
NEUROINFORMATICS

et al., 1992) chips. But these implementations are all model-specific,
which makes them difficult to use, modify, and extend according
to the specific needs of the considered application. It also makes it
difficult to compare different models. A second problem with cur-
rent implementations of auditory models is that, due to memory
constraints, they are often limited in the number of frequency chan-
nels they can work on simultaneously, typically tens or at most
hundreds of channels, while there are about 3000 inner hair cells
in a human cochlea.

To address the first problem, we designed a modular auditory
modeling framework using a high-level language, Python. Python is
a popular interpreted language with dynamic typing, which benefits
from a variety of freely available libraries for scientific comput-
ing and visualization. This choice makes it easy to build complex
auditory models, but it comes at the cost of a large interpretation
overhead. To minimize this overhead, we used vectorization, an
algorithmic strategy which consists in grouping identical opera-
tions operating on different data. This strategy was recently used
to address similar issues in neural network simulation (Goodman
and Brette, 2008, 2009).

By vectorizing over frequency channels, we can take advantage of
the heavily parallel architecture of auditory models based on filter
banks. In comparison, in available tools, model output is computed
channel by channel. To avoid memory constraints with many chan-
nels, we use online processing. Finally, vectorization strategies are
well adapted to parallelization on graphics processing units (GPUs),
which follow the single instruction, multiple data (SIMD) model
of parallel computing.

We start by describing our vectorization algorithms (see Section
2) before presenting their implementation in a modular auditory
modeling toolbox (see Section 3). We illustrate the functionality

1 IntroductIon
Models of auditory processing are used in a variety of contexts:
in psychophysical studies, to design experiments (Gnansia et al.,
2009) and interpret behavioral results (Meddis and O’Mard, 2006;
Jepsen et al., 2008; Xia et al., 2010), in computational neuroscience,
to understand the auditory system with neural modeling (Fontaine
and Peremans, 2009; Goodman and Brette, 2010; Xia et al., 2010),
in engineering applications, as a front end to machine hearing algo-
rithms (Lyon, 2002; for example speech recognition, Mesgarani
et al., 2006; or sound localization, May et al., 2011).

These models derive from physiological measurements in
the basilar membrane (Recio et al., 1998) or in the auditory
nerve (Carney et al., 1999), and/or from psychophysical meas-
urements (e.g., detection of tones in noise maskers, Glasberg
and Moore, 1990), and even though existing models share key
ingredients, they differ in many details. The frequency analysis
performed by the cochlea is often modeled by a bank of band
pass filters (Patterson, 1994; Irino and Patterson, 2001; Lopez-
Poveda and Meddis, 2001; Zilany and Bruce, 2006). While in
simple models, filtering is essentially linear (e.g., gammatones,
Patterson, 1994; or gammachirps, Irino and Patterson, 1997),
a few models include non-linearities and feedback loops, such
as the dynamic compressive gammachirp (DCGC; Irino and
Patterson, 2001) and the dual resonance non-linear (DRNL)
filter (Lopez-Poveda and Meddis, 2001), which are meant to
reproduce non-linear effects such as level dependent bandwidth
or two-tone suppression.

To simulate these models, many implementations have been
developed, on software (O’Mard and Meddis, 2010; Patterson
et al., 1995; Slaney, 1998; Bleeck et al., 2004), DSP board (Namiki
et al., 2001), FPGA (Mishra and Hubbard, 2002), or VLSI (Watts

Brian hears: online auditory processing using vectorization
over channels

Bertrand Fontaine1,2†, Dan F. M. Goodman1,2†, Victor Benichoux1,2 and Romain Brette1,2*
1 Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
2 Département d’Etudes Cognitives, Ecole Normale Supérieure, Paris, France

The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies
between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of
auditory processing, which are often based on banks of filters. However, existing implementations
do not exploit this parallelism. Here we propose algorithms to simulate these models by
vectorizing computation over frequency channels, which are implemented in “Brian Hears,”
a library for the spiking neural network simulator package “Brian.” This approach allows us to
use high-level programming languages such as Python, because with vectorized operations,
the computational cost of interpretation represents a small fraction of the total cost. This
makes it possible to define and simulate complex models in a simple way, while all previous
implementations were model-specific. In addition, we show that these algorithms can be
naturally parallelized using graphics processing units, yielding substantial speed improvements.
We demonstrate these algorithms with several state-of-the-art cochlear models, and show that
they compare favorably with existing, less flexible, implementations.

Keywords: auditory filter, vectorization, Python, Brian, GPU

Edited by:
Daniel Gardner, Weill Cornell Medical
College, USA

Reviewed by:
Ferenc Mechler, Medical College of
Cornell University, USA
Werner Van Geit, Okinawa Institute of
Science and Technology, Japan

*Correspondence:
Romain Brette, Département d’Etudes
Cognitives, Ecole Normale Supérieure,
29, rue d’Ulm, 75230 Paris, Cedex 05,
France.
e-mail: romain.brette@ens.fr
†Bertrand Fontaine and Dan F. M.
Goodman contributed equally to this
work.

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 1

Original research article
published: 22 July 2011

doi: 10.3389/fninf.2011.00009

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00009/abstract
http://www.frontiersin.org/people/bertrandfontaine_1/23538
http://www.frontiersin.org/people/dangoodman/2473
http://www.frontiersin.org/people/victorbenichoux/33254
http://www.frontiersin.org/people/romainbrette/2474
http://www.frontiersin.org/neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard

and performance with “Brian Hears,”1 a Python toolbox developed
by our group. Brian Hears is a library for the spiking neural network
simulator package “Brian”2 (Goodman and Brette, 2008, 2009),
which also relies on vectorization strategies (Brette and Goodman,
2011). To give an idea of how this tool facilitates auditory modeling
and the integration with neural modeling, Figure 1 shows an audi-
tory model consisting of a gammatone filterbank with half-wave
rectification, compression, and spiking with integrate-and-fire
models (but note that the toolbox can also be used independently
of Brian). Finally, we compared the performance with existing
implementations written in Matlab (Slaney, 1998; Bleeck et al.,
2004), another high-level interpreted language.

2 AlgorIthms
2.1 VectorIzed fIlterIng oVer frequencIes
Using a high-level interpreted language induces a fixed performance
penalty per interpreted statement, which can add up to a significant
cost if loops over large data sets are involved. Similar to Matlab, the
NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001) packages for
Python address this problem for scientific computation. In order to
add two large vectors x and y, we do not need to write for i in
range(N): z[i] = x[i]+y[i] which would have an interpretation
cost of O(N), but simply z = x+y with an interpretation cost of O(1).

Another problem that needs to be addressed is the very large
memory requirements that standard implementations of auditory
periphery models run into when using large numbers of channels.
These implementations compute the entire filtered response to a
signal for each frequency channel before doing further processing, an
approach we call “offline computation.” For N channels and a signal
of length M samples stored as floats, this means there is a memory
requirement of at least 4 NM bytes which can quickly get out of
hand. The human cochlea filters incoming signals into approxi-
mately 3000 channels. At a minimum sampling rate of 40 kHz this
requires 457 MB/s to store, hitting the 4-GB limit of a 32-bit desktop
computer after only 8.9 s (and even the larger amounts of memory
available on 64 bit machines would be quickly exhausted).

We address both of these problems using “online computation”
vectorized over frequencies. Specifically, at any time instant we store
only the values of the filtered channels for that time instant (or for
the few most recent time instants), almost entirely eliminating the
memory constraints. This approach imposes the restriction that
every step in the chain of our auditory model has to be computed
“online” using only the few most recent sample values. For neu-
ral models, this is entirely unproblematic as filtered sample values
will typically be fed as currents into a neural model consisting of
a system of differential equations (see Figure 1). The restriction
can, however, be problematic in the case of models which involve
cross- or auto-correlation, although these can also be addressed by
using online or buffered correlators.

FiGUre 1 | Simple spiking model of the auditory periphery. The cochlea and
inner hair cells are modeled using gammatone filtering followed by half-wave
rectification and 1/3-power law compression. We model the auditory nerve fibers
as leaky integrate-and-fire neurons defined by the stochastic differential equation

t JdV
dt I V k t= − + () where the current I is the output of the inner hair cell model

and J(t) is physiological white noise (not the acoustic input noise). (A) Python
implementation with the Brian Hears toolbox. Variable I in the neuron model is
linked to the output of the filterbank. (B) Raster plot of the model output.

1http://www.briansimulator.org/docs/hears
2http://www.briansimulator.org

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

times longer than executing an instruction (although this can be
 alleviated using coalesced memory access). Even worse problems
are caused if the data needs to be uploaded to the GPU, processed
and then downloaded back to the CPU, due to the limited memory
bandwidth. The results of these vectorization optimizations are
shown in Section 3.5.

2.2 BufferIng
Vectorizing over frequency is useful but also introduces some
problems. Firstly, if we have a high sample rate then in an inter-
preted language we will have a high interpretation cost if we have
to process loops each time step. For example, the Python pass
operation (which does nothing) takes around 15ns to execute. If
we have to do 100 Python operations per time step at a 40-kHz
sampling rate, then the interpretation time alone would be at least
60 ms per second. The second problem with vectorizing over fre-
quency is that it may be useful to store filtered values for a certain
amount of time, for example to implement an online correlator
with a short time constant, such as in the auditory image model
(AIM; Patterson, 2000).

To address this, we can use a system of buffered segments. For a
filter with N channels, we compute the response to K samples at a
time, returning a 2D array with shape (K, N), where the parameter
K can be varied. This has several computational consequences.
First of all, we can reduce the number of interpreted instructions.

As an example of vectorized filtering, consider a first order
digital infinite impulse response (IIR) filter with direct form
II transposed parameters a

0
 = 1, a

1
, b

0
, b

1
. For an input signal

x(t) (with t an integer) the output signal y(t) can be computed
by introducing an extra variable z(t) and using the difference
equations:

y t b x t z t() () ()= + −0 1 (1)

z t b x t a y t() () ().= −1 1
(2)

By making x(t), y(t), and z(t) into vectors of length N for N
frequency channels, this step can be coded as:

y = b[0]*x + z

z = b[1]*x - a[1]*y

For an order k IIR filter, this requires storage of 4 Nk bytes (for
floats) or 8 Nk (for doubles), imposing low memory requirements
even for very large numbers of channels or high order filters.

An additional benefit of vectorizing over frequency is that it
allows us to make use of vectorized instruction sets in CPUs, or
the use of highly parallel general purpose GPUs. Figure 2 shows
the pseudocode for an IIR filterbank based on a direct form II
transposed structure. The standard way to compute the response
of a bank of filters in auditory modeling packages is Algorithm 1,
that is doing the computation for each channel in order. However,
Algorithm 2, in which the innermost loop is over channels, is able
to make much more efficient usage of vectorized instruction sets.
We consider implementations using Python, and C++ on CPU
and GPU. In the Python implementation, the outer loop over
samples is a Python loop and the innermost loops over channels
and the filter order are vector operations using NumPy (which
is coded in low-level C). In the GPU implementation, N threads
are executed in parallel (for N the number of channels). Each
thread loops over the number of samples and the filter order, so
in effect the outer loops are performed explicitly and the inner
loop is implicit in the fact that thread i operates on the data for
channel i.

In each case, certain optimizations can be performed because
of the presence of the inner loop over channels. If we wish to
compute the response of an IIR filter for a single frequency chan-
nel, we are required to compute the time steps in series, and so
we cannot make use of vector operations such as the streaming
SIMD extensions (SSE) instructions in x86 chips. Computing
multiple channels simultaneously however, allows us to make
use of these instructions. Current chips feature vector operations
acting on 128-bit data (four floats or two doubles) with 256 or
512 bit operations planned for the future. In the C++ version, on
modern CPUs Algorithm 2 performs around 1.5 times as fast as
Algorithm 1 (see for instance Figures 7 and 8). GPUs allow for
even better parallelism, with the latest GPUs capable of operating
on 512 floats or doubles in parallel. In principle this would seem
to allow for speed increases of up to 512 times, but unfortunately
this is not possible in practice because computation time becomes
memory bound and memory access speeds have not kept pace
with the ability of GPUs to process data. Transfer from GPU
global memory to thread local memory can often take hundreds of

FiGUre 2 | Pseudo code of the two algorithms for the direct form ii
transposed iir filter, sequential channels (Algorithm 1) and vectorized
channels and filter order (Algorithm 2). Bold faced variables are vectors
of size the number of channels, subscripts j give elements of these vectors,
and the * operation corresponds to element-wise multiplication. The input
is X(s) and the output is Y(s), that is Xj(s) is the sample in channel j at time s
and similarly for Y(s). Ai and Bi are the parameters of the filter (which can be
different for each channel), and the Zi are a set of internal variables. Written
without indices, A,B,Z refer to two-dimensional arrays, and the operations
over these 2D arrays vectorize over both channels and the order of the filter.
The notation Z+ refers to a shift with respect to the filter order index, so that
Z Zi i

+ = +1. The variable “order” is the order of the filter. For Algorithm 2, in
Python, the code reads almost directly as above. In C++ on the CPU, it
reads as above but each line with a vector operation has a loop. On the GPU
it reads as above, but is evaluated in parallel with one thread per channel
and a loop over the filter order.

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

implementations of the general methods, for example to keep track
of sample indices, cacheing previously computed values, and so
forth. This means that to design a new filterbank class, one typically
implements a single method that takes an input buffered segment
and returns an output buffered segment. Three implementations
can be used depending on available software and hardware. The
basic implementation uses only Python and the NumPy package.
If a suitable compiler is detected (gcc or Microsoft Visual C++),
a C++ version will be used. Code is automatically generated and
compiled behind the scenes (unrolling loops over the filter order if
it is reasonably small). Finally, if an NVIDIA GPU is present, and
the user has installed the PyCUDA package (Klöckner et al., 2009),
filtering can be done on the GPU. At the moment, our GPU algo-
rithms are essentially identical to the vectorized CPU algorithms,
with no specific optimization. Although IIR filtering is fast on GPU,
there is a bottleneck involved in transferring data to and from the
GPU (see Section 2.1).

The example in Figure 3 shows two types of built-in filterbanks:
IIR filterbanks and application of a static function. IIR filtering is
implemented in a base class which uses a standard direct form II
transposed structure, as discussed in Section 2.1. Several filterbanks
derive from this class, for example gammatone and low-pass filters
in Figure 3B. Other linear filterbanks are included, such as gam-
machirp and Butterworth filterbanks. Realistic models of cochlear
processing also include non-linearities. In general, these are mod-
eled as static non-linearities, that is, a given function is applied

In a chain of filters, the input of each filter is fetched via a func-
tion (or more precisely, method) call to the previous filter in the
chain. In Python, function calls have a relatively large interpreta-
tion overhead and so in a chain of several filters this combined
overhead can add up to a substantial amount if the functions were
called every time step. However, if the chain of function calls only
needs to be made once every K steps the corresponding overhead
will be reduced by a factor of K. If we are using only Python and
NumPy, we still have some Python instructions for each timestep
but these are smaller than the overheads associated to the chain
of function calls. We can reduce these overheads even more by
implementing some special cases directly with C/C++ code. For
example, many filters build on a cascade of IIR filters, and so by
writing a Python extension for computing the buffered response
of a bank of filters to such a cascade, we reduce the interpretation
cost to once every K samples.

It turns out that for FIR filters of reasonable length, an FFT-based
algorithm is usually much more efficient than a convolution, and a
buffered system allows us to use this more efficient algorithm. Note
that an FFT algorithm can also be vectorized across frequencies,
although this comes at the cost of a larger intermediate memory
requirement.

Combining vectorization over frequency and buffering allows
us to implement an efficient and flexible system capable of dealing
with large numbers of channels in a high-level language. There are
several trade-offs that need to be borne in mind, however. First of
all, large buffer sizes increase memory requirements. Fortunately,
this is normally not a problem in practice, as smaller buffer sizes
can actually improve speed through more efficient usage of the
memory cache. Depending on the number of frequency channels
and the complexity of the filtering, there will be an optimal buffer
size, trading off the cache performance for smaller buffers against
the increased interpretation cost. In our implementation, a buffer
size of 32 samples gives reasonable performance over a fairly wide
range of parameters, and this is the default value. For FFT-based FIR
filtering, the tradeoff is different, however, because with an impulse
response of length L and a buffer of length K we need to apply an
FFT of length L + K. If K < L then most of this computation will
be wasted. The default implementation uses a buffer size K = 3L
for reasonable all-round performance (with the added benefit that
if the impulse response length is a power of 2, L + K will also be a
power of 2, for a more efficient FFT).

3 ImplementAtIon And results
3.1 modulAr desIgn
In order to make the system as modular and extensible as possible,
we use an object-oriented design based on chains of filter banks
with buffered segments as inputs and outputs. Since processing is
vectorized over frequency channels, inputs, and outputs are matri-
ces (the two dimensions being time and frequency). Figure 3A.
shows an example of a complex cochlear model, the DRNL model
(Lopez-Poveda and Meddis, 2001), which consists of the filtering
of an input – stapes velocity – by a linear and a non-linear pathway.
Each box in the diagram corresponds to a specific type of filterbank.
The base class for these filterbanks defines an interface for passing
buffered segments (as described in Section 2.2), allowing us to chain
together multiple sound sources and filterbanks. There are default

FiGUre 3 | Dual resonance non-linear model of basilar membrane
filtering. (A) Box representation of one frequency channel of the DRNL
cochlear model. (B) Python implementation of the full model using the Brian
Hears toolbox.

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

an update function which takes one or several input filterbanks as
arguments, and modifies the parameters of a target filterbank. This
update function is called at regular intervals, i.e., every m samples.
This is illustrated in Figure 4: a sound is passed through a control
pathway – here a simple low-pass filter – and through a signal path-
way – here a bandpass filter. The center frequency of the bandpass
filter is controlled by the output of the control path.

Updating the filter coefficients at every sample is computationally
expensive and prevents us from using buffers. A simple way of speed-
ing up the computation is to update the time-varying filter at a larger
time interval. In Figure 5, we plotted the computation time against
the update interval for the DCGC model (Irino and Patterson, 2001),
using a 1.5-s sound with high dynamic range from the Pittsburgh
Natural Sounds database (Smith and Lewicki, 2006). When the update
interval is increased by just a few samples, the computation time is
dramatically reduced. For longer intervals (above about 15 samples),
the computation time reaches a plateau, when the feedback repre-
sents a negligible proportion of the total computation time. However,
increasing the interval introduces errors, especially if the dynamic
range of the sound is high. To analyze this effect, we processed the same
dynamic sound at three different intensities between 30 and 90 dB
SPL. The error-to-signal ratio (ESR) in dB is calculated between the
output of the DCGC with an update interval of 1 sample (minimum
error) and an update interval of i samples as follows:

ESR()
(() ())

(())
i

S S i

S
= −

20
1

1
log

RMS

RMS
(3)

=
−∑

∑
10

1

1

2

2
log j k

jk jk

j k
jk

S S i

S
,

,

(() ())

()

(4)

to all sample values across time and frequency. For example, in
Figure 1, all channels are half-wave rectified (the NumPy function
clip(input, 0, Inf) returns the values in the array input
clipped between 0 and infinity) and compressed with a 1/3-power
law (** is the exponentiation operator in Python). Another com-
pressive function is applied in the DRNL model shown in Figure 3B.
FIR filtering is also implemented, and uses an FFT-based algorithm,
as discussed in Section 2.2.

3.2 onlIne computAtIon
As discussed in Section 2, in order to work with large numbers of
channels we can only store a relatively small number of samples in
memory at a given time. Traditionally, auditory models compute
the entire output of each channel one by one, and then work with
that output. This allows for very straightforward programming, but
restricts the number of channels or lengths of sounds available. By
contrast, working with buffered segments which are discarded when
the next buffered segment is computed requires slightly more com-
plicated programming, but not substantially. To compute a value
that is defined over the entire signals (for example the power), one
needs to calculate this quantity for each buffered segment in turn
and combine it with the previous quantity. This corresponds to the
“reduce” or “fold” algorithms in functional languages (reduce in
Python), where an operator (e.g., addition) is applied to a list. For
example, suppose we wanted to compute the RMS value of the
outputs of all of the channels, we would keep a running total of
the sum of the squared values of the outputs and then at the end
divide by the number of samples and take the square root. This
can be achieved using the filterbank process method as follows:

def sumsquares(input, running):
 return running+sum(input**2, axis=0)
ss = fb.process(sumsquares)
rms = sqrt(ss/nsamples)

The function sumsquares takes two arguments input (a buff-
ered segment of shape (bufsize, nchannels)) and running.
The second argument is initially 0, and then for each subsequent
call will be the value returned by the previous call. The process
method takes as argument a function which is assumed to have two
arguments of the form above, and returns the final value returned
by the function. In the example above, the sumsquares function
keeps a running total of the sum of the squared values output by the
filterbank. At the end of the computation, we divide by the number
of samples to get the mean squared value, and then take the square
root. The final value is an array of length nchannels. This mecha-
nism allows us to do many online computations very straightfor-
wardly. For more complicated online computations, users need to
write their own class derived from the base filterbank class. This is
also straightforward, but we do not show an example here.

3.3 feedBAck
Some auditory models include feedback, e.g., in (Irino and Patterson,
2001; Zilany and Bruce, 2006), where filter parameters such as center
frequency in the signal pathway is changed in response to the out-
put of the control pathway (to perform adaptive gain control or
bandwidth level dependence, for example). In Brian Hears this can
be achieved using a feedback control filterbank. The user specifies

FiGUre 4 | Auditory model with feedback. (A) Python program defining a
time-varying filterbank with center frequency modulated by the output of a
low-pass filter using the Brian Hears toolbox. (B) Corresponding box
representation.

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

and Brette, 2010)), and further processed by neuron models
(not shown in the Figure). The effect of sound location on neu-
ral responses can be simultaneously processed by vectorizing
over channels and sound locations (i.e., over the whole set of
HRTF pairs).

3.5 performAnce
We evaluated the performance of our algorithms for two models: a
gammatone filterbank (Figure 7) and a DRNL filterbank (Figure 8).
We compared them with non-vectorized implementations taken
from existing toolboxes: Slaney’s Matlab toolbox for the gamma-
tone filterbank (Slaney, 1998), and Meddis’s Matlab toolbox for the
DRNL (Meddis, 2010), which we improved with respect to memory
allocation to allow a fair comparison. In these implementations,
frequency channels are processed in series using built-in filtering
operations on time-indexed arrays (so that the interpretation cost
is incurred once per frequency channel).

where RMS stands for root mean square and S(i) is the 2-dimen-
sional output of the DCGC with an update interval of i samples.
For very large time intervals, the error converges to the difference
between the linear and non-linear filterbank, i.e., a time-varying
and constant filterbank: -38 dB when the signal is at 30 dB SPL,
-24 dB at 50 dB SPL, and -10 dB at 90 dB SPL. The effect of non-
linearities is strongest at high input levels: at 90 dB SPL, the addi-
tional contribution of non-linearities to the signal has amplitude
-10 dB compared to the signal obtained without non-linearities. As
a comparison, when the feedback interval is about 15 samples (so
that the feedback mechanism does not slow down computations),
the error made by the algorithm at this level is about -38 dB. This
means that the non-linear contribution is estimated with preci-
sion -28 dB, that is, about 4%. This seems reasonably accurate,
especially given that simulation speed is almost not impacted by
the feedback.

3.4 VectorIzAtIon oVer multIple Inputs
The benefits of vectorization are greatest when many channels
are synchronously processed. This strategy extends to the simul-
taneous processing of multiple inputs. For example, consider a
model with stereo inputs followed by cochlear filtering. Instead
of separately processing each input, we can combine the cochlear
filtering for the two mono inputs into a single chain, either in
series, i.e., L

1
L

2
…L

N
R

1
R

2
…R

N
 or interleaved, i.e., L

1
R

1
L

2
R

2
…L

N
R

N
.

Additionally, inputs can be repeated (ABC → AAABBBCCC) or
tiled (ABC → ABCABCABC). We give an example in Figure 6,
derived from a recent sound localization model (Goodman and
Brette, 2010). Before reaching the inner ear the sound is filtered
by the head related transfer function (HRTF). Each source loca-
tion corresponds to a specific pair of HRTFs (left and right
ear). The two filtered sounds at each ear are then decomposed
into frequency bands by the basilar membrane, modeled as a
gammatone filterbank (with up to 200 channels in (Goodman

FiGUre 5 | Performance of the dynamic compressive gammachirp model
(DCGC) as a function of update interval. Solid line, left axis: computation
time; Dashed lines, right axis: error-to-signal ratio for sounds at three different
levels (30, 50, and 90 dB).

FiGUre 6 | Vectorization over frequency and multiple head related
transfer functions (HrTFs). (A) Schematic of nested vectorization over
multiple HRTFs and frequencies. (B) Corresponding Python code. (C) Stereo
output of the filterbank for four HRTF pairs.

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 6

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

Inputs were 200-ms sounds sampled at 20 kHz. We could not
use longer sounds with the Matlab implementations, because of
the memory constraints of these algorithms.

Similar patterns are seen for the two models. For many frequency
channels, computation time scales linearly with the number of
channels, and all our implementations perform better than the
original ones in Matlab. The best results are obtained with the
GPU implementation (up to five times faster). With fewer channels
(Figures 7B and 8B), a larger proportion of computation time is
spent in interpretation in Python (BH Python), which makes this
implementation less efficient. However, when low-level vectorized
filtering is implemented in C (BH C2, vectorized channels), inter-
pretation overheads are reduced and this implementation is faster
than all other ones (except GPU) for any number of channels.

4 dIscussIon
To facilitate the use and development of auditory models, we have
designed a modular toolbox, “Brian Hears,” written in Python, a
dynamically typed high-level language.

Our motivation was to develop a flexible and simple tool, with-
out compromising simulation speed. This tool relies on vectoriza-
tion algorithms to minimize the cost of interpretation, making
it both flexible and efficient. We proposed several implementa-
tions of vector-based operations: with standard Python librar-
ies, C code, and GPU code. For models with many channels, all
three implementations were more efficient than existing imple-
mentations in Matlab, which use built-in filtering operations on
time-indexed arrays.

The GPU implementation was up to five times faster. With fewer
channels, the best results were obtained with vectorization over
channels in C.

The online processing strategy allows us to simulate models with
many channels for long durations without memory constraints,
which is not possible with other tools relying on channel by channel
processing. This is important in neural modeling of the auditory
system: for example, a recent sound localization model based on
selective synchrony requires many parallel channels (Macdonald,
2008). In addition, online processing is required for a number of
physiological models with feedback (Irino and Patterson, 2001;
Lopez-Poveda and Meddis, 2001). The tool we have developed
can be used to simulate and modify all these models in a simple
way, with an efficient implementation and a direct interface to
neuron models written with the Brian simulator. Figure 9 illus-
trates this possibility with the example of the stereausis model,
an influential sound localization model (Shamma, 1989) which
relies on correlations between overlapping frequency channels.
In this model, the interaural time difference (ITD) sensitivity of
binaural neurons is explained by the traveling wave velocity along
the cochlea, i.e., higher frequencies arrive earlier than lower fre-
quencies (Figure 9A). In the implementation with spiking neurons
shown in Figure 9B, each pair of ipsilateral and contralateral fib-
ers is connected to a specific coincidence detector, modeled as an
integrate-and-fire neuron. Each binaural neuron fires if its inputs
arrive at the same time. Therefore, if the inputs at both ears are
identical (Figure 9C), i.e., the sound source lies on the median plane
(ITD = 0 ms), the neurons on the diagonal will fire (c

kk
 is the spike

count of these neurons). If there is a delay between the ipsilateral

FiGUre 7 | Computation time taken to simulate a gammatone filterbank
as a function of the number of channels, with a 200-ms sound at 20 kHz
[(B) is a magnified version of (A)]. Five different implementations are
compared: Brian Hears in pure Python with vectorization over channels (BH
Python), Brian Hears with C code generation, sequential channels (BH C1) or
vectorized channels (BH C2), Brian Hears with GPU code generation, and
Matlab with operations on time-indexed arrays.

FiGUre 8 | Computation time taken to simulate a DrNL filterbank as a
function of the number of channels, with the same algorithms as in
Figure 6 [(B) is a magnified version of (A)].

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 7

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

FiGUre 9 | Stereausis model of sound localization. (A) Schematic of the
stereausis binaural network. Ipsilateral and contralateral auditory nerve fibers
project to coincidence detectors (each pair of fibers projects to a specific
neuron). (B) Python implementation with the Brian Hears toolbox. (C) Spike
counts of all coincidence detectors (horizontal: characteristic frequency (CF) of

the ipsilateral input, vertical: CF of the contralateral input) in response to a
500-ms tone at 200 Hz presented simultaneously at both ears. The inset shows
spike counts along the short diagonal line, as a function of CF difference
between the two inputs. (D) Same as (C) but with the tone shifted by 830 μs at
the contralateral ear.

and contralateral inputs (Figure 9D), i.e., if the source is not at the
center, neurons above or under the main diagonal will fire. Thus
the ITD of the sound source is represented by the activation of
coincidence detectors. Using Brian Hears, the code for this model
can be written in about a dozen lines (Figure 9B).

Currently, the Brian Hears library includes: stimulus generation
(e.g., tone, white, and colored noise) and manipulation (e.g., mix-
ing, sequencing), including binaural stimuli, various types of filter-
banks (e.g., gammatone, gammachirp, standard low-pass and bass
filters, FIR filters), feedback control, static non-linearities, and a few
example complex cochlear models. It also includes spatialization

algorithms, to generate realistic inputs produced by sound sources
in complex acoustical environments. These use similar vectori-
zation techniques, and include models of reflections on natural
surfaces such as grass or snow (Komatsu, 2008), the image method
for reflections in square rooms (Allen and Berkley, 1979), and a
raytracing algorithm to render any acoustical scene and produce
realistic binaural stimuli, in combination with HRTF filtering. We
believe this library will be useful for the development of auditory
models, especially those including neural models. It should also
be useful to design psychophysical experiments, as there are many
Python packages for designing graphical user interfaces.

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 8

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

Slaney, M. (1998). Auditory Toolbox: A
Matlab Toolbox for Auditory Modeling
Work. Technical Report 45, Apple
Computer.

Smith, E., and Lewicki, M. (2006).
Efficient auditory coding. Nature
439, 800–805.

Watts, L., Kerns, D. A., Lyon, R. F., and
Mead, C. A. (1992). Improved imple-
mentation of the silicon cochlea. IEEE
J. Solid-State Circuits 27, 692–700.

Xia, X. J., Brughera, A., Colburn, H. S.,
and Shinn-Cunningham, B. (2010).
Physiological and psychophysical
modeling of the precedence effect. J.
Assoc. Res. Otolaryngol. 11, 495–513.

Zilany, M. S. A., and Bruce, I. C. (2006).
Modeling auditory-nerve responses
for high sound pressure levels in the
normal and impaired auditory periph-
ery. J. Acoust. Soc. Am. 120, 1446–1466.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential conflict
of interest.

Received: 19 May 2011; paper pending pub-
lished: 05 June 2011; accepted: 30 June 2011;
published online: 22 July 2011.
Citation: Fontaine B, Goodman DFM,
Benichoux V and Brette R (2011)
Brian hears: online auditory process-
ing using vectorization over channels.
Front. Neuroinform. 5:9. doi: 10.3389/
fninf.2011.00009
Copyright © 2011 Fontaine, Goodman,
Benichoux and Brette. This is an open-
access article subject to a non-exclusive
license between the authors and Frontiers
Media SA, which permits use, distribution
and reproduction in other forums, provided
the original authors and source are credited
and other Frontiers conditions are complied
with.

physiological model. J. Acoust. Soc.
Am. 120, 3861–3896.

Mesgarani, N., Slaney, M., and Shamma,
S. A. (2006). Discrimination of speech
from nonspeech based on multiscale
spectro-temporal modulations. IEEE
Trans. Audio Speech Lang. Process. 14,
920–930.

Mishra, A., and Hubbard, A. E. (2002).
A cochlear filter implemented with a
field-programmable gate array. IEEE
Trans. Circuits Syst. II 49, 54–60.

Namiki, M., Hamamoto, T., and Hangai,
S. (2001). “Spoken word recognition
with digital cochlea using 32 dsp-
boards,” in Proceedings of the IEEE
International Conference on Acoustics,
Speech, and Signal Processing, Vol. 2
(Washington, DC: IEEE Computer
Society), 969–972.

Oliphant, E. (2006). Guide to Numpy.
Available at: http://www.tramy.us/

O’Mard, L. P., and Meddis, R. (2010).
DSAM: Development System for
Auditory Modelling. Available at:
http://dsam.org.uk/

Patterson, R. D. (1994). The sound of a
sinusoid: spectral models. J. Acoust.
Soc. Am. 96, 1409–1418.

Patterson, R. D. (2000). Auditory images:
how complex sounds are represented
in the auditory system. J. Acoust. Soc.
Jpn (E) 21, 183–190.

Patterson, R. D., Allerhand, M., and
Giguere, C. (1995). Time-domain
modelling of peripheral auditory pro-
cessing: a modular architecture and a
software platform. J. Acoust. Soc. Am.
98, 1890–1894.

Recio, A., Rich, N. C., Narayan, S. S.,
and Ruggero, M. A. (1998). Basilar-
membrane responses to clicks at the
base of the chinchilla cochlea. J. Acoust.
Soc. Am. 103, 1972–1989.

Shamma, S. (1989). Stereausis: binaural
processing without neural delays. J.
Acoust. Soc. Am. 86, 989–1006.

 auditory filter: the gammachirp. J.
Acoust. Soc. Am. 101, 412–419.

Irino, T., and Patterson, R. D. (2001). A
compressive gammachirp auditory
filter for both physiological and psy-
chophysical data. J. Acoust. Soc. Am.
109, 2008–2022.

Jepsen, M. L., Ewert, S. D., and Dau, T.
(2008). A computational model of
human auditory signal processing
and perception. J. Acoust. Soc. Am.
124, 422–438.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: Open Source Scientific
Tools for Python. Available at: http://
www.scipy.org/

Klöckner, A., Pinto, N., Lee, Y., Catanzaro,
B., Ivanov, P., and Fasih, A. (2009).
PyCUDA: GPU run-time code gen-
eration for high-performance com-
puting. Available at: http://arxiv.org/
abs/0911.3456

Komatsu, T. (2008). Improvement of the
Delany–Bazley and Miki models for
fibrous sound-absorbing materials.
Acoust. Sci. Technol. 29, 121.

Lopez-Poveda, E. A., and Meddis, R. (2001).
A human nonlinear cochlear filterbank.
J. Acoust. Soc. Am. 110, 3107–3118.

Lyon, R. F. (2002). Machine hearing: an
emerging field. IEEE Signal Process.
Mag. 27, 131–139.

Macdonald, J. A. (2008). A localization
algorithm based on head-related
transfer functions. J. Acoust. Soc. Am.
123, 4290–4296.

May, T., van de Par, S., and Kohlrausch,
A. (2011). A probabilistic model for
robust localization based on a binaural
auditory front-end. IEEE Trans. Audio
Speech Lang. Process. 9, 1–13.

Meddis, R. (2010). Auditory Modelling.
Available at: http://www.essex.ac.uk/
psychology/psy/PEOPLE/meddis/
webFolder10/WebIntro.htm

Meddis, R., and O’Mard, L. P. (2006).
Virtual pitch in a computational

references
Allen, J. B., and Berkley, D. A. (1979).

Image method for efficiently simu-
lating small-room acoustics. J. Acoust.
Soc. Am. 65, 943–950.

Bleeck, S., Ives, T., and Patterson, R. D.
(2004). Aim-mat: the auditory image
model in matlab. Acta Acoustica 90,
781–787.

Brette, R., and Goodman, D. F. M. (2011).
Vectorised algorithms for spiking
neural network simulation. Neural
Comput. 23, 1503–1535.

Carney, L. H., McDuffy, M. J., and
Shekhter, I. (1999). Frequency glides
in the impulse responses of auditory-
nerve fibers. J. Acoust. Soc. Am. 105,
2384–2391.

Fontaine, B., and Peremans, H. (2009). Bat
echolocation processing using first-
spike latency coding. Neural Netw.
22, 1372–1382.

Glasberg, B. R., and Moore, B. C. J. (1990).
Derivation of auditory filter shapes
from notched-noise data. Hear. Res.
47, 103–138.

Gnansia, D., Péan, V., Meyer, B., and
Lorenzi, C. (2009). Effects of spectral
smearing and temporal fine structure
degradation on speech masking release.
J. Acoust. Soc. Am. 125, 4023–4033.

Goodman, D. F. M., and Brette, R.
(2008). Brian: a simulator for spiking
neural networks in Python. Front.
Neuroinformatics 2:5. doi: 10.3389/
neuro.11.005.2008

Goodman, D. F. M., and Brette, R.
(2009). The Brian simulator. Front.
Neurosci. 3:192–197. doi: 10.3389/
neuro.01.026.2009

Goodman, D. F. M., and Brette, R. (2010).
Spike-timing-based computation in
sound localization. PLoS Comput.
Biol. 6, e1000993. doi: 10.1371/jour-
nal.pcbi.1000993

Irino, T., and Patterson, R. D. (1997).
A time-domain, level-dependent

efficient to transfer only the output spikes from the GPU to the
CPU. We believe the most promising extension of this work is thus
to develop more specific algorithms that take advantage of the
massive parallel architecture of these devices.

Acknowledgment
This work was supported by the European Research Council (ERC
StG 240132).

As we have shown, vectorized algorithms are well adapted to
GPUs, which are made of hundreds of processors. In this work, we
ported these algorithms to GPUs with no specific optimization, and
it seems likely that there is room for improvement. Specifically, in
the current version, all communications between different com-
ponents of the models go through the CPU. This choice was made
for simplicity of the implementation, but it results in unnecessary
memory transfers between GPU and CPU. It would be much more

Fontaine et al. Brian hears: Python auditory processing

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 9 | 9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive

	Brian hears: online auditory processing using vectorizationover channels
	1 Introduction
	2 Algorithms
	2.1 Vectorized filtering over frequencies
	2.2 Buffering

	3 Implementation and Results
	3.1 Modular design
	3.2 Online computation
	3.3 Feedback
	3.4 Vectorization over multiple inputs
	3.5 Performance

	4 Discussion
	Acknowledgment
	References

