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et al., 1992) chips. But these implementations are all model-specific, 
which makes them difficult to use, modify, and extend according 
to the specific needs of the considered application. It also makes it 
difficult to compare different models. A second problem with cur-
rent implementations of auditory models is that, due to memory 
constraints, they are often limited in the number of frequency chan-
nels they can work on simultaneously, typically tens or at most 
hundreds of channels, while there are about 3000 inner hair cells 
in a human cochlea.

To address the first problem, we designed a modular auditory 
modeling framework using a high-level language, Python. Python is 
a popular interpreted language with dynamic typing, which benefits 
from a variety of freely available libraries for scientific comput-
ing and visualization. This choice makes it easy to build complex 
auditory models, but it comes at the cost of a large interpretation 
overhead. To minimize this overhead, we used vectorization, an 
algorithmic strategy which consists in grouping identical opera-
tions operating on different data. This strategy was recently used 
to address similar issues in neural network simulation (Goodman 
and Brette, 2008, 2009).

By vectorizing over frequency channels, we can take advantage of 
the heavily parallel architecture of auditory models based on filter 
banks. In comparison, in available tools, model output is computed 
channel by channel. To avoid memory constraints with many chan-
nels, we use online processing. Finally, vectorization strategies are 
well adapted to parallelization on graphics processing units (GPUs), 
which follow the single instruction, multiple data (SIMD) model 
of parallel computing.

We start by describing our vectorization algorithms (see Section 
2) before presenting their implementation in a modular auditory 
modeling toolbox (see Section 3). We illustrate the functionality 

1 IntroductIon
Models of auditory processing are used in a variety of contexts: 
in psychophysical studies, to design experiments (Gnansia et al., 
2009) and interpret behavioral results (Meddis and O’Mard, 2006; 
Jepsen et al., 2008; Xia et al., 2010), in computational neuroscience, 
to understand the auditory system with neural modeling (Fontaine 
and Peremans, 2009; Goodman and Brette, 2010; Xia et al., 2010), 
in engineering applications, as a front end to machine hearing algo-
rithms (Lyon, 2002; for example speech recognition, Mesgarani 
et al., 2006; or sound localization, May et al., 2011).

These models derive from physiological measurements in 
the basilar membrane (Recio et al., 1998) or in the auditory 
nerve (Carney et al., 1999), and/or from psychophysical meas-
urements (e.g., detection of tones in noise maskers, Glasberg 
and Moore, 1990), and even though existing models share key 
ingredients, they differ in many details. The frequency analysis 
performed by the cochlea is often modeled by a bank of band 
pass filters (Patterson, 1994; Irino and Patterson, 2001; Lopez-
Poveda and Meddis, 2001; Zilany and Bruce, 2006). While in 
simple models, filtering is essentially linear (e.g., gammatones, 
Patterson, 1994; or gammachirps, Irino and Patterson, 1997), 
a few models include non-linearities and feedback loops, such 
as the dynamic compressive gammachirp (DCGC; Irino and 
Patterson, 2001) and the dual resonance non-linear (DRNL) 
filter (Lopez-Poveda and Meddis, 2001), which are meant to 
reproduce non-linear effects such as level dependent bandwidth 
or two-tone suppression.

To simulate these models, many implementations have been 
developed, on software (O’Mard and Meddis, 2010; Patterson 
et al., 1995; Slaney, 1998; Bleeck et al., 2004), DSP board (Namiki 
et al., 2001), FPGA (Mishra and Hubbard, 2002), or VLSI (Watts 
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and performance with “Brian Hears,”1 a Python toolbox developed 
by our group. Brian Hears is a library for the spiking neural network 
simulator package “Brian”2 (Goodman and Brette, 2008, 2009), 
which also relies on vectorization strategies (Brette and Goodman, 
2011). To give an idea of how this tool facilitates auditory modeling 
and the integration with neural modeling, Figure 1 shows an audi-
tory model consisting of a gammatone filterbank with half-wave 
rectification, compression, and spiking with integrate-and-fire 
models (but note that the toolbox can also be used independently 
of Brian). Finally, we compared the performance with existing 
implementations written in Matlab (Slaney, 1998; Bleeck et al., 
2004), another high-level interpreted language.

2 AlgorIthms
2.1 VectorIzed fIlterIng oVer frequencIes
Using a high-level interpreted language induces a fixed performance 
penalty per interpreted statement, which can add up to a significant 
cost if loops over large data sets are involved. Similar to Matlab, the 
NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001) packages for 
Python address this problem for scientific computation. In order to 
add two large vectors x and y, we do not need to write for i in 
range(N): z[i] = x[i]+y[i] which would have an interpretation 
cost of O(N), but simply z = x+y with an interpretation cost of O(1).

Another problem that needs to be addressed is the very large 
memory requirements that standard implementations of auditory 
periphery models run into when using large numbers of channels. 
These implementations compute the entire filtered response to a 
signal for each frequency channel before doing further processing, an 
approach we call “offline computation.” For N channels and a signal 
of length M samples stored as floats, this means there is a memory 
requirement of at least 4 NM bytes which can quickly get out of 
hand. The human cochlea filters incoming signals into approxi-
mately 3000 channels. At a minimum sampling rate of 40 kHz this 
requires 457 MB/s to store, hitting the 4-GB limit of a 32-bit desktop 
computer after only 8.9 s (and even the larger amounts of memory 
available on 64 bit machines would be quickly exhausted).

We address both of these problems using “online computation” 
vectorized over frequencies. Specifically, at any time instant we store 
only the values of the filtered channels for that time instant (or for 
the few most recent time instants), almost entirely eliminating the 
memory constraints. This approach imposes the restriction that 
every step in the chain of our auditory model has to be computed 
“online” using only the few most recent sample values. For neu-
ral models, this is entirely unproblematic as filtered sample values 
will typically be fed as currents into a neural model consisting of 
a system of differential equations (see Figure 1). The restriction 
can, however, be problematic in the case of models which involve 
cross- or auto-correlation, although these can also be addressed by 
using online or buffered correlators.

FiGUre 1 | Simple spiking model of the auditory periphery. The cochlea and 
inner hair cells are modeled using gammatone filtering followed by half-wave 
rectification and 1/3-power law compression. We model the auditory nerve fibers 
as leaky integrate-and-fire neurons defined by the stochastic differential equation 

t JdV
dt I V k t= − + ( ) where the current I is the output of the inner hair cell model 

and J(t) is physiological white noise (not the acoustic input noise). (A) Python 
implementation with the Brian Hears toolbox. Variable I in the neuron model is 
linked to the output of the filterbank. (B) Raster plot of the model output.

1http://www.briansimulator.org/docs/hears
2http://www.briansimulator.org
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times longer than executing an instruction (although this can be 
 alleviated using coalesced memory access). Even worse problems 
are caused if the data needs to be uploaded to the GPU, processed 
and then downloaded back to the CPU, due to the limited memory 
bandwidth. The results of these vectorization optimizations are 
shown in Section 3.5.

2.2 BufferIng
Vectorizing over frequency is useful but also introduces some 
problems. Firstly, if we have a high sample rate then in an inter-
preted language we will have a high interpretation cost if we have 
to process loops each time step. For example, the Python pass 
operation (which does nothing) takes around 15ns to execute. If 
we have to do 100 Python operations per time step at a 40-kHz 
sampling rate, then the interpretation time alone would be at least 
60 ms per second. The second problem with vectorizing over fre-
quency is that it may be useful to store filtered values for a certain 
amount of time, for example to implement an online correlator 
with a short time constant, such as in the auditory image model 
(AIM; Patterson, 2000).

To address this, we can use a system of buffered segments. For a 
filter with N channels, we compute the response to K samples at a 
time, returning a 2D array with shape (K, N), where the parameter 
K can be varied. This has several computational consequences. 
First of all, we can reduce the number of interpreted instructions. 

As an example of vectorized filtering, consider a first order 
digital infinite impulse response (IIR) filter with direct form 
II transposed parameters a

0
 = 1, a

1
, b

0
, b

1
. For an input signal 

x(t) (with t an integer) the output signal y(t) can be computed 
by introducing an extra variable z(t) and using the difference 
equations:

y t b x t z t( ) ( ) ( )= + −0 1  (1)

z t b x t a y t( ) ( ) ( ).= −1 1  
(2)

By making x(t), y(t), and z(t) into vectors of length N for N 
frequency channels, this step can be coded as:

y = b[0]*x + z

z = b[1]*x - a[1]*y

For an order k IIR filter, this requires storage of 4 Nk bytes (for 
floats) or 8 Nk (for doubles), imposing low memory requirements 
even for very large numbers of channels or high order filters.

An additional benefit of vectorizing over frequency is that it 
allows us to make use of vectorized instruction sets in CPUs, or 
the use of highly parallel general purpose GPUs. Figure 2 shows 
the pseudocode for an IIR filterbank based on a direct form II 
transposed structure. The standard way to compute the response 
of a bank of filters in auditory modeling packages is Algorithm 1, 
that is doing the computation for each channel in order. However, 
Algorithm 2, in which the innermost loop is over channels, is able 
to make much more efficient usage of vectorized instruction sets. 
We consider implementations using Python, and C++ on CPU 
and GPU. In the Python implementation, the outer loop over 
samples is a Python loop and the innermost loops over channels 
and the filter order are vector operations using NumPy (which 
is coded in low-level C). In the GPU implementation, N threads 
are executed in parallel (for N the number of channels). Each 
thread loops over the number of samples and the filter order, so 
in effect the outer loops are performed explicitly and the inner 
loop is implicit in the fact that thread i operates on the data for 
channel i.

In each case, certain optimizations can be performed because 
of the presence of the inner loop over channels. If we wish to 
compute the response of an IIR filter for a single frequency chan-
nel, we are required to compute the time steps in series, and so 
we cannot make use of vector operations such as the streaming 
SIMD extensions (SSE) instructions in x86 chips. Computing 
multiple channels simultaneously however, allows us to make 
use of these instructions. Current chips feature vector operations 
acting on 128-bit data (four floats or two doubles) with 256 or 
512 bit operations planned for the future. In the C++ version, on 
modern CPUs Algorithm 2 performs around 1.5 times as fast as 
Algorithm 1 (see for instance Figures 7 and 8). GPUs allow for 
even better parallelism, with the latest GPUs capable of operating 
on 512 floats or doubles in parallel. In principle this would seem 
to allow for speed increases of up to 512 times, but unfortunately 
this is not possible in practice because computation time becomes 
memory bound and memory access speeds have not kept pace 
with the ability of GPUs to process data. Transfer from GPU 
global memory to thread local memory can often take hundreds of 

FiGUre 2 | Pseudo code of the two algorithms for the direct form ii 
transposed iir filter, sequential channels (Algorithm 1) and vectorized 
channels and filter order (Algorithm 2). Bold faced variables are vectors 
of size the number of channels, subscripts j give elements of these vectors, 
and the * operation corresponds to element-wise multiplication. The input 
is X(s) and the output is Y(s), that is Xj(s) is the sample in channel j at time s 
and similarly for Y(s). Ai and Bi are the parameters of the filter (which can be 
different for each channel), and the Zi are a set of internal variables. Written 
without indices, A,B,Z refer to two-dimensional arrays, and the operations 
over these 2D arrays vectorize over both channels and the order of the filter. 
The notation Z+ refers to a shift with respect to the filter order index, so that 
Z Zi i

+ = +1.  The variable “order” is the order of the filter. For Algorithm 2, in 
Python, the code reads almost directly as above. In C++ on the CPU, it 
reads as above but each line with a vector operation has a loop. On the GPU 
it reads as above, but is evaluated in parallel with one thread per channel 
and a loop over the filter order.
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implementations of the general methods, for example to keep track 
of sample indices, cacheing previously computed values, and so 
forth. This means that to design a new filterbank class, one typically 
implements a single method that takes an input buffered segment 
and returns an output buffered segment. Three implementations 
can be used depending on available software and hardware. The 
basic implementation uses only Python and the NumPy package. 
If a suitable compiler is detected (gcc or Microsoft Visual C++), 
a C++ version will be used. Code is automatically generated and 
compiled behind the scenes (unrolling loops over the filter order if 
it is reasonably small). Finally, if an NVIDIA GPU is present, and 
the user has installed the PyCUDA package (Klöckner et al., 2009), 
filtering can be done on the GPU. At the moment, our GPU algo-
rithms are essentially identical to the vectorized CPU algorithms, 
with no specific optimization. Although IIR filtering is fast on GPU, 
there is a bottleneck involved in transferring data to and from the 
GPU (see Section 2.1).

The example in Figure 3 shows two types of built-in filterbanks: 
IIR filterbanks and application of a static function. IIR filtering is 
implemented in a base class which uses a standard direct form II 
transposed structure, as discussed in Section 2.1. Several filterbanks 
derive from this class, for example gammatone and low-pass filters 
in Figure 3B. Other linear filterbanks are included, such as gam-
machirp and Butterworth filterbanks. Realistic models of cochlear 
processing also include non-linearities. In general, these are mod-
eled as static non-linearities, that is, a given function is applied 

In a chain of filters, the input of each filter is fetched via a func-
tion (or more precisely, method) call to the previous filter in the 
chain. In Python, function calls have a relatively large interpreta-
tion overhead and so in a chain of several filters this combined 
overhead can add up to a substantial amount if the functions were 
called every time step. However, if the chain of function calls only 
needs to be made once every K steps the corresponding overhead 
will be reduced by a factor of K. If we are using only Python and 
NumPy, we still have some Python instructions for each timestep 
but these are smaller than the overheads associated to the chain 
of function calls. We can reduce these overheads even more by 
implementing some special cases directly with C/C++ code. For 
example, many filters build on a cascade of IIR filters, and so by 
writing a Python extension for computing the buffered response 
of a bank of filters to such a cascade, we reduce the interpretation 
cost to once every K samples.

It turns out that for FIR filters of reasonable length, an FFT-based 
algorithm is usually much more efficient than a convolution, and a 
buffered system allows us to use this more efficient algorithm. Note 
that an FFT algorithm can also be vectorized across frequencies, 
although this comes at the cost of a larger intermediate memory 
requirement.

Combining vectorization over frequency and buffering allows 
us to implement an efficient and flexible system capable of dealing 
with large numbers of channels in a high-level language. There are 
several trade-offs that need to be borne in mind, however. First of 
all, large buffer sizes increase memory requirements. Fortunately, 
this is normally not a problem in practice, as smaller buffer sizes 
can actually improve speed through more efficient usage of the 
memory cache. Depending on the number of frequency channels 
and the complexity of the filtering, there will be an optimal buffer 
size, trading off the cache performance for smaller buffers against 
the increased interpretation cost. In our implementation, a buffer 
size of 32 samples gives reasonable performance over a fairly wide 
range of parameters, and this is the default value. For FFT-based FIR 
filtering, the tradeoff is different, however, because with an impulse 
response of length L and a buffer of length K we need to apply an 
FFT of length L + K. If K < L then most of this computation will 
be wasted. The default implementation uses a buffer size K = 3L 
for reasonable all-round performance (with the added benefit that 
if the impulse response length is a power of 2, L + K will also be a 
power of 2, for a more efficient FFT).

3 ImplementAtIon And results
3.1 modulAr desIgn
In order to make the system as modular and extensible as possible, 
we use an object-oriented design based on chains of filter banks 
with buffered segments as inputs and outputs. Since processing is 
vectorized over frequency channels, inputs, and outputs are matri-
ces (the two dimensions being time and frequency). Figure 3A. 
shows an example of a complex cochlear model, the DRNL model 
(Lopez-Poveda and Meddis, 2001), which consists of the filtering 
of an input – stapes velocity – by a linear and a non-linear pathway. 
Each box in the diagram corresponds to a specific type of filterbank. 
The base class for these filterbanks defines an interface for passing 
buffered segments (as described in Section 2.2), allowing us to chain 
together multiple sound sources and filterbanks. There are default 

FiGUre 3 | Dual resonance non-linear model of basilar membrane 
filtering. (A) Box representation of one frequency channel of the DRNL 
cochlear model. (B) Python implementation of the full model using the Brian 
Hears toolbox.
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an update function which takes one or several input filterbanks as 
arguments, and modifies the parameters of a target filterbank. This 
update function is called at regular intervals, i.e., every m samples. 
This is illustrated in Figure 4: a sound is passed through a control 
pathway – here a simple low-pass filter – and through a signal path-
way – here a bandpass filter. The center frequency of the bandpass 
filter is controlled by the output of the control path.

Updating the filter coefficients at every sample is computationally 
expensive and prevents us from using buffers. A simple way of speed-
ing up the computation is to update the time-varying filter at a larger 
time interval. In Figure 5, we plotted the computation time against 
the update interval for the DCGC model (Irino and Patterson, 2001), 
using a 1.5-s sound with high dynamic range from the Pittsburgh 
Natural Sounds database (Smith and Lewicki, 2006). When the update 
interval is increased by just a few samples, the computation time is 
dramatically reduced. For longer intervals (above about 15 samples), 
the computation time reaches a plateau, when the feedback repre-
sents a negligible proportion of the total computation time. However, 
increasing the interval introduces errors, especially if the dynamic 
range of the sound is high. To analyze this effect, we processed the same 
dynamic sound at three different intensities between 30 and 90 dB 
SPL. The error-to-signal ratio (ESR) in dB is calculated between the 
output of the DCGC with an update interval of 1 sample (minimum 
error) and an update interval of i samples as follows:

ESR( )
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to all sample values across time and frequency. For example, in 
Figure 1, all channels are half-wave rectified (the NumPy function 
clip(input, 0, Inf) returns the values in the array input 
clipped between 0 and infinity) and compressed with a 1/3-power 
law (** is the exponentiation operator in Python). Another com-
pressive function is applied in the DRNL model shown in Figure 3B. 
FIR filtering is also implemented, and uses an FFT-based algorithm, 
as discussed in Section 2.2.

3.2 onlIne computAtIon
As discussed in Section 2, in order to work with large numbers of 
channels we can only store a relatively small number of samples in 
memory at a given time. Traditionally, auditory models compute 
the entire output of each channel one by one, and then work with 
that output. This allows for very straightforward programming, but 
restricts the number of channels or lengths of sounds available. By 
contrast, working with buffered segments which are discarded when 
the next buffered segment is computed requires slightly more com-
plicated programming, but not substantially. To compute a value 
that is defined over the entire signals (for example the power), one 
needs to calculate this quantity for each buffered segment in turn 
and combine it with the previous quantity. This corresponds to the 
“reduce” or “fold” algorithms in functional languages (reduce in 
Python), where an operator (e.g., addition) is applied to a list. For 
example, suppose we wanted to compute the RMS value of the 
outputs of all of the channels, we would keep a running total of 
the sum of the squared values of the outputs and then at the end 
divide by the number of samples and take the square root. This 
can be achieved using the filterbank process method as follows:

def sumsquares(input, running):
    return running+sum(input**2, axis=0)
ss = fb.process(sumsquares)
rms = sqrt(ss/nsamples)

The function sumsquares takes two arguments input (a buff-
ered segment of shape (bufsize, nchannels)) and running. 
The second argument is initially 0, and then for each subsequent 
call will be the value returned by the previous call. The process 
method takes as argument a function which is assumed to have two 
arguments of the form above, and returns the final value returned 
by the function. In the example above, the sumsquares function 
keeps a running total of the sum of the squared values output by the 
filterbank. At the end of the computation, we divide by the number 
of samples to get the mean squared value, and then take the square 
root. The final value is an array of length nchannels. This mecha-
nism allows us to do many online computations very straightfor-
wardly. For more complicated online computations, users need to 
write their own class derived from the base filterbank class. This is 
also straightforward, but we do not show an example here.

3.3 feedBAck
Some auditory models include feedback, e.g., in (Irino and Patterson, 
2001; Zilany and Bruce, 2006), where filter parameters such as center 
frequency in the signal pathway is changed in response to the out-
put of the control pathway (to perform adaptive gain control or 
bandwidth level dependence, for example). In Brian Hears this can 
be achieved using a feedback control filterbank. The user specifies 

FiGUre 4 | Auditory model with feedback. (A) Python program defining a 
time-varying filterbank with center frequency modulated by the output of a 
low-pass filter using the Brian Hears toolbox. (B) Corresponding box 
representation.
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and Brette, 2010)), and further processed by neuron models 
(not shown in the Figure). The effect of sound location on neu-
ral responses can be simultaneously processed by vectorizing 
over channels and sound locations (i.e., over the whole set of 
HRTF pairs).

3.5 performAnce
We evaluated the performance of our algorithms for two models: a 
gammatone filterbank (Figure 7) and a DRNL filterbank (Figure 8). 
We compared them with non-vectorized implementations taken 
from existing toolboxes: Slaney’s Matlab toolbox for the gamma-
tone filterbank (Slaney, 1998), and Meddis’s Matlab toolbox for the 
DRNL (Meddis, 2010), which we improved with respect to memory 
allocation to allow a fair comparison. In these implementations, 
frequency channels are processed in series using built-in filtering 
operations on time-indexed arrays (so that the interpretation cost 
is incurred once per frequency channel).

where RMS stands for root mean square and S(i) is the 2-dimen-
sional output of the DCGC with an update interval of i samples. 
For very large time intervals, the error converges to the difference 
between the linear and non-linear filterbank, i.e., a time-varying 
and constant filterbank: -38 dB when the signal is at 30 dB SPL, 
-24 dB at 50 dB SPL, and -10 dB at 90 dB SPL. The effect of non-
linearities is strongest at high input levels: at 90 dB SPL, the addi-
tional contribution of non-linearities to the signal has amplitude 
-10 dB compared to the signal obtained without non-linearities. As 
a comparison, when the feedback interval is about 15 samples (so 
that the feedback mechanism does not slow down computations), 
the error made by the algorithm at this level is about -38 dB. This 
means that the non-linear contribution is estimated with preci-
sion -28 dB, that is, about 4%. This seems reasonably accurate, 
especially given that simulation speed is almost not impacted by 
the feedback.

3.4 VectorIzAtIon oVer multIple Inputs
The benefits of vectorization are greatest when many channels 
are synchronously processed. This strategy extends to the simul-
taneous processing of multiple inputs. For example, consider a 
model with stereo inputs followed by cochlear filtering. Instead 
of separately processing each input, we can combine the cochlear 
filtering for the two mono inputs into a single chain, either in 
series, i.e., L

1
L

2
…L

N
R

1
R

2
…R

N
 or interleaved, i.e., L

1
R

1
L

2
R

2
…L

N
R

N
. 

Additionally, inputs can be repeated (ABC → AAABBBCCC) or 
tiled (ABC → ABCABCABC). We give an example in Figure 6, 
derived from a recent sound localization model (Goodman and 
Brette, 2010). Before reaching the inner ear the sound is filtered 
by the head related transfer function (HRTF). Each source loca-
tion corresponds to a specific pair of HRTFs (left and right 
ear). The two filtered sounds at each ear are then decomposed 
into frequency bands by the basilar membrane, modeled as a 
gammatone filterbank (with up to 200 channels in (Goodman 

FiGUre 5 | Performance of the dynamic compressive gammachirp model 
(DCGC) as a function of update interval. Solid line, left axis: computation 
time; Dashed lines, right axis: error-to-signal ratio for sounds at three different 
levels (30, 50, and 90 dB).

FiGUre 6 | Vectorization over frequency and multiple head related 
transfer functions (HrTFs). (A) Schematic of nested vectorization over 
multiple HRTFs and frequencies. (B) Corresponding Python code. (C) Stereo 
output of the filterbank for four HRTF pairs.
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Inputs were 200-ms sounds sampled at 20 kHz. We could not 
use longer sounds with the Matlab implementations, because of 
the memory constraints of these algorithms.

Similar patterns are seen for the two models. For many frequency 
channels, computation time scales linearly with the number of 
channels, and all our implementations perform better than the 
original ones in Matlab. The best results are obtained with the 
GPU implementation (up to five times faster). With fewer channels 
(Figures 7B and 8B), a larger proportion of computation time is 
spent in interpretation in Python (BH Python), which makes this 
implementation less efficient. However, when low-level vectorized 
filtering is implemented in C (BH C2, vectorized channels), inter-
pretation overheads are reduced and this implementation is faster 
than all other ones (except GPU) for any number of channels.

4 dIscussIon
To facilitate the use and development of auditory models, we have 
designed a modular toolbox, “Brian Hears,” written in Python, a 
dynamically typed high-level language.

Our motivation was to develop a flexible and simple tool, with-
out compromising simulation speed. This tool relies on vectoriza-
tion algorithms to minimize the cost of interpretation, making 
it both flexible and efficient. We proposed several implementa-
tions of vector-based operations: with standard Python librar-
ies, C code, and GPU code. For models with many channels, all 
three implementations were more efficient than existing imple-
mentations in Matlab, which use built-in filtering operations on 
time-indexed arrays.

The GPU implementation was up to five times faster. With fewer 
channels, the best results were obtained with vectorization over 
channels in C.

The online processing strategy allows us to simulate models with 
many channels for long durations without memory constraints, 
which is not possible with other tools relying on channel by channel 
processing. This is important in neural modeling of the auditory 
system: for example, a recent sound localization model based on 
selective synchrony requires many parallel channels (Macdonald, 
2008). In addition, online processing is required for a number of 
physiological models with feedback (Irino and Patterson, 2001; 
Lopez-Poveda and Meddis, 2001). The tool we have developed 
can be used to simulate and modify all these models in a simple 
way, with an efficient implementation and a direct interface to 
neuron models written with the Brian simulator. Figure 9 illus-
trates this possibility with the example of the stereausis model, 
an influential sound localization model (Shamma, 1989) which 
relies on correlations between overlapping frequency channels. 
In this model, the interaural time difference (ITD) sensitivity of 
binaural neurons is explained by the traveling wave velocity along 
the cochlea, i.e., higher frequencies arrive earlier than lower fre-
quencies (Figure 9A). In the implementation with spiking neurons 
shown in Figure 9B, each pair of ipsilateral and contralateral fib-
ers is connected to a specific coincidence detector, modeled as an 
integrate-and-fire neuron. Each binaural neuron fires if its inputs 
arrive at the same time. Therefore, if the inputs at both ears are 
identical (Figure 9C), i.e., the sound source lies on the median plane 
(ITD = 0 ms), the neurons on the diagonal will fire (c

kk
 is the spike 

count of these neurons). If there is a delay between the ipsilateral 

FiGUre 7 | Computation time taken to simulate a gammatone filterbank 
as a function of the number of channels, with a 200-ms sound at 20 kHz 
[(B) is a magnified version of (A)]. Five different implementations are 
compared: Brian Hears in pure Python with vectorization over channels (BH 
Python), Brian Hears with C code generation, sequential channels (BH C1) or 
vectorized channels (BH C2), Brian Hears with GPU code generation, and 
Matlab with operations on time-indexed arrays.

FiGUre 8 | Computation time taken to simulate a DrNL filterbank as a 
function of the number of channels, with the same algorithms as in 
Figure 6 [(B) is a magnified version of (A)].
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FiGUre 9 | Stereausis model of sound localization. (A) Schematic of the 
stereausis binaural network. Ipsilateral and contralateral auditory nerve fibers 
project to coincidence detectors (each pair of fibers projects to a specific 
neuron). (B) Python implementation with the Brian Hears toolbox. (C) Spike 
counts of all coincidence detectors (horizontal: characteristic frequency (CF) of 

the ipsilateral input, vertical: CF of the contralateral input) in response to a 
500-ms tone at 200 Hz presented simultaneously at both ears. The inset shows 
spike counts along the short diagonal line, as a function of CF difference 
between the two inputs. (D) Same as (C) but with the tone shifted by 830 μs at 
the contralateral ear.

and contralateral inputs (Figure 9D), i.e., if the source is not at the 
center, neurons above or under the main diagonal will fire. Thus 
the ITD of the sound source is represented by the activation of 
coincidence detectors. Using Brian Hears, the code for this model 
can be written in about a dozen lines (Figure 9B).

Currently, the Brian Hears library includes: stimulus generation 
(e.g., tone, white, and colored noise) and manipulation (e.g., mix-
ing, sequencing), including binaural stimuli, various types of filter-
banks (e.g., gammatone, gammachirp, standard low-pass and bass 
filters, FIR filters), feedback control, static non-linearities, and a few 
example complex cochlear models. It also includes  spatialization 

algorithms, to generate realistic inputs produced by sound sources 
in complex acoustical environments. These use similar vectori-
zation techniques, and include models of reflections on natural 
surfaces such as grass or snow (Komatsu, 2008), the image method 
for reflections in square rooms (Allen and Berkley, 1979), and a 
raytracing algorithm to render any acoustical scene and produce 
realistic binaural stimuli, in combination with HRTF filtering. We 
believe this library will be useful for the development of auditory 
models, especially those including neural models. It should also 
be useful to design psychophysical experiments, as there are many 
Python packages for designing graphical user interfaces.
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