. This can be 
clearly seen by comparing the run times for the various time-driven 
implementations in Figure 5: the grid constrained implementation, 
which merely increments the weight in a buffer for each incoming 
event, is the fastest. All other time-driven implementations have 
essentially the same speed, despite different complexities of the 
spike location algorithm. Time-driven implementations are faster 
than event-driven implementations at large time steps because 
checking for a superthreshold condition at each incoming spike 
is cheaper than the corresponding operations in an event-driven 
scheme, i.e., performing a spike prediction algorithm and initiat-
ing a search algorithm if the prediction is positive. A time-driven 
implementation can miss spikes due to brief superthreshold excur-
sions of the membrane potential. We have shown that the prob-
ability is small for a wide range of input and output rates, with a 
maximum in the order of 10−4 for a time step of 1 ms; in future 
work we will investigate whether the probability of missing a spike 
can be reduced still further.

In addition to the detection of threshold crossings, another 
 component determining the accuracy of the solution is the accu-
racy at which the subthreshold dynamics is propagated in time. 
An obvious constraint is the number of bits used to represent the 
floating point values; if available, the accuracy can be increased 
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solver is reduced. Additionally, our technique achieves a reliable 
 reproduction of the reference spike train with a greater accuracy 
on the individual spike times at a lower computational cost than a 
standard grid constrained implementation (see Figure 9). A specific 
event-driven algorithm for the AdEx neuron model is not known. 
However, with current technology the model dynamics could be 
solved by provisionally stepping forward in time, with at least the 
costs of our technique, plus the additional costs of rewinding the 
dynamics if new events arrive that change the provisional solution 
(Lytton and Hines, 2005). The clear accuracy and speed advantage 
of our technique suggests that it should be considered the standard 
 integration technique for the AdEx model when accurate spike 
times are required.

Our intention in this study was to address the common percep-
tion that time-driven approaches cannot reach the high degree of 
precision obtained by event-driven approaches and so we restricted 
our analysis to these classes. In future work, we will extend the 
analysis to address the potential advantages of alternative methods 
of integration, such as the novel and promising voltage-stepping 
technique proposed by Zheng et al. (2009). Another alternative is 
represented by analog neuromorphic hardware such as that devel-
oped within the EU FACETS project, which emulates the differ-
ential equations of the neuron model by analog electrical circuits 
(Schemmel et al., 2008; Bruederle et al., 2010). The detection of a 
threshold crossing is bounded only by the physical constraints of the 
reaction time of the comparator element continuously  monitoring 
the membrane potential. As in the case of simulation on digital 
computers, the explosive dynamics of the AdEx model can be 
exploited to reduce the probability of missing a spike even further 
than in the case of the integrate-and-fire model. For simulations 
on digital computers, our results on linear and non-linear neuron 
models demonstrate that our technique exhibits greater efficiency 
and generality than event-driven techniques, except in the special 
cases described above, such as extremely low rates or when no spike 
may be missed. We therefore conclude that when the accuracy of 
spike times is critical, our iterative time-driven approach should 
be the first method to try; a specialized, event-driven implementa-
tion should only be developed if the time-driven approach yields 
unsatisfactory results.
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neuron model implementations, it is not possible to define a “cor-
rect” reference spike train to which measurements converge. Even 
the smallest difference in the computer representation of spike 
times or in the implementation of mathematical functions will 
lead to divergent results in a short time. In such cases, the former 
concept of spike time error is irrelevant. As long as no mesoscopic 
effects such as artificial synchronization emerge, there is no advan-
tage to using an implementation with a high degree of accuracy in 
spike location instead of a faster, less accurate implementation. If 
such mesoscopic effects occur, simple, low cost techniques such as 
performing the neuron reset off-grid may already be sufficient to 
suppress the artifactual behavior (Hansel et al., 1998; see also the 
elaboration in Morrison et al., 2007).

In addition to its greater efficiency for neuron models with 
non-invertible dynamics, our approach has the major advantage 
of generality. The algorithms of Brette (2007) and D’Haene et al. 
(2009) provide elegant solutions for a specific linear neuron model, 
but require additional constraints to operate at their best [the poly-
nomial algorithm of Brette (2007) is particularly vulnerable to the 
choice of neuron parameters]. In contrast, our technique can be 
applied to any neuron model in which a superthreshold (or analog) 
condition can be identified and in any network model incorporat-
ing transmission delays between neurons.

To demonstrate this generality, we applied our method to the 
non-linear AdEx neuron model of Brette and Gerstner (2005). The 
AdEx model is fundamentally different from the integrate-and-fire 
model, which essentially eliminates the possibility of missing a 
spike. In the integrate-and-fire model a spike is generated when 
the membrane potential passes the threshold value from below. As 
the membrane potential may stay above threshold only for a short 
time, integration algorithms which only calculate the membrane 
potential at specific points may fail to detect the suprathreshold 
value and consequently fail to generate a spike. In the AdEx model, 
the differential equation governing the membrane potential rapidly 
drives the membrane potential to large values once the threshold 
V

th
 is passed. The spike time is determined by the membrane poten-

tial passing V
peak

 several millivolts above V
th

. If a numerical solver 
integrates the differential equation with sufficient accuracy, it can-
not fail to detect the generation of a spike because the membrane 
potential just continues to increase after crossing the threshold V

th
. 

The introduction of V
peak

 enables spike generation to be distin-
guished from cases where a suprathreshold membrane potential is 
pushed below threshold again by further inhibitory input. For a suf-
ficiently large choice of V

peak
, an initiated spike cannot be canceled 

by inhibition due to the rapid increase of the membrane potential. 
Consequently, the precise timing of spikes depends weakly on the 
choice of V

peak
 but the number of spikes detected does not.

We showed that when our technique is applied to the non-
linear AdEx model, the generated spike trains converge to a ref-
erence spike train as the maximum local error of the adaptive 
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aPPendIx
a tIme course of membrane PotentIal trajectory
The subthreshold dynamics of the leaky integrate-and-fire neuron 
model with exponentially decaying PSCs can be integrated exactly 
(Rotter and Diesmann, 1999). In the system of coupled linear dif-
ferential equations
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where the integral extends over all spikes arriving in the interval 
(s,t]. As we propagate the dynamics from one incoming spike to 
the next, we can set the time of the last spike to s = 0 without loss 
of generality; the effect of all spiking activity up to s is already con-
tained in the components V(0) and I

syn
(0) of the system state. Thus 

prior to the arrival of the next spike at t
1
, the system state evolves 

as y(t) = eAt − y(0). The next spike has an instantaneous effect only 
on the I component, therefore over the complete interval (0,t

1
] the 

membrane potential is governed by
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With the substitutions of D’Haene et al. (2009), i.e., 
V ICsyn synm

m

m
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1 0τ τ
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= − −( ) ,0 τ  the terms can 

be sorted by the time constants to obtain
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(4)

The time t
rise

 at which the membrane potential reaches its maxi-
mum is defined by V t( )rise = 0 and has the closed form expression
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or in terms of the state variables
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