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hybrid network experiments flexibly and easily. Second, GenNet 
allows real-time simulation and perturbation of single model 
neurons. An indirect benefit of incorporating our hybrid network 
software into an established dynamic clamp system is the ease with 
which one may adopt our approach once a functional dynamic 
clamp system running RTXI has been established. As RTXI is cur-
rently functioning in dozens of laboratories, this mitigates the 
added difficulty of successfully instituting a functional dynamic 
clamp system, which is, in itself, a challenging task for many non-
technical, experimentally-focused research groups. In addition 
to the application of GenNet to hybrid network experiments, we 
describe the utility of this system as a stand-alone simulation pack-
age, facilitating the construction of neural models and tuning of 
network parameters in autonomous simulations.

GenNet software design and implementation details
GenNet implementation emphasizes flexible design
General Network was designed to emphasize generality, in order to 
allow a large variety of hybrid networks to be implemented while 
maintaining simplicity and ease-of-use for end users. Simulated 
neurons may be represented by any computational model com-
prised of deterministic or stochastic systems of algebraic and dif-
ferential equations. These models may be simple, as in the case 
of the integrate-and-fire neuron, containing only one differential 
equation, or complex Hodgkin Huxley-style models containing 
equations describing a host of voltage-dependent conductances. 
The particular details of each model neuron must be defined once 
and are only constrained to include the most basic features (a volt-
age, the ability to spike, etc.). Any desired pattern of connectivity 
may be specified in a straightforward manner. Synaptic connections 
are assumed to be double-exponential AMPAergic or GABAergic 
ionotropic conductance synapses, although synapse modules 

Introduction
Hybrid networks entail the coupling, via dynamic clamp, of real 
neurons with simulated counterparts. This experimental para-
digm represents one of the major uses of dynamic clamp (Prinz 
et al., 2004; White et al., 2009; Economo et al., 2010) and has been 
applied successfully by several groups to study the phasing and 
synchronization of groups of cells (Sharp et al., 1993; Ulrich and 
Huguenard, 1996; Debay et al., 2004; Netoff et al., 2005). Initial 
hybrid network studies were used to inject timed, conductance-
based synaptic inputs into cells in vitro (Ulrich and Huguenard, 
1996) and to analyze invertebrate circuits (Le Masson et al., 1995). 
Later, more sophisticated approaches have incorporated detailed 
biophysical representations of model cells (Hughes et al., 2008). 
However, the technical difficulty of implementing hybrid networks 
has been a barrier for widespread adoption.

In previous studies, implementations of hybrid networks often 
followed ad hoc approaches, in which specific networks containing 
the cell types and topology of interest were created in a static fash-
ion (Sorensen et al., 2004; Netoff et al., 2005; Olypher et al., 2006; 
Grashow et al., 2010). While feasible for small networks containing 
only a few neurons, this approach becomes cumbersome when one 
wishes to study larger networks, permutations of a given network, 
or networks whose connectivity may be represented in a statistical 
manner. To address these limitations, we designed General Network 
(GenNet), a software package that allows for the construction of 
hybrid networks in a straightforward, reproducible, and general-
ized manner.

General Network is additional software that adds two important 
features to the real time experimental interface (RTXI) dynamic 
clamp system1. First, GenNet extends RTXI to enable it to perform 
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may be straightforwardly extended to include NMDA synapses, 
electrical synapses, or synapses with graded transmission. For a 
given simulation, cell types and the connectivity between cells are 
defined in a single configuration file using a simple syntax (see 
Netfile Syntax in the Appendix). The numerical integration of dif-
ferential equations is achieved using fourth – order Runge Kutta or 
forward Euler solvers, although other (fixed time-step) numerical 
solvers may be added. These two numerical integration schemes 
were selected because of their efficiency. The real-time constraint 
of the dynamic clamp requires that all equations be solved in real 
time, making the speed of computation a high priority.

GenNet source code architecture
General Network represents cells, synapses, and parameters as 
C++ classes or class members (Figure 1). In the schematic shown, 
C++ classes are represented as gray boxes with elements of the 
boxes representing class members such as variables or functions. 
Open arrows indicate a “contains” relationship. The Network 
class contains instances of the Cell, Synapse, and Data Logger 
classes. Solid arrows represent object-oriented inheritance rela-
tionships. Thus, individual cell classes all derive from a common 

“Cell” superclass, which consolidates elements common to all 
cells, including an applied current and functions for solving its 
own differential equations. Properties unique to individual cell 
models are set in the child class as appropriate. For example, 
each cell could contain its own model for the sodium current 
but all cells must have a voltage. In this manner, we were able to 
simplify code design and allow for the creation of any number of 
additional cell models. At the time of writing, approximately 12 
different model cells have been created for and used with GenNet 
(see Table A in the Appendix). Examples of how to implement 
models cells are included with the GenNet source code2 and a 
brief code example is given in the Section “Example Model Source 
Code” in the Supplementary Material.

The inheritance structure of GenNet enables the reduction of 
a large amount of redundant programming. Because all neurons 
inherit the attributes of the Cell class, any feature one wishes to 
include in multiple cell types may be specified a single time in 
the Cell class. While these features will be adopted by all cells, 
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Figure 1 | General Network software design diagram. Boxes represent 
computer code class structures and arrows represent relationships between 
classes. Solid arrows represent object-oriented inheritance relationships and 
open arrows mean that an instance of the class pointed to is contained within the 
class the arrows originates from. Each class lists some representative class 
members (functions or variables) in small text. The Network class is at the core of 
the simulator. It contains the list of cells and synapses that define the network as 
well as data logging capabilities. The Cell class is a parent class to each individual 
cell type. It contains functions and variables common to all cells. Individual cells 

can be biophysical or non-biophysical if desired. The Network class is “wrapped” 
by three helper classes that allow the core of GenNet to be used in three 
different contexts. In one, GenNet is coupled to RTXI and physical hardware 
channel inputs are routed between model cells and real cells in an experimental 
preparation. In the other context, the simulator runs “stand-alone” in a purely 
virtual mode. In the last, GenNet is embedded within RTXI but used for real-time, 
single-cell simulations rather than hybrid network applications. All cells marked 
(model) are computer model versions of the cells they represent. The “real cell” 
is a placeholder class that serves to represent a living neuron within GenNet.

2http://www.rtxi.org/topics/modules/
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simulations are useful to perform virtual current-clamp experi-
ments on model neurons. All stimulation protocols that exist in 
RTXI may be used to probe the model as it is simulated in real time, 
allowing the experimenter to gain intuition about a given model 
rapidly, as one would in a real experiment with a biological neuron. 
The stand-alone command line wrapper for GenNet contains the 
necessary code to parse command line options allowing for the 
specification of input Netfiles as well as various flags governing the 
simulator’s behavior. The stand-alone mode of execution allows 
for the running of simulations completely independent of RTXI. 
All wrapper classes instantiate the Network class and instruct it 
to begin the simulation.

As a result of its structure, GenNet is able to construct a full 
representation of the specified network internally, preventing the 
need to load individual cell models or manually set any connec-
tions. This feature reduces the possibility of errors, improves the 
reproducibility of simulations and experiments and decreases 
the time necessary to change parameters. Additionally, GenNet is 
capable of acting as a stand-alone network simulator, independ-
ent of RTXI.

Netfiles uniquely and reproducibly describe a simulation
Our stated goal of simulating hybrid networks easily and with 
general topology was facilitated by the introduction of configura-
tion files (termed “Netfiles”) specifying cell identities, connectiv-
ity patterns, and parameters controlling the attributes of all cells 
and synapses. The use of separate Netfiles interpreted by the core 
GenNet software in order to create an internal representation of 
all cells, synapses, and parameters provided several advantages. 
First, Netfiles could be automatically generated by other scripts. 
This feature made it possible to describe network topologies in 
terms of statistical features rather than specific parameter values. 
Second, a Netfile uniquely and reproducibly describes a simulation 
or hybrid network experiment, meaning that running GenNet with 
the same Netfile as input would lead to analogous output both in 
stand-alone mode and hybrid mode in which one or more in silico 
neurons are replaced by biological counterparts. Finally, keeping 
an accurate and reproducible record of simulations was reduced 
to simply saving the Netfile along with corresponding data file for 
each experiment.

Advanced Netfile syntax enables rapid parameter screening
At its core, the Netfile language allows for the description of a 
set of cells and the connections between them. The language has 
been extended to optionally permit the alteration of any parameter 
used by those cells or synapses. Because the syntax of Netfiles only 
necessitates the definition of basic parameters for each cell and 
synapse, the number of possible parameters that might need to 
be additionally defined is very large. To change any non-required 
parameter from its default value, an optional syntax extension 
allows any model parameter to be specified individually. This pro-
duces a Netfile syntax that remains clean and simple while allowing 
a powerful set of parameter changes to be available for the user. 
To use this feature, a cell or synapse declaration line is followed 
with a key–value pair that determines which parameter is to be 
changed and what value the parameter is to take (see Installing 
and Running GenNet in the Appendix). Upon initialization, the 

appropriate flags may be used to determine which features are 
exploited by each cell type. For example, the Cell class includes 
a description of an Ornstein–Uhlenbeck conductance process 
(Uhlenbeck and Ornstein, 1930), commonly used to approximate 
the post-synaptic effect of many irregularly firing pre-synaptic neu-
rons (Softky and Koch, 1993; Destexhe and Pare, 1999; Destexhe 
et al., 2001, 2003). A substantial body of literature suggests that 
neurons may behave differently when subjected to the same input 
commonly received in an in vivo network, where cells receive large 
numbers of incoherent synaptic inputs not present in slice prepara-
tions (Destexhe et al., 2003). This functionality may be inherited 
with variable parameters by any neuron model. The ability for any 
defined cell type to inherit features such as the Ornstein–Uhlenbeck 
process greatly streamlines the cell definition process.

Another important function contained in the parent Cell class 
and inherited by all cell models is the capability to detect action 
potentials. After a cell has reported that a spike has occurred, this 
is detected by the Network, which queries all cells for spikes on 
each time step. The Network then determines which cells are post-
synaptically connected to the cell that fired and alerts the appropri-
ate Synapse objects. Connections between cells are implemented as 
instances of the Synapse class which has, as its main components, 
identifiers of the associated pre-synaptic and post-synaptic cells 
along with several parameters governing its kinetics and reversal 
potential. Internal to each Synapse object is an output variable that 
represents the instantaneous value of conductance at that synapse. 
This value continually evolves as the simulation progresses and 
is updated to initiate a new synaptic waveform whenever a spike 
occurs in its pre-synaptic partner.

The Network class is the core class of the simulator (Figure 1). It 
contains the list of cells and synapses that define the network topol-
ogy and imports an external class that contains vital simulation 
parameters that describe the length of the run and the integration 
time step. Another core function contained in the Network class is 
the ability to record data produced by the simulator.

At the highest level of the diagram (Figure 1) are three classes 
that wrap the Network class to enable the three major execution 
paradigms of GenNet. These three paradigms are (1) real-time 
hybrid network experiments running on a dynamic clamp sys-
tem and involving simulated and biological neurons, (2) real-time 
simulations of a single model neuron running on a dynamic clamp 
system, and (3) stand-alone network simulations. These classes do 
not themselves add any additional functionality to the simulator. 
However, they provide interfaces for embedding GenNet’s core 
within RTXI (for running in hybrid mode or performing real-time 
single-cell simulations) or for running stand-alone simulations at 
the Linux command line.

The hybrid network wrapper’s major function is to route syn-
aptic connections between real cells and simulated cells via the 
appropriate channels on a data acquisition card. Additionally, 
this class uses existing RTXI functionality to create a high-level 
graphical user interface (GUI) window to control execution of the 
hybrid network. The window contains a field used to specify the 
name of the input Netfile (the user defined file that specifies all 
network parameters, see below), as well as other high-level param-
eters controlling the simulation. This functionality is duplicated 
when running real-time, single-neuron simulations. Real-time 
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a GUI that controls the experimental parameters of generated 
hybrid networks within RTXI. These parameters control network 
topology (by specifying the appropriate Netfile), the integration 
rate of defined differential equations, experiment duration, and 
the manner in which data files are generated. By default, recorded 
data is restricted to the membrane voltage of each element of 
the network for efficiency purposes, although other state vari-
ables may be saved as well with minor alterations of the underly-
ing code. To complete the integration of GenNet with RTXI, we 
implemented a method by which users can specify the connec-
tivity between one or more real cells and the remaining in silico 
neurons in the hybrid network. By convention, the type desig-
nator of a real (biological) cell, recorded using whole-cell patch 
clamp, is negative one (−1, see description of Netfile Syntax in 
the Appendix). A custom class was written to represent biological 
cells which had the same inheritance pattern as each other Cell 
class. The differential equation solver inherited from the parent 
Cell class was subsequently overridden so as to perform no func-
tion. Because the voltage of a biological cell does not need to be 
computed, but instead only read from a data acquisition system, 
this change allowed GenNet to treat real cells in the same manner 
as simulated counterparts.

When a Netfile containing a biological cell is parsed by GenNet, 
the synapses impinging upon the real cell and synapses triggered by 
it are stored by the software. Upon initialization, the wrapper class 
associates hardware input and output channels with the voltage of, 
and current intended for, each biological neuron (schematic shown 
in Figure 2). At the beginning of every time step the voltage of the 
real cell is read from its corresponding hardware channel. This value 
is used during that time step in all voltage-dependent calculations. 
At the end of each time step, when all synaptic currents have been 
computed, the calculated net synaptic current onto that neuron is 
injected by a current-clamp amplifier through the corresponding 
analog output channel. In this manner, GenNet seamlessly inte-
grates the simulated network with any biological neurons. Hybrid 
networks may be constructed with any number of experimentally-
recorded neurons; however, that number is practically limited by 
the number of available hardware channels and the experimental 
challenge of simultaneously obtaining intracellular recordings from 
multiple cells.

Example GenNet applications
Stand-alone model networks
To illustrate the functionality of GenNet as a stand-alone simula-
tor, we constructed several networks to demonstrate the ability 
of our software to simulate simple and complex networks and to 
highlight several features of GenNet. We began by implementing 
a two-cell model network with a single unidirectional synapse 
providing excitatory or inhibitory input from one cell to the other 
(Figure 3A). In this network, Cell 1 fires tonically (Figures 3B,C 
top panels), and we measured the effect of tonic spiking on the 
behavior of the post-synaptic cell when using either an excitatory 
or an inhibitory synapse. If an excitatory synapse was used, Cell 2 
also spiked tonically, synchronously with Cell 1 (Figure 3B, mid-
dle panel) in response to its excitatory synaptic input (Figure 3B, 
bottom panel). Spiking in Cell 2 is tightly phase locked to Cell 1 
as seen in the histogram of Cell 2 spike phases relative to Cell 1 

Netfile is parsed, key–value pairs are loaded, and a user-specified 
code block, which must be written in advance and associated with 
the parameter name, is executed. Thus, for every parameter that one 
would like to be adjustable, a small section of code specific to that 
parameter must be added to the Netfile interpreter. This allows for 
flexible, dynamically-changing definitions of any model parameter.

A common usage of the parameter changing feature is to run 
simulations in stand-alone mode for a range of parameters to assess 
the output of the network in a given parameter space. To facilitate 
this sort of experiment, we added another syntax extension that 
allows for the specification of a range of parameters. Sequential 
simulations, each with a different value for the parameter, are then 
executed. A wrapper script is used to identify and parse Netfile 
instructions that specify parameter ranges. A series of Netfiles are 
then generated dynamically and GenNet is invoked for each file 
creating a distinct output data file. The script operates on the source 
Netfile recursively, meaning that a multi-dimensional parameter 
space may be probed. Using this method, an arbitrarily large series 
of simulations iterating over any parameter space can be specified 
easily. This functionality is only available when the software is run 
in stand-alone mode. This is because in hybrid mode, GenNet loads 
input files via the provided GUI, a process that cannot be automated 
easily. Nevertheless, assessing the output of simulations over a large 
parameter space can be useful to determine which values are most 
appropriate for application in hybrid network experiments.

RTXI integration
Integration of the core GenNet simulator with RTXI was achieved 
using the RTXI wrapper class designed to interface the simula-
tor with experimental recordings (Figure 2). This class generates 

RTXI

mEC

CA1

CA3
DG

Hippocampal Slice

CA1 Pyramidal Cell

Simulated Cells

Voltage

Current

Simulated
Synapses

GenNet

Figure 2 | Schematic diagram of a hippocampal hybrid network. A set of 
model cells simulated with GenNet within RTXI (shaded box on left) interacts 
with a real pyramidal neuron being recorded with the patch-clamp technique in 
a hippocampal slice (right). Dark circles represent individual model cells that 
are connected via virtual synapses (dashed lines) to a real pyramidal neuron. A 
patch-clamp pipette is used to record the voltage from this neuron in real time 
which is then passed as input to GenNet (upper arrow). After a computational 
time-step has elapsed, GenNet computes the synaptic current that must be 
passed to the pyramidal neuron and RTXI sends this current into the cell via 
the pipette (lower arrow). Multiple adjacent pyramidal neurons indicate that an 
arbitrary number of real cells can be embedded into the hybrid network. 
Abbreviations refer to the regions of the hippocampal formation: mEC, medial 
entorhinal cortex; DG, dentate gyrus; CA3, cornu Ammonis 3; CA1: cornu 
Ammonis 1.
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what activity patterns would emerge when the cells were coupled 
with excitation versus inhibition. We first measured the instantane-
ous mean firing rate of neurons in the network with either con-
nectivity type (Figure 4B). When inhibitory synapses were used, 
the average firing rate (computed as the number of spikes across 
all cells in a small time window) was nearly constant, indicating 
that, on average, the neurons in the network fired at approximately 
the same rate over time. Consistent with this observation, a ras-
ter of spiking activity in the network connected via inhibition 
shows unorganized and uniform spiking over time (Figure 4C). 
Conversely, when the network was coupled with excitatory syn-
apses exclusively, a different pattern of spiking activity emerged. 
The mean rate of spiking underwent rapid rises and falls during 
the course of the simulation (Figure 4D) indicating a burst-like 
pattern of spiking. Indeed, the raster of spike times confirms this 
interpretation, showing that when excitatory coupling is used, all 
cells in the network were activated simultaneously followed by 
periods of quiescence.

firing (Figure 3D, top panel). If instead an inhibitory synapse was 
used (Figure 3C), Cell 2 spiked only when its intrinsic excitabil-
ity could overcome the incoming hyperpolarizing synaptic input 
(Figure 3C, bottom panel). Spike timing in Cell 2 was biased to 
occur in the second half of the Cell 1 phase which allowed suf-
ficient time for inhibition to wear off (Figure 3D, bottom panel). 
GenNet enabled the switch between these two simple networks 
by making a single parameter change in the Netfile (see Netfile 
Syntax in the Appendix).

The utility of GenNet is apparent when simple networks, like 
the one discussed above, are scaled up in size to probe how simple 
properties describing connectivity can affect complex emergent 
network behaviors. We increased the size of the simple two-cell 
network to contain 20 cells and utilized a random pattern of con-
nectivity instead of a single synapse (Figure 4A). Switching to this 
alternate topology was achieved by simply listing additional cells in 
the configuration Netfile and using a script to randomly generate 
synapse definitions. We simulated this network and again asked 

A

B C D

Figure 3 | General Network enables rapid parameter switching for 
simulating diverse network types. (A) A sample feed-forward network is 
implemented in GenNet to illustrate the capability of the software to quickly 
and easily change fundamental properties. The sample network contains two 
cells with noisy drive coupled either by feed-forward excitation (left) or 
feed-forward inhibition (right). Cell 1 is made to fire tonically triggering 
post-synaptic currents in Cell 2. (B) When excitatory coupling is used, the 
spikes of Cell 2 (middle panel) closely track those of Cell 1 (top panel). The 
excitatory synaptic currents (bottom panel) are sufficient to elicit a spike in Cell 
2 each time a Cell 1 spikes. The synaptic current also illustrates the voltage 
dependence of synaptic transmission. When a post-synaptic spike raises the 
voltage of Cell 2 past the reversal potential of the synapse, the sign of the 
synaptic current changes. Vertical gray dashed lines indicate the timing of 
spikes in Cell 1. Horizontal gray dashed line indicates −50 mV. (C) The same 

network can be run with the synapse switched to be inhibitory. In this case, 
post-synaptic spiking in Cell 2 is irregular and does not track pre-synaptic 
spiking (middle panel). The effect of pre-synaptic spikes (top panel) on the 
post-synaptic voltage can be observed as small, hyperpolarizing deflections in 
the voltage. Spiking in Cell 2 occurs when the natural evolution of the voltage 
overcomes the periodic inhibition from Cell 1. As a result, firing in Cell 2 is 
slower than when inputs were excitatory. (D) Spike time histograms (plotted as 
Cell 2 spike times relative to the phase of Cell 1) show the distribution of spikes 
in Cell 2 depending on the coupling type used. Excitation causes Cell 2 to 
become entrained to Cell 1 (top panel) and Cell 2 spike occur in a small time 
window only. Inhibition causes spiking in Cell 2 to be biased to occur in the 
second half of the Cell 1 period when inhibition has had sufficient time to wear 
off (bottom panel) but overall spikes are spread over a wider time window than 
when excitation was used.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


along which an activity wave can propagate. When an activity wave 
initiates in this network, it propagates along the edge of the ring, 
but short cuts to distant neurons in the network when it reaches 
one of the rewired connections, some of which connect to neurons 
far from immediate neighbors (Figure 5E). A magnified view of 
one of these episodes of activity shows that the network is now 
activated in a more simultaneous manner as opposed to a sequential 
manner (Figure 5F). Overall, this example highlights how GenNet’s 
ability to rapidly change parameters in model networks helps build 
an understanding of how those parameters can lead to different 
qualitative network behaviors.

Lastly, we constructed a network in which one of the neurons 
was designated as a “hub,” a neuron with a much higher degree 
of connectivity than its peers. We simulated a hub network com-
prised of 20 neurons in which one cell was randomly selected to 
provide diffuse inhibition to the remaining cells in the network 
(Figure 6A). A single spike in the hub cell causes an inhibitory 
response in the target cells and, as a result, a cessation of spiking 
activity (Figure 6B). This simulation provides another example of 
a biologically relevant topology (Bonifazi et al., 2009) and would 
have been precluded by the limitations of other hybrid network 
systems. The hub network topology is of particular interest because 

The ability to rapidly switch between parameters is not only 
confined to changing the polarity of synapses. Topological changes 
to networks are similarly easy to achieve. We used GenNet to ask 
how activity would propagate through a ring network and how this 
propagation would change if the network included several long-
distance connections in addition to nearest-neighbor connections. 
We again used a 20-neuron network connecting each neuron only 
to its nearest neighbors (Figure 5A). Thus, each neuron had two 
outgoing synapses and two incoming synapses. Excitatory coupling 
was used throughout this set of simulations. When cells in the net-
work were tuned such that they would occasionally fire spontaneous 
action potentials, a clear pattern of activity propagation emerged 
(Figure 5B). A single spike would, after a small delay, induce spik-
ing in the neighboring neurons, which would in turn activate their 
neighbors. This resulted in an activity wave propagating along the 
edge of the ring. The sequential pattern of activation is visible if one 
of the waves is magnified to show how adjacent cells are sequentially 
activated in time (Figure 5C, arrows). The same network can be 
modified by adding a small number of additional synapses to con-
nect two previously unconnected cells (Figure 5D). This change 
has the effect of producing a network which is mostly connected 
as a ring, but contains several synapses that provide alternate paths 

A

C D

B

Figure 4 | Switching parameters in a larger network produces diverse 
activity patterns. (A) An example of a larger network containing 20 neurons 
coupled randomly. In the diagram, filled circles represent cells and lines 
represent synapses. Synaptic direction is not indicated. The connection 
probability between each cell pair is 20%. (B) The 20-cell network is simulated 
with either excitatory or inhibitory synapses. While the total amount of spiking is 
similar in both simulations, the instantaneous rate differs considerably between 
the simulations. While the rate is nearly constant over time with inhibitory 

synapses, the rate rapidly changes in a burst-like pattern with excitatory 
synapses. (C) Rastergram of spiking in the network when inhibitory synapses 
are used. Spike rate remains approximately constant over time. (D) Rastergram 
of spiking when excitatory synapses are used. The network bursts periodically. 
As single-neurons fire, they recruit their post-synaptic partners until every 
member of the network is activated. After a brief period of activation, the cells 
become refractory together and the network becomes nearly silent until the 
cycle repeats.
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Hybrid networks
Although many neural simulators have been described in the litera-
ture that efficiently simulate the behavior of neural networks [e.g., 
BRIAN (Goodman, 2008)] and the voltage of spatially-extended 

it lends itself well to integration with a biological preparation as 
a single biological hub neuron could impact the remaining cells 
in the network in a non-trivial manner, allowing one to effectively 
investigate how intracellular properties facilitate this function.

A B C

FED

Figure 5 | Ring network shows how different network connectivity can 
lead to different patterns of activity propagation. (A) A 20-cell ring network is 
constructed in GenNet with each neuron coupled via excitation to its two 
immediate neighbors. (B) Spontaneous activity propagates through this network 
along the edge of the ring. A single spike triggers a wave of spikes that travels 
around the ring in both directions. The window of time indicated by the gray box 
is magnified in the (C). (C) Magnified view of a single wave. Arrows indicate the 
bidirectional propagation of the activity wave from a single source. (D) A 

different activity pattern emerges when the connectivity is changed to include a 
few random connections along with connections to nearest neighbors. In this 
case, activity waves have the opportunity to short cut the path along the edge 
and can thus recruit the remaining cells in the network more quickly after the 
initial spiking event. (F) Magnified view [gray box in (E)] of a single activity wave 
shows how the propagating activity uses the long-distance connections to 
activate remote portions of the ring more rapidly. This causes the cells to be 
more simultaneously active as opposed to sequentially active.

A B

Figure 6 | Spikes in a hub neuron strongly influence spike times in the 
remaining network. (A) A 20-cell network is constructed in GenNet with a 
single-neuron (the hub neuron) synapsing onto the remaining cells in the 
network with feed-forward inhibition. In such a network, a spike in the hub 
neuron has the capability to profoundly influence the activity in the remaining 
cells in the network. The hub neuron is drawn as the large circle with the 
remaining cells represented as smaller circles. Synapses are drawn as lines 

without indication of direction. (B) Each time the hub neuron spikes, the voltage 
of all post-synaptic cells is averaged (solid line) indicating that a single inhibitory 
pulse caused approximately a −4 mV hyperpolarization in the target cells (right 
axis). The rastergram indicates the spiking activity of each neuron in the network 
after a hub neuron spike has occurred and shows that the inhibitory input 
imposes a delay of approximately 20 ms before spiking can resume again in the 
target neurons.
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Hajos and Mody, 1997; Ali et al., 1999; Goldin et al., 2007). In 
the circuit (Figure 7A), excitation is represented by closed trian-
gles and inhibition by open circles. The O–LM cell is shaded to 
indicate that it is a real patch-clamped neuron while other circuit 
members are simulated.

We tested whether the strength of the synapses originating 
from O–LM synapses could control the relative strengths of the 
theta and gamma rhythm by varying the maximal conductance 
of the synapses from the O–LM to both basket interneurons and 
the pyramidal neuron. We found that O–LM activity and con-
nectivity can indeed mediate switching between the rhythmic 
states of a hippocampal microcircuit (Figure 7A,B). When the 
O–LM interneuron was strongly coupled (Figure 7A), the circuit 
(top left panel) displayed theta-frequency oscillations due to the 
strong inhibition provided by the O–LM cell and the slow kinetics 
inherent to the O–LM interneuron and the synapses originating 
in this cell (bottom left panel shows raster of spiking activity and 
right panel shows example voltage traces). Conversely, experi-
ments in which an O–LM cell was only weakly coupled to the 
simulated network resulted in gamma frequency oscillations due 
to rapid inhibitory feedback from the basket cell interneurons 
(Figure 7B). Finally, to highlight the advantage of performing 
such experiments with GenNet, we made use of the large body of 
existing models for the RTXI dynamic clamp system by combining 
our hybrid network experiment with a stochastic conductance 
injection protocol in order to add noisy drive to the real O–LM 
neuron (Figure 7C). When synapses were of intermediate strength 
and O–LM cells received noisy drive, spike timing became more 
variable and spikes occurred at frequencies intermediate between 
gamma and theta (Figure 7C). The voltage fluctuations caused 
by the stochastic conductance injection can be seen in the volt-
age trace of the O–LM neuron and the effect of this variability 
in the O–LM output is clearly evident in the irregular spiking 
of other cells in the network (Figure  7C). These experiments 
represent a proof of concept of GenNet, as well as preliminary 
data confirming the specific experimental hypothesis presented in 
the preceding text. Further hybrid network experiments utilizing 
these methods would be useful to probe the role of specific chan-
nel populations in O–LM neurons in generating specific classes 
of rhythmic activity.

Discussion
General Network provides a flexible framework for hybrid net-
work experiments and network simulations, offering several 
advantages over existing hybrid network systems. Foremost, 
GenNet allows for the streamlined specification and construction 
of hybrid networks without constraints on particular cell types 
or topologies. Presently, GenNet includes approximately a dozen 
model cell types ranging from the integrate-and-fire model to 
more complicated, conductance-based model cells. Construction 
of additional cell types is straightforward and may be achieved 
using existing models as templates. The topology of small net-
works is easy to specify directly, and more complicated, larger 
topologies may be specified as well using automated scripts writ-
ten in higher-level languages such as MATLAB and Python. The 
size of the simulated components of hybrid networks is limited 
only by the computing power available.

neurons [NEURON, GENESIS (Hines and Carnevale, 1997; Bower 
and Beeman, 1998)], GenNet was primarily developed to facilitate 
integration with dynamic clamp software for the construction of 
hybrid networks. Similar tools exist for dynamic clamp systems 
that do not operate in hard real-time and are specialized to work 
with particular neuron types (Hughes et al., 2008). To our knowl-
edge, GenNet is the first such system that is not constrained by 
predetermined network sizes, cell types, or topologies while con-
tinuing to operate in hard real time. It has the additional advantage 
of operating within a dynamic clamp system that is widely used 
in many laboratories (Iravanian and Christini, 2007; Bettencourt 
et al., 2008; Grashow et al., 2010; Lin et al., 2010; Lobb and Paladini, 
2010). To demonstrate this functionality, we present an example 
hybrid network and describe how this approach may be used to 
explore the effect of connectivity patterns and intrinsic neuronal 
properties on the generation of population activity patterns in 
groups of neurons.

The following hybrid network experiment was motivated by 
previous studies (Gillies et al., 2002; Gloveli et al., 2005; Tort 
et  al., 2007) suggesting that the theta (4–12 Hz) and gamma 
(30–80 Hz) rhythms may be generated by the interaction of hip-
pocampal pyramidal neurons in region CA1 with neighboring 
basket and oriens–lacunosum moleculare (O–LM) interneu-
rons. These studies hypothesized that gamma oscillations were 
preferentially generated during periods of strong functional 
coupling between, and activity of, pyramidal cells and basket 
interneurons while the theta rhythm arises through an inter-
action of the same pyramidal neurons with O–LM interneu-
rons. This hypothesis grew from several, independent lines of 
research. In one study, Gloveli et  al. (2005) used kainate to 
induce rhythmic activity in hippocampal brain slices cut either 
in the transverse or coronal planes. The authors reported that 
the transverse slice generated gamma rhythms more readily, and 
showed that morphologically reconstructed O–LM neurons had 
axonal arborizations more likely to be cut in this orientation. 
Conversely, they showed that the theta rhythm was preferentially 
generated in the coronal slice in which the axonal projections 
of O–LM neurons remained intact. Other studies (Pike et al., 
2000; Gillies et al., 2002; Goldin et al., 2007) have postulated 
that O–LM neurons are well-suited for the generation of theta 
rhythms due to the presence of HCN channels in these cells, 
the relatively slow kinetics of synapses formed between these 
cells and neighboring principal neurons, and their ability to 
integrate inputs at theta frequencies preferentially. Associated 
theoretical (Rotstein et  al., 2005; Tort et  al., 2007) work has 
suggested a possible canonical microcircuit able to generate 
theta and gamma rhythms based on these studies.

We used GenNet to directly test whether the degree of con-
nectedness of O–LM cells can influence the frequency preference 
of a hippocampal microcircuit. We tested this by patch clamp-
ing onto an O–LM neuron and coupling it, using GenNet, to a 
simulated network containing one pyramidal neuron and two 
basket interneurons (Figure 7A) meant to mimic the local hip-
pocampal microcircuit (Gloveli et al., 2005; Rotstein et al., 2005; 
Tort et al., 2007). The model neurons and patch-clamped O–LM 
neuron were connected in an all-to-all fashion with appropri-
ate synaptic kinetics at each synapse (Wang and Buzsáki, 1996; 
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A

B

C

Figure 7 | Degree of coupling of O–LM cells determines network 
frequency in hippocampal hybrid network. (A) Network diagram (top left) 
showing layout of the simulated network and the integration of a real cell. The 
single pyramidal cell and two basket cells are simulated in real-time within RTXI. 
This reduced hippocampal network is connected to a real, patch-clamped O–LM 
cell (shown with dark shading). Connectivity in the network is all-to-all with the 
pyramidal cell being the only source of excitation in the network. Closed 
triangles indicate excitation and open circles indicate inhibition. For synapses, 
thick, solid lines indicate strong connections, normal lines indicate intermediate 
connections and dotted lines indicate weak connections. In this experiment, the 
outgoing connections from the O–LM cell are strong. Voltage traces of the 
simulated network (right panel) show how the real and simulated neurons 
influence each other via post-synaptic currents and that the network fires in a 
sustained theta rhythm due to strong inhibition from the O–LM cell. A rasterplot 
of spiking activity (bottom left panel) shows a longer window of ongoing activity. 

The voltage traces correspond to the region of the rasterplot in the shaded box. 
(B) Weak connectivity (dotted lines, top left panel) from the real O–LM cell to the 
rest of the simulated network results in an ongoing gamma rhythm (spike raster 
and voltage traces). Excitation from the pyramidal cells and subsequent rapid 
feedback inhibition forms a gamma rhythm between the pyramidal cell and the 
basket cells. Weak, theta-frequency inputs from the real O–LM cell are 
insufficient to prevent gamma frequency firing. (C) Hybrid network experiments 
performed with GenNet can be used in combination with existing RTXI 
protocols. The same hybrid network is run with synapses of intermediate 
strength (top left panel). In addition, RTXI is used to inject conductance noise 
into the real O–LM cell. Noisy drive combined with intermediate synapses 
results in a network in which O–LM spike times are variable and the network 
has periods of faster spiking interspersed with periods of slower spiking (top 
right panel and spike raster). The noisy voltage deflections in the O–LM cell due 
to noise injection are visible in its voltage trace.
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The core code, compiled in C++, is capable of solving doz-
ens to even hundreds of differential equations in real time on 
common desktop PCs. Under these conditions, “real time” refers 
to the constraint that the computations required to evolve the 
simulation by a given amount of model simulation time must 
always be completed before the corresponding amount of “wall 
clock” time elapses. For example, simulating model equations for 
100 ms of model time must require less than 100 ms of actual 
computer CPU time. This requirement is independent of the 
update rate of the dynamic clamp system; model equations are 
solved at a specified time step which is decoupled from changes 
in the specified RTXI period. At slower dynamic clamp update 
rates, more iterations of model equations are computed during 
each dynamic clamp period. To qualitatively illustrate the per-
formance of GenNet running on a single core Pentium 4 CPU 
running with a 3.6-GHz clock rate (modest hardware by modern 
standards), a network of 100 Izhikevich neurons (each containing 
two differential equations; Izhikevich, 2004) connected by 500 
randomly assigned synapses could be simulated in real-time when 
being integrated at 10 kHz. To test the performance of a network 
with a more biophysically realistic neuron model we replaced the 
Izhikevitch model with a seven-equation model of a pyramidal 
neuron (Mainen and Sejnowski, 1996). With this more complex 
model the network could contain up to 15 neurons and 25 syn-
apses to meet real-time simulation constraints while running on 
identical hardware and with identical simulation parameters.

The additional usage paradigms, stand-alone mode and sin-
gle-cell real-time mode, facilitate the investigation of network 
and single-cell behaviors while not subject to the time constraints 
inherent in experimental recordings. Stand-alone mode is useful 
for evaluating preliminary networks as one may iterate through 
sets of network and single-cell parameters in an automated fashion 
without the requirement that equations must be solved in real-time. 
The advanced Netfile syntax detailed above allows for straightfor-
ward scanning through a defined range of a given parameter, or 
recursively through multiple parameters. Single-cell mode offers 
the ability to perform real-time experiments on model cells in RTXI 
as if they were biological cells recorded under current-clamp. This 
functionality enables one to take advantage of the multitude of 
stimulation and recording protocols included with RTXI to probe 
model behavior and compare it with experimental data. These 
modes substantially extend the functionality of GenNet, making 
it a useful tool for a host of computational studies.

Although similar tool kits have been described (Hughes et al., 
2008), to our knowledge, no other system is capable of creating 
hybrid networks with arbitrary cell types, topologies, and network 
size. Additionally, integration with RTXI ensures that GenNet oper-
ates in hard real-time, a feature that ensures the accuracy of dynamic 
clamp results by preventing system processes from interrupting the 
solution of model equations (Bettencourt et al., 2008). With this 
functionality GenNet provides experimenters unprecedented access 
to the hybrid network technique.

Limitations of GenNet
Although the design of GenNet addresses many of the difficulties 
encountered when creating hybrid networks, the current imple-
mentation of GenNet has limitations. GenNet was not optimized 

for the efficient specification and simulation of multi-compart-
ment neural models. If models of this type are desired, equa-
tions governing the passive flow between compartments must 
be specified in each model class by the end-user. As GenNet was 
designed for simplicity and computational efficiency, we chose 
not to focus on providing support for complicated morphologies, 
as we felt this would unnecessarily complicate the definition of 
network topology and further constrain the size of networks that 
would be possible to simulate in real time. The ability to simu-
late spatially extended neural models in a stand-alone fashion is 
already provided by simulation packages such as NEURON and 
GENESIS (Hines and Carnevale, 1997; Bower and Beeman, 1998) 
and other efforts have endeavored to make spatially extended 
models compatible with dynamic clamp experiments (Hughes 
et al., 2008; Cornelis and Coop, 2010). We are working to incor-
porate easier methods of adding compartmental simulations to 
GenNet and RTXI.

Another current limitation of GenNet is the necessity that syn-
aptic inputs be represented by double-exponential waveforms. We 
believe that synapses described in this fashion maintain a good 
balance between computational efficiency and the desire to accu-
rately represent the kinetics of many chemical synapses. However, 
electrical synapses and NMDA conductances are not currently 
implemented by GenNet. Because of the modular design of the 
GenNet system and its structural similarity to other RTXI plugins, 
other synapse types may be incorporated in a straightforward man-
ner by most persons familiar with the plugin syntax of RTXI. This 
extensibility may be important in the future for individuals desiring 
to study model systems which employ graded synaptic transmis-
sion, such as the crab stomatogastric ganglion (Graubard et al., 
1980; Manor et al., 1997).

Challenges in studying large hybrid networks
Although hybrid network techniques represent a valuable 
experimental tool, rigorous design and interpretation of such 
experiments requires some care. For immersing neurons in large 
hybrid networks, two constraints in particular should be kept in 
mind. First, if the goal is to study how the biophysical properties 
of recorded neurons affect network behavior, one should take 
care to verify that the recorded biological neuron or neurons 
can in principle have measurable effects on network activity, 
either because the total number of network elements is small, 
or because the biological elements have disproportionate influ-
ence on the rest of the network (Bonifazi et al., 2009). If feed-
back from the biological neurons is unimportant, an alternative 
approach would be study the behavior of the recorded neuron(s) 
in response to predefined inputs (Fernandez and White, 2008, 
2009, 2010; Fernandez et al., 2011) instead of using the hybrid 
network technique. Second, like any kind of large-scale neural 
network simulation, large hybrid networks are prone to having 
high-dimensional parameter spaces. This problem is more of 
a concern for experiments than for pure simulations, because 
time constraints are much more prominent in recordings. For 
this reason, in expanding hybrid networks beyond simple cases 
(Netoff et al., 2005), one must impose constraints upon network 
organization that keep the parameter space manageable for real-
istic recording epochs.
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Methods
Programming
All software was programmed in C++ using standard Linux-based 
tools. Code was compiled with version 4.x of GNU compiler collec-
tion3 all running on Ubuntu Linux4. GenNet has been successfully 
compiled and run on Mac OS X and Microsoft Windows based oper-
ating systems using equivalent tools. Cygwin5 was used on Windows 
to obtain the required software tools. Matlab (The Mathworks) was 
used for data analysis. Our dynamic clamp system (Dorval et al., 2001; 
Bettencourt et al., 2008; Lin et al., 2010) is based on a Linux kernel 
extension, real-time application interface, which is freely available6. 
Additional information regarding RTXI and free downloads of the 
software can be found at the project website (see text footnote 1).

Experimental
All experimental data was collected with standard patch-clamp 
methods described in detail elsewhere (Fernandez and White, 
2008). All protocols were approved by the University of Utah 
Institutional Animal Use and Care Committee (IACUC). Briefly, 
brain slices were prepared from young (postnatal days 18–28), 
Long–Evans rats of both genders. Rats were anesthetized using 
isoflurane and decapitated. The brain was removed rapidly and 

3http://gcc.gnu.org/
4http://www.ubuntu.com/
5http://www.cygwin.com/
6https://www.rtai.org/
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Appendix
Installing and running GenNet
Downloading and installing GenNet
General Network can be downloaded at the RTXI plugin website 
(http://www.rtxi.org/topics/modules/). All GenNet code is down-
loaded as a single compressed zip archive. When this archive is 
extracted, a single directory named “GenNet” results. Inside this 
directory are four further directories. The directory called “Matlab 
Scripts” contains example code for plotting and reading data files 
as well as an example MATLAB script for automatically generating 
a Netfile. The three remaining directories each correspond to one 
method of running GenNet. Inside each directory is a separate 
Makefile which can compile the code for the specified purpose. 
“StandAlone Sim” contains the core GenNet code and allows run-
ning stand-alone simulations independent of RTXI. “RTSim” cre-
ates an RTXI model to run real-time simulations. Finally, “Hybrid 
Network” will create an RTXI model to run GenNet in hybrid 
network mode. To compile and install any of these versions of 
GenNet execute the command “make” in either directory. For the 
directories with RTXI integration, a subsequent command “make 
install” must be issued as the root user. After compiling is complete, 
GenNet is ready for use.

Running GenNet in stand-alone mode
Upon starting up, GenNet will produce a summary of the network 
specified in the file, the parameters listed and the connections used. 
The simulation begins automatically and progress is indicated in 
the terminal. Once the run has completed, the simulation data are 
written to a file and the program terminates. GenNet accepts one 
command line argument (−r) which is used to set the numbering 
of the output data file. This parameter takes an argument to specify 
the number that is to be used in the name of the data file.

Running parameter sweeps with GenNet
In stand-alone mode, GenNet can be used to run many successive 
simulations each with a different set of parameters. This can be 
useful to determine the effect of a single parameter, or group of 
parameters on network behavior as those parameters are varied 
through the range of interest. Such sets of simulations are achieved 
by wrapping GenNet with a Python script that invokes the program 
repeatedly. A meta-syntax extension is used for these simulations. 
Each parameter that is to be varied is replaced by a statement that 
indicates the starting, ending, and increment values desired. This 
determines the number of simulations that are to be run and the 
wrapper script expands these sections, generates the appropriate 
Netfile and invokes GenNet using that custom generated Netfile. 
After each run, the output data file is intercepted by the script, 
permanently stored and renamed so it can be later identified. 
Additionally, the Netfile that was generated automatically is copied 
as well so that any individual run can be recreated at a later time 
if necessary. A meta-syntactic change was introduced to Netfiles 
specifically for this purpose to designate a range of parameters 
that is to be run. The script parses the Netfile looking for the exact 
string “rangef(n1, n2, n3)” where the inside of the parenthesis are 
a comma separated list of three numbers (n1, n2, n3) that repre-
sent the start, end and increment of the parameter value which 
the “range” directive had replaced. This designation is parsed out 

by the wrapper script and converted to regular Netfile syntax so 
that GenNet can run normally with no changes. The “rangef” 
desigator is permitted at any point in a Netfile. Thus the directive 
“rangef(1,10,1)” would run 10 simulations with the parameter value 
set as an integer sequence from 1 through 10.

GenNet output data
Output data files consist of the voltages of all cells in the network. 
Files are stored in binary format. The data are arranged column wise 
and each row (one time point) contains a single voltage value for 
each cell in the network. Optionally, data files can contain synaptic 
current information but it is not included by default to limit file 
size. Basic MATLAB scripts to read in GenNet data are included. 
GenNet outputs several data files for each run of the simulator. 
The location of the output data directory is a parameter which 
users may set in the simulation parameter file “RunParams.cpp.” 
Files are named GenNet_Month_Day_Year_A1.dat. In this name 
the month is the standard three letter month abbreviation and the 
year is represented as a two digit number. The original Netfile along 
with a comment and the number of columns stored in the data file 
is saved into the “info” file which aids in analysis and reproducing 
simulations. The “log” file is unused in the stand-alone version of 
GenNet and only meaningful in the RTXI version where the log 
file stores information about successive acquisitions of data for 
one run of the model.

Running GenNet in hybrid mode
Running GenNet in hybrid mode requires a working installation 
of RTXI. As described above, GenNet must then be compiled for 
RTXI. A wrapper class is provided that serves to integrate the class 
structure of GenNet into the framework of an RTXI plugin. When 
compiled in this mode GenNet accepts an additional value for a 
cell’s “type” parameter. If a cell’s type is negative (i.e., −1, −2…) then 
it is assumed that the cell is intended to be real. All voltage calcula-
tions for this cell will be omitted and instead read from a hardware 
channel that is set in the wrapper class. While the number of real 
cells is not limited by GenNet, the design of the RTXI dynamic 
clamp system fundamentally prevents the system from changing 
the number of addressable hardware channels on the DAQ card at 
run time. Thus, if a different number of real cells are desired, the 
RTXI wrapper class must be recompiled to enable a different set 
of hardware channels. Once compiled properly, the experimenter 
must patch clamp the desired cell(s) and subsequently load a Netfile 
which makes use of real cells.

Netfile syntax
We define the custom syntax for the input files to GenNet that define 
the individual components of GenNet networks as well as how 
those components are connected with one another. The syntax of 
Netfiles was designed to be as simple as possible and tailored specifi-
cally toward the functionality of GenNet. While the file format of 
Netfiles is unique to GenNet, ongoing efforts are underway in other 
research groups to standardize the description of network and cell 
models. The major organizing body of this effort, the INCF Task 
Force (http://www.nineml.org/), has set forth a proposed standard 
and advocates for the use of the standard regardless of the underly-
ing simulation technology that is used. Adoption of this standard 
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The second value represents the applied current value for that 
cell.

Examples:

@0, 1   # This is an Excitatory Cell with 1  
        # applied current

@2, 0.1 # This is an Inhibitory Cell with  
        # 0.1 applied current

Synapses
Synapse declarations make up the second section of a Netfile. Any 
line beginning with the > character is the beginning of a synapse 
declaration. A synapse declaration contains four parts:

(1)	Pre-synaptic cell index
(2)	Post-synaptic cell index
(3)	Maximal conductance of the synapse
(4)	Reversal potential of the Synapse

The index refers to the order of the list of cells that were created. 
An index of 0 would mean the first cell that was declared (in the first 
@ statement) an index of one would refer to the second cell and so on.

Examples:

>0, 1, 0.1, -60  # make a synapse from the  
                 # first to the second cell  
                 # with 0.1 
                 # maximal conductance and  
                 # a -60 mV reversal  
                 # potential
                 # (eg. Shunting  
                 # inhibition)

>4, 3, 1, 0      # make a synapse from the  
                 # 5th to the 4th cell  
                 # declared with 1 
                 # maximal conductance and  
                 # 0 reversal potential  
                 # (eg. Excitation)

The units of all quantities declared in a Netfile depend on the 
requisite manner in which each cell model is defined.  For example, 
if model quantities are defined in units of mV (for voltages), mS/cm2 
(for conductances), μA/cm2 (for currents) and nF (for capacitance) 
then quantities defined in Netfiles must have equivalent units.

Example networks
Below are some complete examples of common networks that are 
intended to serve as a starting point for new users. Parameters 
such as applied current, synaptic conductances and reversal 
potentials are model dependent and representative example 
values are used.

Two interneurons coupled by reciprocal inhibition.

# Cells

@1, 0.1

might prove to be a powerful addition to GenNet in the future, 
although at the present time, we feel that the simple Netfile syntax 
described here provides a straightforward method for changing 
network topologies that may be adopted with minimal effort.

The major components of a Netfile are as follows:

Comments
In a Netfile, any occurrence of the # character is considered to be 
the beginning of a comment and any further characters are ignored 
until the end of the line.

Examples:

# This is a comment

@0, 1   # This is also a comment

Cells
Cell declarations make up the first section of a Netfile. Any line 
beginning with the @ character is the beginning of a cell declara-
tion. A cell declaration contains two parts, a type designator and 
a DC offset. The units of the DC offset depend on the implemen-
tation of the cell model being used. Frequently, this quantity is 
given in microamperes per square centimeter of membrane (μA/
cm2), when conductances are defined in mS/cm2 and voltage is in 
units of mV. The type designator refers to the model cell type that 
is to be used. Numerous model variants are currently available. 
Table A lists several of the types of models implemented and their 
type designators.

Table A | Model neurons currently available in GenNet.

Cell type	 Designator	 Reference

Regular-spiking excitatory cell	 0	 Gloveli et al. (2005)

Generic inhibitory Cell	 1	 Gloveli et al. (2005)

Oriens–lacunosum moleculare	 2	 Saraga et al. (2003) 

interneuron

Passive membrane	 3	

Izhikevich neuron (Tonic spiking)	 4	 Izhikevich (2004)

Izhikevich neuron (Class 1 excitable)	 5	 Izhikevich (2004)

Fast-spiking interneuron	 6	 Wang and Buzsáki 

		  (1996)

Oriens–lacunosum molecular	 7	 Saraga et al. (2003) 

interneuron 		  with h-current from 

		  Acker et al. (2003)

Pyramidal neuron	 8	 Mainen and Sejnowski 

		  (1996)

Fast-spiking interneuron	 9	 Golomb et al. (2007)

Leaky integrate-and fire neuron 1	 10	 Dayan and Abbott (2001)

Leaky integrate-and fire neuron 2	 11	 Dayan and Abbott (2001)

Adaptive exponential integrate-	 12	 Brette and Gerstner 

and-fire		  (2005)

Source code for all included cell models can be found with the main GenNet 
source code (http://www.rtxi.org/topics/modules/). These code examples can 
be used as templates to create custom cell models for use with GenNet. The 
Section “Example Model Source Code” in the Supplementary Materials includes 
a complete code listing of an example model cell.
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>1, 2, 0.07, -60 

>1, 3, 0.1, -60 

# synapses going out from the third cell

>2, 0, 0.07, -80 

>2, 1, 0.07, -60 

>2, 2, 0.6, -80 

>2, 3, 0.1, -60 

# synapses going out from the fourth cell

>3, 0, 0.8, -80 

>3, 1, 0.8, -80 

>3, 2, 0.8, -80

Changing non-standard parameters
The simulator allows for changing many parameters not speci-
fied in the default file syntax. In order to do this, the name (e.g., 
the variable name in the code) of the parameter must be known. 
While changing any parameter of the model is supported, each 
parameter that is to be changed must be handled explicitly. This 
means that if support for the parameter of interest is not imple-
mented, then it cannot (yet) be changed using the Netfile. In 
order to change a supported parameter first identify the cell or 
synapse that is to be changed. To this line append a comma, the 
parameter’s name followed by an = (equals sign) and the desired 
parameter value. Currently, among the supported parameters 
are synaptic rise and decay time constants and the maximal 
conductance of the h-current in the model of O–LM cells (neu-
rons with type designator 2, see GenNet Software Design and 
Implementation Details).

Examples:
@2, 0.1, gh = 1.0  �# Change Ih to 1.0  

# for this simulation  
# overriding the default

>0, 1, 0.1, -80, psgrise = 0.1 �# set the  
# synaptic  
# rise time  
# to 0.1 ms

>1, 0, 0.1, 0, psgfall = 4  �# set the  
# synaptic fall  
# time to 4 ms

@0, 1, gk = 100 �# unsupported parameter  
# change, will produce an  
# error

@1, 0.1   # each cell if of type ‘1’, with  
          # a DC offset of 0.1

# Synapses

>0, 1, 0.2, -60 �# this synapse goes from  
# the 1st cell to the 2nd,  
# with a 

                �# maximal conductance  
# of 0.2 and a reversal  
# potential of -60

>1, 0, 0.2, -60  

An excitatory cell bi-directionally coupled with an inhibitory cell.
# Cells

@0, 0.4

@1, 0.1

# Synapses

>0, 1, 0.1, 0  �# an excitatory synapse from  
# the 1st to the 2nd cell  
# with a maximal

               �# conductance of 0.1 and  
# reversal potential of 0

>1, 0, 0.2, -60

Network containing two generic interneurons, one O–LM 
interneuron and one generic excitatory cell (a hybrid version of 
this network with a real O–LM cell is shown in Figure 7).
# Cells

@0, 0.9 

@1, 0.25 

@1, 0.25 

@2, 4.0 

# Synapses

# synapses going out from the first cell 

>0, 1, 0.03, 0 

>0, 2, 0.03, 0 

>0, 4, 0.4, 0 

# synapses going out from the second cell

>1, 0, 0.07, -80 

>1, 1, 0.6, -80 
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