
NEUROINFORMATICS

hybrid network experiments flexibly and easily. Second, GenNet
allows real-time simulation and perturbation of single model
neurons. An indirect benefit of incorporating our hybrid network
software into an established dynamic clamp system is the ease with
which one may adopt our approach once a functional dynamic
clamp system running RTXI has been established. As RTXI is cur-
rently functioning in dozens of laboratories, this mitigates the
added difficulty of successfully instituting a functional dynamic
clamp system, which is, in itself, a challenging task for many non-
technical, experimentally-focused research groups. In addition
to the application of GenNet to hybrid network experiments, we
describe the utility of this system as a stand-alone simulation pack-
age, facilitating the construction of neural models and tuning of
network parameters in autonomous simulations.

GenNet software design and implementation details
GenNet implementation emphasizes flexible design
General Network was designed to emphasize generality, in order to
allow a large variety of hybrid networks to be implemented while
maintaining simplicity and ease-of-use for end users. Simulated
neurons may be represented by any computational model com-
prised of deterministic or stochastic systems of algebraic and dif-
ferential equations. These models may be simple, as in the case
of the integrate-and-fire neuron, containing only one differential
equation, or complex Hodgkin Huxley-style models containing
equations describing a host of voltage-dependent conductances.
The particular details of each model neuron must be defined once
and are only constrained to include the most basic features (a volt-
age, the ability to spike, etc.). Any desired pattern of connectivity
may be specified in a straightforward manner. Synaptic connections
are assumed to be double-exponential AMPAergic or GABAergic
ionotropic conductance synapses, although synapse modules

Introduction
Hybrid networks entail the coupling, via dynamic clamp, of real
neurons with simulated counterparts. This experimental para-
digm represents one of the major uses of dynamic clamp (Prinz
et al., 2004; White et al., 2009; Economo et al., 2010) and has been
applied successfully by several groups to study the phasing and
synchronization of groups of cells (Sharp et al., 1993; Ulrich and
Huguenard, 1996; Debay et al., 2004; Netoff et al., 2005). Initial
hybrid network studies were used to inject timed, conductance-
based synaptic inputs into cells in vitro (Ulrich and Huguenard,
1996) and to analyze invertebrate circuits (Le Masson et al., 1995).
Later, more sophisticated approaches have incorporated detailed
biophysical representations of model cells (Hughes et al., 2008).
However, the technical difficulty of implementing hybrid networks
has been a barrier for widespread adoption.

In previous studies, implementations of hybrid networks often
followed ad hoc approaches, in which specific networks containing
the cell types and topology of interest were created in a static fash-
ion (Sorensen et al., 2004; Netoff et al., 2005; Olypher et al., 2006;
Grashow et al., 2010). While feasible for small networks containing
only a few neurons, this approach becomes cumbersome when one
wishes to study larger networks, permutations of a given network,
or networks whose connectivity may be represented in a statistical
manner. To address these limitations, we designed General Network
(GenNet), a software package that allows for the construction of
hybrid networks in a straightforward, reproducible, and general-
ized manner.

General Network is additional software that adds two important
features to the real time experimental interface (RTXI) dynamic
clamp system1. First, GenNet extends RTXI to enable it to perform

GenNet: a platform for hybrid network experiments

Tilman J. Kispersky1,2†, Michael N. Economo2,3†, Pratik Randeria4 and John A. White2,5*
1	 Program in Neuroscience, Boston University, Boston, MA, USA
2	 Brain Institute, University of Utah, Salt Lake City, UT, USA
3	 Department of Biomedical Engineering, Boston University, Boston, MA, USA
4	 Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
5	 Department of Bioengineering, University of Utah, Salt Lake City, UT, USA

We describe General Network (GenNet), a software plugin for the real time experimental interface
(RTXI) dynamic clamp system that allows for straightforward and flexible implementation of
hybrid network experiments. This extension to RTXI allows for hybrid networks that contain
an arbitrary number of simulated and real neurons, significantly improving upon previous
solutions that were limited, particularly by the number of cells supported. The benefits of this
system include the ability to rapidly and easily set up and perform scalable experiments with
hybrid networks and the ability to scan through ranges of parameters. We present instructions
for installing, running and using GenNet for hybrid network experiments and provide several
example uses of the system.

Keywords: RTXI, dynamic clamp, simulation, real-time Linux, computational neuroscience

Edited by:
Shiro Usui, RIKEN Brain Science
Institute, Japan

Reviewed by:
Shiro Usui, RIKEN Brain Science
Institute, Japan
Astrid A. Prinz, Emory University, USA

*Correspondence:
John A. White, Department of
Bioengineering, University of Utah, 20
South 2030 East, Room 108 BPRB,
Salt Lake City, UT 84112, USA.
e-mail: john.white@utah.edu
†Tilman J. Kispersky and Michael N.
Economo have contributed equally to
this work.

1http://www.rtxi.org/

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  1

Methods Article
published: 26 July 2011

doi: 10.3389/fninf.2011.00011

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00011/abstract
http://www.frontiersin.org/people/tilmankispersky/31627
http://www.frontiersin.org/people/economomichael/33004
http://www.frontiersin.org/people/pratikranderia/31636
http://www.frontiersin.org/people/johnwhite/2857
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard

may be straightforwardly extended to include NMDA synapses,
electrical synapses, or synapses with graded transmission. For a
given simulation, cell types and the connectivity between cells are
defined in a single configuration file using a simple syntax (see
Netfile Syntax in the Appendix). The numerical integration of dif-
ferential equations is achieved using fourth – order Runge Kutta or
forward Euler solvers, although other (fixed time-step) numerical
solvers may be added. These two numerical integration schemes
were selected because of their efficiency. The real-time constraint
of the dynamic clamp requires that all equations be solved in real
time, making the speed of computation a high priority.

GenNet source code architecture
General Network represents cells, synapses, and parameters as
C++ classes or class members (Figure 1). In the schematic shown,
C++ classes are represented as gray boxes with elements of the
boxes representing class members such as variables or functions.
Open arrows indicate a “contains” relationship. The Network
class contains instances of the Cell, Synapse, and Data Logger
classes. Solid arrows represent object-oriented inheritance rela-
tionships. Thus, individual cell classes all derive from a common

“Cell” superclass, which consolidates elements common to all
cells, including an applied current and functions for solving its
own differential equations. Properties unique to individual cell
models are set in the child class as appropriate. For example,
each cell could contain its own model for the sodium current
but all cells must have a voltage. In this manner, we were able to
simplify code design and allow for the creation of any number of
additional cell models. At the time of writing, approximately 12
different model cells have been created for and used with GenNet
(see Table A in the Appendix). Examples of how to implement
models cells are included with the GenNet source code2 and a
brief code example is given in the Section “Example Model Source
Code” in the Supplementary Material.

The inheritance structure of GenNet enables the reduction of
a large amount of redundant programming. Because all neurons
inherit the attributes of the Cell class, any feature one wishes to
include in multiple cell types may be specified a single time in
the Cell class. While these features will be adopted by all cells,

Pyramidal Cell
(model)

Basket Cell
(model)

O-LM Interneuron
(model)

Sodium Activation
Adaptation current
H-current

Sodium Activation Sodium Activation
Slow Potassium Current
H-current

Quadratic Integrate
and Fire (model)

Non-biophysical
Parameters

Cell
Di�erential Equation Solver

Applied Current
Spike Detector

Network
Cells
Synapses
Simulation Parameters

Synapse
Pre and Post Synaptic Cells
Synaptic Kinetics
Maximal Conductance
Reversal Potential

Data Logging

Data Logger
Data Bu�er

Output File Name
Simulation Parameters

Hybrid Network

Create GUI

Connect Network inputs
and outputs to DAQ card
channels

Stand-alone
Simulations
Command Line Wrapper

Real Cell
Override Di�erential
Equation Solver

Real-time
Simulations
RTXI Integration

RTXI Integration

Figure 1 | General Network software design diagram. Boxes represent
computer code class structures and arrows represent relationships between
classes. Solid arrows represent object-oriented inheritance relationships and
open arrows mean that an instance of the class pointed to is contained within the
class the arrows originates from. Each class lists some representative class
members (functions or variables) in small text. The Network class is at the core of
the simulator. It contains the list of cells and synapses that define the network as
well as data logging capabilities. The Cell class is a parent class to each individual
cell type. It contains functions and variables common to all cells. Individual cells

can be biophysical or non-biophysical if desired. The Network class is “wrapped”
by three helper classes that allow the core of GenNet to be used in three
different contexts. In one, GenNet is coupled to RTXI and physical hardware
channel inputs are routed between model cells and real cells in an experimental
preparation. In the other context, the simulator runs “stand-alone” in a purely
virtual mode. In the last, GenNet is embedded within RTXI but used for real-time,
single-cell simulations rather than hybrid network applications. All cells marked
(model) are computer model versions of the cells they represent. The “real cell”
is a placeholder class that serves to represent a living neuron within GenNet.

2http://www.rtxi.org/topics/modules/

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

simulations are useful to perform virtual current-clamp experi-
ments on model neurons. All stimulation protocols that exist in
RTXI may be used to probe the model as it is simulated in real time,
allowing the experimenter to gain intuition about a given model
rapidly, as one would in a real experiment with a biological neuron.
The stand-alone command line wrapper for GenNet contains the
necessary code to parse command line options allowing for the
specification of input Netfiles as well as various flags governing the
simulator’s behavior. The stand-alone mode of execution allows
for the running of simulations completely independent of RTXI.
All wrapper classes instantiate the Network class and instruct it
to begin the simulation.

As a result of its structure, GenNet is able to construct a full
representation of the specified network internally, preventing the
need to load individual cell models or manually set any connec-
tions. This feature reduces the possibility of errors, improves the
reproducibility of simulations and experiments and decreases
the time necessary to change parameters. Additionally, GenNet is
capable of acting as a stand-alone network simulator, independ-
ent of RTXI.

Netfiles uniquely and reproducibly describe a simulation
Our stated goal of simulating hybrid networks easily and with
general topology was facilitated by the introduction of configura-
tion files (termed “Netfiles”) specifying cell identities, connectiv-
ity patterns, and parameters controlling the attributes of all cells
and synapses. The use of separate Netfiles interpreted by the core
GenNet software in order to create an internal representation of
all cells, synapses, and parameters provided several advantages.
First, Netfiles could be automatically generated by other scripts.
This feature made it possible to describe network topologies in
terms of statistical features rather than specific parameter values.
Second, a Netfile uniquely and reproducibly describes a simulation
or hybrid network experiment, meaning that running GenNet with
the same Netfile as input would lead to analogous output both in
stand-alone mode and hybrid mode in which one or more in silico
neurons are replaced by biological counterparts. Finally, keeping
an accurate and reproducible record of simulations was reduced
to simply saving the Netfile along with corresponding data file for
each experiment.

Advanced Netfile syntax enables rapid parameter screening
At its core, the Netfile language allows for the description of a
set of cells and the connections between them. The language has
been extended to optionally permit the alteration of any parameter
used by those cells or synapses. Because the syntax of Netfiles only
necessitates the definition of basic parameters for each cell and
synapse, the number of possible parameters that might need to
be additionally defined is very large. To change any non-required
parameter from its default value, an optional syntax extension
allows any model parameter to be specified individually. This pro-
duces a Netfile syntax that remains clean and simple while allowing
a powerful set of parameter changes to be available for the user.
To use this feature, a cell or synapse declaration line is followed
with a key–value pair that determines which parameter is to be
changed and what value the parameter is to take (see Installing
and Running GenNet in the Appendix). Upon initialization, the

appropriate flags may be used to determine which features are
exploited by each cell type. For example, the Cell class includes
a description of an Ornstein–Uhlenbeck conductance process
(Uhlenbeck and Ornstein, 1930), commonly used to approximate
the post-synaptic effect of many irregularly firing pre-synaptic neu-
rons (Softky and Koch, 1993; Destexhe and Pare, 1999; Destexhe
et al., 2001, 2003). A substantial body of literature suggests that
neurons may behave differently when subjected to the same input
commonly received in an in vivo network, where cells receive large
numbers of incoherent synaptic inputs not present in slice prepara-
tions (Destexhe et al., 2003). This functionality may be inherited
with variable parameters by any neuron model. The ability for any
defined cell type to inherit features such as the Ornstein–Uhlenbeck
process greatly streamlines the cell definition process.

Another important function contained in the parent Cell class
and inherited by all cell models is the capability to detect action
potentials. After a cell has reported that a spike has occurred, this
is detected by the Network, which queries all cells for spikes on
each time step. The Network then determines which cells are post-
synaptically connected to the cell that fired and alerts the appropri-
ate Synapse objects. Connections between cells are implemented as
instances of the Synapse class which has, as its main components,
identifiers of the associated pre-synaptic and post-synaptic cells
along with several parameters governing its kinetics and reversal
potential. Internal to each Synapse object is an output variable that
represents the instantaneous value of conductance at that synapse.
This value continually evolves as the simulation progresses and
is updated to initiate a new synaptic waveform whenever a spike
occurs in its pre-synaptic partner.

The Network class is the core class of the simulator (Figure 1). It
contains the list of cells and synapses that define the network topol-
ogy and imports an external class that contains vital simulation
parameters that describe the length of the run and the integration
time step. Another core function contained in the Network class is
the ability to record data produced by the simulator.

At the highest level of the diagram (Figure 1) are three classes
that wrap the Network class to enable the three major execution
paradigms of GenNet. These three paradigms are (1) real-time
hybrid network experiments running on a dynamic clamp sys-
tem and involving simulated and biological neurons, (2) real-time
simulations of a single model neuron running on a dynamic clamp
system, and (3) stand-alone network simulations. These classes do
not themselves add any additional functionality to the simulator.
However, they provide interfaces for embedding GenNet’s core
within RTXI (for running in hybrid mode or performing real-time
single-cell simulations) or for running stand-alone simulations at
the Linux command line.

The hybrid network wrapper’s major function is to route syn-
aptic connections between real cells and simulated cells via the
appropriate channels on a data acquisition card. Additionally,
this class uses existing RTXI functionality to create a high-level
graphical user interface (GUI) window to control execution of the
hybrid network. The window contains a field used to specify the
name of the input Netfile (the user defined file that specifies all
network parameters, see below), as well as other high-level param-
eters controlling the simulation. This functionality is duplicated
when running real-time, single-neuron simulations. Real-time

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

a GUI that controls the experimental parameters of generated
hybrid networks within RTXI. These parameters control network
topology (by specifying the appropriate Netfile), the integration
rate of defined differential equations, experiment duration, and
the manner in which data files are generated. By default, recorded
data is restricted to the membrane voltage of each element of
the network for efficiency purposes, although other state vari-
ables may be saved as well with minor alterations of the underly-
ing code. To complete the integration of GenNet with RTXI, we
implemented a method by which users can specify the connec-
tivity between one or more real cells and the remaining in silico
neurons in the hybrid network. By convention, the type desig-
nator of a real (biological) cell, recorded using whole-cell patch
clamp, is negative one (−1, see description of Netfile Syntax in
the Appendix). A custom class was written to represent biological
cells which had the same inheritance pattern as each other Cell
class. The differential equation solver inherited from the parent
Cell class was subsequently overridden so as to perform no func-
tion. Because the voltage of a biological cell does not need to be
computed, but instead only read from a data acquisition system,
this change allowed GenNet to treat real cells in the same manner
as simulated counterparts.

When a Netfile containing a biological cell is parsed by GenNet,
the synapses impinging upon the real cell and synapses triggered by
it are stored by the software. Upon initialization, the wrapper class
associates hardware input and output channels with the voltage of,
and current intended for, each biological neuron (schematic shown
in Figure 2). At the beginning of every time step the voltage of the
real cell is read from its corresponding hardware channel. This value
is used during that time step in all voltage-dependent calculations.
At the end of each time step, when all synaptic currents have been
computed, the calculated net synaptic current onto that neuron is
injected by a current-clamp amplifier through the corresponding
analog output channel. In this manner, GenNet seamlessly inte-
grates the simulated network with any biological neurons. Hybrid
networks may be constructed with any number of experimentally-
recorded neurons; however, that number is practically limited by
the number of available hardware channels and the experimental
challenge of simultaneously obtaining intracellular recordings from
multiple cells.

Example GenNet applications
Stand-alone model networks
To illustrate the functionality of GenNet as a stand-alone simula-
tor, we constructed several networks to demonstrate the ability
of our software to simulate simple and complex networks and to
highlight several features of GenNet. We began by implementing
a two-cell model network with a single unidirectional synapse
providing excitatory or inhibitory input from one cell to the other
(Figure 3A). In this network, Cell 1 fires tonically (Figures 3B,C
top panels), and we measured the effect of tonic spiking on the
behavior of the post-synaptic cell when using either an excitatory
or an inhibitory synapse. If an excitatory synapse was used, Cell 2
also spiked tonically, synchronously with Cell 1 (Figure 3B, mid-
dle panel) in response to its excitatory synaptic input (Figure 3B,
bottom panel). Spiking in Cell 2 is tightly phase locked to Cell 1
as seen in the histogram of Cell 2 spike phases relative to Cell 1

Netfile is parsed, key–value pairs are loaded, and a user-specified
code block, which must be written in advance and associated with
the parameter name, is executed. Thus, for every parameter that one
would like to be adjustable, a small section of code specific to that
parameter must be added to the Netfile interpreter. This allows for
flexible, dynamically-changing definitions of any model parameter.

A common usage of the parameter changing feature is to run
simulations in stand-alone mode for a range of parameters to assess
the output of the network in a given parameter space. To facilitate
this sort of experiment, we added another syntax extension that
allows for the specification of a range of parameters. Sequential
simulations, each with a different value for the parameter, are then
executed. A wrapper script is used to identify and parse Netfile
instructions that specify parameter ranges. A series of Netfiles are
then generated dynamically and GenNet is invoked for each file
creating a distinct output data file. The script operates on the source
Netfile recursively, meaning that a multi-dimensional parameter
space may be probed. Using this method, an arbitrarily large series
of simulations iterating over any parameter space can be specified
easily. This functionality is only available when the software is run
in stand-alone mode. This is because in hybrid mode, GenNet loads
input files via the provided GUI, a process that cannot be automated
easily. Nevertheless, assessing the output of simulations over a large
parameter space can be useful to determine which values are most
appropriate for application in hybrid network experiments.

RTXI integration
Integration of the core GenNet simulator with RTXI was achieved
using the RTXI wrapper class designed to interface the simula-
tor with experimental recordings (Figure 2). This class generates

RTXI

mEC

CA1

CA3
DG

Hippocampal Slice

CA1 Pyramidal Cell

Simulated Cells

Voltage

Current

Simulated
Synapses

GenNet

Figure 2 | Schematic diagram of a hippocampal hybrid network. A set of
model cells simulated with GenNet within RTXI (shaded box on left) interacts
with a real pyramidal neuron being recorded with the patch-clamp technique in
a hippocampal slice (right). Dark circles represent individual model cells that
are connected via virtual synapses (dashed lines) to a real pyramidal neuron. A
patch-clamp pipette is used to record the voltage from this neuron in real time
which is then passed as input to GenNet (upper arrow). After a computational
time-step has elapsed, GenNet computes the synaptic current that must be
passed to the pyramidal neuron and RTXI sends this current into the cell via
the pipette (lower arrow). Multiple adjacent pyramidal neurons indicate that an
arbitrary number of real cells can be embedded into the hybrid network.
Abbreviations refer to the regions of the hippocampal formation: mEC, medial
entorhinal cortex; DG, dentate gyrus; CA3, cornu Ammonis 3; CA1: cornu
Ammonis 1.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

what activity patterns would emerge when the cells were coupled
with excitation versus inhibition. We first measured the instantane-
ous mean firing rate of neurons in the network with either con-
nectivity type (Figure 4B). When inhibitory synapses were used,
the average firing rate (computed as the number of spikes across
all cells in a small time window) was nearly constant, indicating
that, on average, the neurons in the network fired at approximately
the same rate over time. Consistent with this observation, a ras-
ter of spiking activity in the network connected via inhibition
shows unorganized and uniform spiking over time (Figure 4C).
Conversely, when the network was coupled with excitatory syn-
apses exclusively, a different pattern of spiking activity emerged.
The mean rate of spiking underwent rapid rises and falls during
the course of the simulation (Figure 4D) indicating a burst-like
pattern of spiking. Indeed, the raster of spike times confirms this
interpretation, showing that when excitatory coupling is used, all
cells in the network were activated simultaneously followed by
periods of quiescence.

firing (Figure 3D, top panel). If instead an inhibitory synapse was
used (Figure 3C), Cell 2 spiked only when its intrinsic excitabil-
ity could overcome the incoming hyperpolarizing synaptic input
(Figure 3C, bottom panel). Spike timing in Cell 2 was biased to
occur in the second half of the Cell 1 phase which allowed suf-
ficient time for inhibition to wear off (Figure 3D, bottom panel).
GenNet enabled the switch between these two simple networks
by making a single parameter change in the Netfile (see Netfile
Syntax in the Appendix).

The utility of GenNet is apparent when simple networks, like
the one discussed above, are scaled up in size to probe how simple
properties describing connectivity can affect complex emergent
network behaviors. We increased the size of the simple two-cell
network to contain 20 cells and utilized a random pattern of con-
nectivity instead of a single synapse (Figure 4A). Switching to this
alternate topology was achieved by simply listing additional cells in
the configuration Netfile and using a script to randomly generate
synapse definitions. We simulated this network and again asked

A

B C D

Figure 3 | General Network enables rapid parameter switching for
simulating diverse network types. (A) A sample feed-forward network is
implemented in GenNet to illustrate the capability of the software to quickly
and easily change fundamental properties. The sample network contains two
cells with noisy drive coupled either by feed-forward excitation (left) or
feed-forward inhibition (right). Cell 1 is made to fire tonically triggering
post-synaptic currents in Cell 2. (B) When excitatory coupling is used, the
spikes of Cell 2 (middle panel) closely track those of Cell 1 (top panel). The
excitatory synaptic currents (bottom panel) are sufficient to elicit a spike in Cell
2 each time a Cell 1 spikes. The synaptic current also illustrates the voltage
dependence of synaptic transmission. When a post-synaptic spike raises the
voltage of Cell 2 past the reversal potential of the synapse, the sign of the
synaptic current changes. Vertical gray dashed lines indicate the timing of
spikes in Cell 1. Horizontal gray dashed line indicates −50 mV. (C) The same

network can be run with the synapse switched to be inhibitory. In this case,
post-synaptic spiking in Cell 2 is irregular and does not track pre-synaptic
spiking (middle panel). The effect of pre-synaptic spikes (top panel) on the
post-synaptic voltage can be observed as small, hyperpolarizing deflections in
the voltage. Spiking in Cell 2 occurs when the natural evolution of the voltage
overcomes the periodic inhibition from Cell 1. As a result, firing in Cell 2 is
slower than when inputs were excitatory. (D) Spike time histograms (plotted as
Cell 2 spike times relative to the phase of Cell 1) show the distribution of spikes
in Cell 2 depending on the coupling type used. Excitation causes Cell 2 to
become entrained to Cell 1 (top panel) and Cell 2 spike occur in a small time
window only. Inhibition causes spiking in Cell 2 to be biased to occur in the
second half of the Cell 1 period when inhibition has had sufficient time to wear
off (bottom panel) but overall spikes are spread over a wider time window than
when excitation was used.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

along which an activity wave can propagate. When an activity wave
initiates in this network, it propagates along the edge of the ring,
but short cuts to distant neurons in the network when it reaches
one of the rewired connections, some of which connect to neurons
far from immediate neighbors (Figure 5E). A magnified view of
one of these episodes of activity shows that the network is now
activated in a more simultaneous manner as opposed to a sequential
manner (Figure 5F). Overall, this example highlights how GenNet’s
ability to rapidly change parameters in model networks helps build
an understanding of how those parameters can lead to different
qualitative network behaviors.

Lastly, we constructed a network in which one of the neurons
was designated as a “hub,” a neuron with a much higher degree
of connectivity than its peers. We simulated a hub network com-
prised of 20 neurons in which one cell was randomly selected to
provide diffuse inhibition to the remaining cells in the network
(Figure 6A). A single spike in the hub cell causes an inhibitory
response in the target cells and, as a result, a cessation of spiking
activity (Figure 6B). This simulation provides another example of
a biologically relevant topology (Bonifazi et al., 2009) and would
have been precluded by the limitations of other hybrid network
systems. The hub network topology is of particular interest because

The ability to rapidly switch between parameters is not only
confined to changing the polarity of synapses. Topological changes
to networks are similarly easy to achieve. We used GenNet to ask
how activity would propagate through a ring network and how this
propagation would change if the network included several long-
distance connections in addition to nearest-neighbor connections.
We again used a 20-neuron network connecting each neuron only
to its nearest neighbors (Figure 5A). Thus, each neuron had two
outgoing synapses and two incoming synapses. Excitatory coupling
was used throughout this set of simulations. When cells in the net-
work were tuned such that they would occasionally fire spontaneous
action potentials, a clear pattern of activity propagation emerged
(Figure 5B). A single spike would, after a small delay, induce spik-
ing in the neighboring neurons, which would in turn activate their
neighbors. This resulted in an activity wave propagating along the
edge of the ring. The sequential pattern of activation is visible if one
of the waves is magnified to show how adjacent cells are sequentially
activated in time (Figure 5C, arrows). The same network can be
modified by adding a small number of additional synapses to con-
nect two previously unconnected cells (Figure 5D). This change
has the effect of producing a network which is mostly connected
as a ring, but contains several synapses that provide alternate paths

A

C D

B

Figure 4 | Switching parameters in a larger network produces diverse
activity patterns. (A) An example of a larger network containing 20 neurons
coupled randomly. In the diagram, filled circles represent cells and lines
represent synapses. Synaptic direction is not indicated. The connection
probability between each cell pair is 20%. (B) The 20-cell network is simulated
with either excitatory or inhibitory synapses. While the total amount of spiking is
similar in both simulations, the instantaneous rate differs considerably between
the simulations. While the rate is nearly constant over time with inhibitory

synapses, the rate rapidly changes in a burst-like pattern with excitatory
synapses. (C) Rastergram of spiking in the network when inhibitory synapses
are used. Spike rate remains approximately constant over time. (D) Rastergram
of spiking when excitatory synapses are used. The network bursts periodically.
As single-neurons fire, they recruit their post-synaptic partners until every
member of the network is activated. After a brief period of activation, the cells
become refractory together and the network becomes nearly silent until the
cycle repeats.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  6

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hybrid networks
Although many neural simulators have been described in the litera-
ture that efficiently simulate the behavior of neural networks [e.g.,
BRIAN (Goodman, 2008)] and the voltage of spatially-extended

it lends itself well to integration with a biological preparation as
a single biological hub neuron could impact the remaining cells
in the network in a non-trivial manner, allowing one to effectively
investigate how intracellular properties facilitate this function.

A B C

FED

Figure 5 | Ring network shows how different network connectivity can
lead to different patterns of activity propagation. (A) A 20-cell ring network is
constructed in GenNet with each neuron coupled via excitation to its two
immediate neighbors. (B) Spontaneous activity propagates through this network
along the edge of the ring. A single spike triggers a wave of spikes that travels
around the ring in both directions. The window of time indicated by the gray box
is magnified in the (C). (C) Magnified view of a single wave. Arrows indicate the
bidirectional propagation of the activity wave from a single source. (D) A

different activity pattern emerges when the connectivity is changed to include a
few random connections along with connections to nearest neighbors. In this
case, activity waves have the opportunity to short cut the path along the edge
and can thus recruit the remaining cells in the network more quickly after the
initial spiking event. (F) Magnified view [gray box in (E)] of a single activity wave
shows how the propagating activity uses the long-distance connections to
activate remote portions of the ring more rapidly. This causes the cells to be
more simultaneously active as opposed to sequentially active.

A B

Figure 6 | Spikes in a hub neuron strongly influence spike times in the
remaining network. (A) A 20-cell network is constructed in GenNet with a
single-neuron (the hub neuron) synapsing onto the remaining cells in the
network with feed-forward inhibition. In such a network, a spike in the hub
neuron has the capability to profoundly influence the activity in the remaining
cells in the network. The hub neuron is drawn as the large circle with the
remaining cells represented as smaller circles. Synapses are drawn as lines

without indication of direction. (B) Each time the hub neuron spikes, the voltage
of all post-synaptic cells is averaged (solid line) indicating that a single inhibitory
pulse caused approximately a −4 mV hyperpolarization in the target cells (right
axis). The rastergram indicates the spiking activity of each neuron in the network
after a hub neuron spike has occurred and shows that the inhibitory input
imposes a delay of approximately 20 ms before spiking can resume again in the
target neurons.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  7

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hajos and Mody, 1997; Ali et al., 1999; Goldin et al., 2007). In
the circuit (Figure 7A), excitation is represented by closed trian-
gles and inhibition by open circles. The O–LM cell is shaded to
indicate that it is a real patch-clamped neuron while other circuit
members are simulated.

We tested whether the strength of the synapses originating
from O–LM synapses could control the relative strengths of the
theta and gamma rhythm by varying the maximal conductance
of the synapses from the O–LM to both basket interneurons and
the pyramidal neuron. We found that O–LM activity and con-
nectivity can indeed mediate switching between the rhythmic
states of a hippocampal microcircuit (Figure 7A,B). When the
O–LM interneuron was strongly coupled (Figure 7A), the circuit
(top left panel) displayed theta-frequency oscillations due to the
strong inhibition provided by the O–LM cell and the slow kinetics
inherent to the O–LM interneuron and the synapses originating
in this cell (bottom left panel shows raster of spiking activity and
right panel shows example voltage traces). Conversely, experi-
ments in which an O–LM cell was only weakly coupled to the
simulated network resulted in gamma frequency oscillations due
to rapid inhibitory feedback from the basket cell interneurons
(Figure 7B). Finally, to highlight the advantage of performing
such experiments with GenNet, we made use of the large body of
existing models for the RTXI dynamic clamp system by combining
our hybrid network experiment with a stochastic conductance
injection protocol in order to add noisy drive to the real O–LM
neuron (Figure 7C). When synapses were of intermediate strength
and O–LM cells received noisy drive, spike timing became more
variable and spikes occurred at frequencies intermediate between
gamma and theta (Figure 7C). The voltage fluctuations caused
by the stochastic conductance injection can be seen in the volt-
age trace of the O–LM neuron and the effect of this variability
in the O–LM output is clearly evident in the irregular spiking
of other cells in the network (Figure 7C). These experiments
represent a proof of concept of GenNet, as well as preliminary
data confirming the specific experimental hypothesis presented in
the preceding text. Further hybrid network experiments utilizing
these methods would be useful to probe the role of specific chan-
nel populations in O–LM neurons in generating specific classes
of rhythmic activity.

Discussion
General Network provides a flexible framework for hybrid net-
work experiments and network simulations, offering several
advantages over existing hybrid network systems. Foremost,
GenNet allows for the streamlined specification and construction
of hybrid networks without constraints on particular cell types
or topologies. Presently, GenNet includes approximately a dozen
model cell types ranging from the integrate-and-fire model to
more complicated, conductance-based model cells. Construction
of additional cell types is straightforward and may be achieved
using existing models as templates. The topology of small net-
works is easy to specify directly, and more complicated, larger
topologies may be specified as well using automated scripts writ-
ten in higher-level languages such as MATLAB and Python. The
size of the simulated components of hybrid networks is limited
only by the computing power available.

neurons [NEURON, GENESIS (Hines and Carnevale, 1997; Bower
and Beeman, 1998)], GenNet was primarily developed to facilitate
integration with dynamic clamp software for the construction of
hybrid networks. Similar tools exist for dynamic clamp systems
that do not operate in hard real-time and are specialized to work
with particular neuron types (Hughes et al., 2008). To our knowl-
edge, GenNet is the first such system that is not constrained by
predetermined network sizes, cell types, or topologies while con-
tinuing to operate in hard real time. It has the additional advantage
of operating within a dynamic clamp system that is widely used
in many laboratories (Iravanian and Christini, 2007; Bettencourt
et al., 2008; Grashow et al., 2010; Lin et al., 2010; Lobb and Paladini,
2010). To demonstrate this functionality, we present an example
hybrid network and describe how this approach may be used to
explore the effect of connectivity patterns and intrinsic neuronal
properties on the generation of population activity patterns in
groups of neurons.

The following hybrid network experiment was motivated by
previous studies (Gillies et al., 2002; Gloveli et al., 2005; Tort
et al., 2007) suggesting that the theta (4–12 Hz) and gamma
(30–80 Hz) rhythms may be generated by the interaction of hip-
pocampal pyramidal neurons in region CA1 with neighboring
basket and oriens–lacunosum moleculare (O–LM) interneu-
rons. These studies hypothesized that gamma oscillations were
preferentially generated during periods of strong functional
coupling between, and activity of, pyramidal cells and basket
interneurons while the theta rhythm arises through an inter-
action of the same pyramidal neurons with O–LM interneu-
rons. This hypothesis grew from several, independent lines of
research. In one study, Gloveli et al. (2005) used kainate to
induce rhythmic activity in hippocampal brain slices cut either
in the transverse or coronal planes. The authors reported that
the transverse slice generated gamma rhythms more readily, and
showed that morphologically reconstructed O–LM neurons had
axonal arborizations more likely to be cut in this orientation.
Conversely, they showed that the theta rhythm was preferentially
generated in the coronal slice in which the axonal projections
of O–LM neurons remained intact. Other studies (Pike et al.,
2000; Gillies et al., 2002; Goldin et al., 2007) have postulated
that O–LM neurons are well-suited for the generation of theta
rhythms due to the presence of HCN channels in these cells,
the relatively slow kinetics of synapses formed between these
cells and neighboring principal neurons, and their ability to
integrate inputs at theta frequencies preferentially. Associated
theoretical (Rotstein et al., 2005; Tort et al., 2007) work has
suggested a possible canonical microcircuit able to generate
theta and gamma rhythms based on these studies.

We used GenNet to directly test whether the degree of con-
nectedness of O–LM cells can influence the frequency preference
of a hippocampal microcircuit. We tested this by patch clamp-
ing onto an O–LM neuron and coupling it, using GenNet, to a
simulated network containing one pyramidal neuron and two
basket interneurons (Figure 7A) meant to mimic the local hip-
pocampal microcircuit (Gloveli et al., 2005; Rotstein et al., 2005;
Tort et al., 2007). The model neurons and patch-clamped O–LM
neuron were connected in an all-to-all fashion with appropri-
ate synaptic kinetics at each synapse (Wang and Buzsáki, 1996;

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  8

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

A

B

C

Figure 7 | Degree of coupling of O–LM cells determines network
frequency in hippocampal hybrid network. (A) Network diagram (top left)
showing layout of the simulated network and the integration of a real cell. The
single pyramidal cell and two basket cells are simulated in real-time within RTXI.
This reduced hippocampal network is connected to a real, patch-clamped O–LM
cell (shown with dark shading). Connectivity in the network is all-to-all with the
pyramidal cell being the only source of excitation in the network. Closed
triangles indicate excitation and open circles indicate inhibition. For synapses,
thick, solid lines indicate strong connections, normal lines indicate intermediate
connections and dotted lines indicate weak connections. In this experiment, the
outgoing connections from the O–LM cell are strong. Voltage traces of the
simulated network (right panel) show how the real and simulated neurons
influence each other via post-synaptic currents and that the network fires in a
sustained theta rhythm due to strong inhibition from the O–LM cell. A rasterplot
of spiking activity (bottom left panel) shows a longer window of ongoing activity.

The voltage traces correspond to the region of the rasterplot in the shaded box.
(B) Weak connectivity (dotted lines, top left panel) from the real O–LM cell to the
rest of the simulated network results in an ongoing gamma rhythm (spike raster
and voltage traces). Excitation from the pyramidal cells and subsequent rapid
feedback inhibition forms a gamma rhythm between the pyramidal cell and the
basket cells. Weak, theta-frequency inputs from the real O–LM cell are
insufficient to prevent gamma frequency firing. (C) Hybrid network experiments
performed with GenNet can be used in combination with existing RTXI
protocols. The same hybrid network is run with synapses of intermediate
strength (top left panel). In addition, RTXI is used to inject conductance noise
into the real O–LM cell. Noisy drive combined with intermediate synapses
results in a network in which O–LM spike times are variable and the network
has periods of faster spiking interspersed with periods of slower spiking (top
right panel and spike raster). The noisy voltage deflections in the O–LM cell due
to noise injection are visible in its voltage trace.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The core code, compiled in C++, is capable of solving doz-
ens to even hundreds of differential equations in real time on
common desktop PCs. Under these conditions, “real time” refers
to the constraint that the computations required to evolve the
simulation by a given amount of model simulation time must
always be completed before the corresponding amount of “wall
clock” time elapses. For example, simulating model equations for
100 ms of model time must require less than 100 ms of actual
computer CPU time. This requirement is independent of the
update rate of the dynamic clamp system; model equations are
solved at a specified time step which is decoupled from changes
in the specified RTXI period. At slower dynamic clamp update
rates, more iterations of model equations are computed during
each dynamic clamp period. To qualitatively illustrate the per-
formance of GenNet running on a single core Pentium 4 CPU
running with a 3.6-GHz clock rate (modest hardware by modern
standards), a network of 100 Izhikevich neurons (each containing
two differential equations; Izhikevich, 2004) connected by 500
randomly assigned synapses could be simulated in real-time when
being integrated at 10 kHz. To test the performance of a network
with a more biophysically realistic neuron model we replaced the
Izhikevitch model with a seven-equation model of a pyramidal
neuron (Mainen and Sejnowski, 1996). With this more complex
model the network could contain up to 15 neurons and 25 syn-
apses to meet real-time simulation constraints while running on
identical hardware and with identical simulation parameters.

The additional usage paradigms, stand-alone mode and sin-
gle-cell real-time mode, facilitate the investigation of network
and single-cell behaviors while not subject to the time constraints
inherent in experimental recordings. Stand-alone mode is useful
for evaluating preliminary networks as one may iterate through
sets of network and single-cell parameters in an automated fashion
without the requirement that equations must be solved in real-time.
The advanced Netfile syntax detailed above allows for straightfor-
ward scanning through a defined range of a given parameter, or
recursively through multiple parameters. Single-cell mode offers
the ability to perform real-time experiments on model cells in RTXI
as if they were biological cells recorded under current-clamp. This
functionality enables one to take advantage of the multitude of
stimulation and recording protocols included with RTXI to probe
model behavior and compare it with experimental data. These
modes substantially extend the functionality of GenNet, making
it a useful tool for a host of computational studies.

Although similar tool kits have been described (Hughes et al.,
2008), to our knowledge, no other system is capable of creating
hybrid networks with arbitrary cell types, topologies, and network
size. Additionally, integration with RTXI ensures that GenNet oper-
ates in hard real-time, a feature that ensures the accuracy of dynamic
clamp results by preventing system processes from interrupting the
solution of model equations (Bettencourt et al., 2008). With this
functionality GenNet provides experimenters unprecedented access
to the hybrid network technique.

Limitations of GenNet
Although the design of GenNet addresses many of the difficulties
encountered when creating hybrid networks, the current imple-
mentation of GenNet has limitations. GenNet was not optimized

for the efficient specification and simulation of multi-compart-
ment neural models. If models of this type are desired, equa-
tions governing the passive flow between compartments must
be specified in each model class by the end-user. As GenNet was
designed for simplicity and computational efficiency, we chose
not to focus on providing support for complicated morphologies,
as we felt this would unnecessarily complicate the definition of
network topology and further constrain the size of networks that
would be possible to simulate in real time. The ability to simu-
late spatially extended neural models in a stand-alone fashion is
already provided by simulation packages such as NEURON and
GENESIS (Hines and Carnevale, 1997; Bower and Beeman, 1998)
and other efforts have endeavored to make spatially extended
models compatible with dynamic clamp experiments (Hughes
et al., 2008; Cornelis and Coop, 2010). We are working to incor-
porate easier methods of adding compartmental simulations to
GenNet and RTXI.

Another current limitation of GenNet is the necessity that syn-
aptic inputs be represented by double-exponential waveforms. We
believe that synapses described in this fashion maintain a good
balance between computational efficiency and the desire to accu-
rately represent the kinetics of many chemical synapses. However,
electrical synapses and NMDA conductances are not currently
implemented by GenNet. Because of the modular design of the
GenNet system and its structural similarity to other RTXI plugins,
other synapse types may be incorporated in a straightforward man-
ner by most persons familiar with the plugin syntax of RTXI. This
extensibility may be important in the future for individuals desiring
to study model systems which employ graded synaptic transmis-
sion, such as the crab stomatogastric ganglion (Graubard et al.,
1980; Manor et al., 1997).

Challenges in studying large hybrid networks
Although hybrid network techniques represent a valuable
experimental tool, rigorous design and interpretation of such
experiments requires some care. For immersing neurons in large
hybrid networks, two constraints in particular should be kept in
mind. First, if the goal is to study how the biophysical properties
of recorded neurons affect network behavior, one should take
care to verify that the recorded biological neuron or neurons
can in principle have measurable effects on network activity,
either because the total number of network elements is small,
or because the biological elements have disproportionate influ-
ence on the rest of the network (Bonifazi et al., 2009). If feed-
back from the biological neurons is unimportant, an alternative
approach would be study the behavior of the recorded neuron(s)
in response to predefined inputs (Fernandez and White, 2008,
2009, 2010; Fernandez et al., 2011) instead of using the hybrid
network technique. Second, like any kind of large-scale neural
network simulation, large hybrid networks are prone to having
high-dimensional parameter spaces. This problem is more of
a concern for experiments than for pure simulations, because
time constraints are much more prominent in recordings. For
this reason, in expanding hybrid networks beyond simple cases
(Netoff et al., 2005), one must impose constraints upon network
organization that keep the parameter space manageable for real-
istic recording epochs.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  10

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

mental cell models using RTXI and
GENESIS. BMC Neurosci. 11, P68.
doi: 10.1186/1471-2202-11-S1-P68

Dayan, P., and Abbott, L. F. (2001).
T h e o r e t i c a l N e u r o s c i e n c e :
Computational and Mathematical
Modeling of Neural Systems,
Computat ional Neurosc ience .
Cambridge, MA: Massachusetts
Institute of Technology Press.

Debay, D., Wolfart, J., Le Franc, Y., Le
Masson, G., and Bal, T. (2004).
Exploring spike transfer through the
thalamus using hybrid artificial-bio-
logical neuronal networks. J. Physiol.
Paris 98, 540–558.

Destexhe, A., and Pare, D. (1999). Impact
of network activity on the integrative
properties of neocortical pyramidal
neurons in vivo. J. Neurophysiol. 81,
1531–1547.

Destexhe, A., Rudolph, M., Fellous, J. M.,
and Sejnowski, T. J. (2001). Fluctuating
synaptic conductances recreate in
vivo-like activity in neocortical neu-
rons. Neuroscience 107, 13–24.

Destexhe, A., Rudolph, M., and Pare, D.
(2003). The high-conductance state of
neocortical neurons in vivo. Nat. Rev.
Neurosci. 4, 739–751.

Dorval, A. D., Christini, D. J., and White,
J. A. (2001). Real-time linux dynamic
clamp: a fast and flexible way to
construct virtual ion channels in living
cells. Ann. Biomed. Eng. 29, 897–907.

References
Acker, C. D., Kopell, N., and White, J. A.

(2003). Synchronization of strongly
coupled excitatory neurons: relating
network behavior to biophysics. J.
Comput. Neurosci. 15, 71–90.

Ali, A. B., Bannister, A. P., and Thomson,
A. M. (1999). IPSPs elicited in CA1
pyramidal cells by putative basket cells
in slices of adult rat hippocampus. Eur.
J. Neurosci. 11, 1741–1753.

Bettencourt, J. C., Lillis, K. P., Stupin, L.
R., and White, J. A. (2008). Effects of
imperfect dynamic clamp: compu-
tational and experimental results. J.
Neurosci. Methods 169, 282–289.

Bonifazi, P., Goldin, M., Picardo, M. A.,
Jorquera, I., Cattani, A., Bianconi, G.,
Represa, A., Ben-Ari, Y., and Cossart,
R. (2009). GABAergic hub neurons
orchestrate synchrony in developing
hippocampal networks. Science 326,
1419–1424.

Bower, J. M., and Beeman, D. (1998). The
Book of GENESIS: Exploring Realistic
Neural Models with the GEneral
NEural SImulation System, 2nd Edn.
New York, NY: Springer Verlag.

Brette, R., and Gerstner, W. (2005).
Adaptive exponential integrate-and-
fire model as an effective description
of neuronal activity. J. Neurophysiol.
94, 3637–3642.

Cornelis, H., and Coop, A. (2010). Realtime
tuning and verification of compart-

Economo, M. N., Fernandez, F. R., and
White, J. A. (2010). Dynamic clamp:
alteration of response properties and
creation of virtual realities in neuro-
physiology. J. Neurosci. 30, 2407–2413.

Fernandez, F. R., Broicher, T., Truong, A.,
and White, J. A. (2011). Membrane
voltage fluctuations reduce spike fre-
quency adaptation and preserve out-
put gain in CA1 pyramidal neurons in
a high-conductance state. J. Neurosci.
31, 3880–3893.

Fernandez, F. R., and White, J. A. (2008).
Artificial synaptic conductances
reduce subthreshold oscillations and
periodic firing in stellate cells of the
entorhinal cortex. J. Neurosci. 28,
3790–3803.

Fernandez, F. R., and White, J. A. (2009).
Reduction of spike afterdepolariza-
tion by increased leak conductance
alters interspike interval variability. J.
Neurosci. 29, 973–986.

Fernandez, F. R., and White, J. A. (2010).
Gain control in CA1 pyramidal cells
using changes in somatic conductance.
J. Neurosci. 30, 230–241.

Gillies, M. J., Traub, R. D., LeBeau, F. E.
N., Davies, C. H., Gloveli, T., Buhl, E.
H., and Whittington, M. A. (2002).
A model of atropine-resistant theta
oscillations in rat hippocampal area
CA1. J. Physiol. 543, 779–793.

Gloveli, T., Dugladze, T., Rotstein, H. G.,
Traub, R. D., Monyer, H., Heinemann,

U., Whittington, M. A., and Kopell, N.
J. (2005). Orthogonal arrangement of
rhythm-generating microcircuits in
the hippocampus. Proc. Natl. Acad.
Sci. U.S.A. 102, 13295–13300.

Goldin, M., Epsztein, J., Jorquera, I.,
Represa, A., Ben-Ari, Y., Crépel, V.,
and Cossart, R. (2007). Synaptic kain-
ate receptors tune oriens-lacunosum
moleculare interneurons to operate
at theta frequency. J. Neurosci. 27,
9560–9572.

Golomb, D., Donner, K., Shacham, L.,
Shlosberg, D., Amitai, Y., and Hansel,
D. (2007). Mechanisms of firing pat-
terns in fast-spiking cortical interneu-
rons. PLoS Comput. Biol. 3, e156. doi:
10.1371/journal.pcbi.0030156

Goodman, D. (2008). Brian: a simulator
for spiking neural networks in Python.
Front. Neuroinform. 2:5. doi: 10.3389/
neuro.11.005.2008

Grashow, R., Brookings, T., and Marder,
E. (2010). Compensation for variable
intrinsic neuronal excitability by cir-
cuit-synaptic interactions. J. Neurosci.
30, 9145–9156.

Graubard, K., Raper, J. A., and Hartline,
D. K. (1980). Graded synaptic trans-
mission between spiking neurons.
Proc. Natl. Acad. Sci. U.S.A. 77,
3733–3735.

Hajos, N., and Mody, I. (1997). Synaptic
communication among hippocam-
pal interneurons: properties of

placed in a beaker of ice-cold, oxygenated artificial cerebrospinal
fluid (ACSF) containing (in mM): NaCl 125, KCl 2.5, NaH

2
PO

4

1.25, CaCl
2
 2, MgCl 1, NaHCO

3
 25, d-glucose 25. Slices were cut

at a thickness of 350 μm in the horizontal plane and incubated
at room temperature at least 30 min prior to use. All recordings
were performed in the CA1 region of the hippocampus. O–LM
cells were identified under differential interference contrast (DIC)
optics based on the location of the cell body in stratum oriens.
Glass pipettes were filled with solution that contained (in mM):
120 K-gluconate, 20 KCl, 10 HEPES, 0.2 EGTA, 2 MgCl

2
, 4 Na

2
-

ATP, 0.3 Tris-GTP, 7 diTris-phosphocreatine and 0.6% biocytin by
weight. The dynamic clamp system RTXI (see text footnote 1) was
used for all recordings in this study. Both excitatory and inhibitory
synaptic waveforms were modeled as double-exponential functions.
Kinetics for these synaptic waveforms were taken from the literature
(Maccaferri et al., 2000; Netoff et al., 2005; Goldin et al., 2007).

Acknowledgments
We would like to thank Jonathan Bettencourt for his technical
assistance and Dr. Tilman Broicher for helpful comments on the
manuscript. Support was provided by NIH grants R01 MH085387,
R01 MH085074, and R01 RR020115 (John A. White).

supplementary material
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/neuroinformatics/10.3389/
fninf.2011.00011/abstract

Methods
Programming
All software was programmed in C++ using standard Linux-based
tools. Code was compiled with version 4.x of GNU compiler collec-
tion3 all running on Ubuntu Linux4. GenNet has been successfully
compiled and run on Mac OS X and Microsoft Windows based oper-
ating systems using equivalent tools. Cygwin5 was used on Windows
to obtain the required software tools. Matlab (The Mathworks) was
used for data analysis. Our dynamic clamp system (Dorval et al., 2001;
Bettencourt et al., 2008; Lin et al., 2010) is based on a Linux kernel
extension, real-time application interface, which is freely available6.
Additional information regarding RTXI and free downloads of the
software can be found at the project website (see text footnote 1).

Experimental
All experimental data was collected with standard patch-clamp
methods described in detail elsewhere (Fernandez and White,
2008). All protocols were approved by the University of Utah
Institutional Animal Use and Care Committee (IACUC). Briefly,
brain slices were prepared from young (postnatal days 18–28),
Long–Evans rats of both genders. Rats were anesthetized using
isoflurane and decapitated. The brain was removed rapidly and

3http://gcc.gnu.org/
4http://www.ubuntu.com/
5http://www.cygwin.com/
6https://www.rtai.org/

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  11

http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00011/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00011/abstract
http://gcc.gnu.org/
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

thalamic neurons: a dynamic clamp
study. Proc. Natl. Acad. Sci. U.S.A. 93,
13245–13249.

Wang, X. J., and Buzsáki, G. (1996).
Gamma oscillation by synaptic inhi-
bition in a hippocampal interneu-
ronal network model. J. Neurosci. 16,
6402–6413.

White, J. A., Fernandez, F. R., Economo,
M. N., and Kispersky, T. J. (2009).
“Using ‘hard’ real-time dynamic
clamp to study cellular and network
mechanisms of synchronization in the
hippocampal formation,” in Dynamic-
Clamp (New York, NY: Springer
Verlag), 199–215.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential conflict
of interest.

Received: 19 April 2011; accepted: 12 July
2011; published online: 26 July 2011.
Citation: Kispersky TJ, Economo MN,
Randeria P and White JA (2011) GenNet:
a platform for hybrid network experiments.
Front. Neuroinform. 5:11. doi: 10.3389/
fninf.2011.00011
Copyright © 2011 Kispersky, Economo,
Randeria and White. This is an open-
access article subject to a non-exclusive
license between the authors and Frontiers
Media SA, which permits use, distribution
and reproduction in other forums, provided
the original authors and source are credited
and other Frontiers conditions are complied
with.

N. (2005). Slow and fast inhibition and
an H-current interact to create a theta
rhythm in a model of CA1 interneu-
ron network. J. Neurophysiol. 94,
1509–1518.

Saraga, F., Wu, C. P., Zhang, L., and
Skinner, F. K. (2003). Active dendrites
and spike propagation in multi-
compartment models of oriens-
lacunosum/moleculare hippocampal
interneurons. J. Physiol. 552, 673–689.

Sharp, A. A., O’Neil, M. B., Abbott, L. F.,
and Marder, E. (1993). The dynamic
clamp: artificial conductances in bio-
logical neurons. Trends Neurosci. 16,
389–394.

Softky, W., and Koch, C. (1993). The
highly irregular firing of cortical cells
is inconsistent with temporal integra-
tion of random EPSPs. J. Neurosci. 13,
334–350.

Sorensen, M., DeWeerth, S., Cymbalyuk,
G., and Calabrese, R. L. (2004). Using a
hybrid neural system to reveal regula-
tion of neuronal network activity by
an intrinsic current. J. Neurosci. 24,
5427–5438.

Tort, A. B. L., Rotstein, H. G., Dugladze,
T., Gloveli, T., and Kopell, N. J. (2007).
On the formation of gamma-coherent
cell assemblies by oriens lacunosum-
moleculare interneurons in the hip-
pocampus. Proc. Natl. Acad. Sci. U.S.A.
104, 13490–13495.

Uhlenbeck, G. E., and Ornstein, L. S.
(1930). On the theory of the Brownian
motion. Phys. Rev. 36, 823.

Ulrich, D., and Huguenard, J. R. (1996).
Gamma-aminobutyric acid type B
receptor-dependent burst-firing in

(2000). Cell surface domain specific
postsynaptic currents evoked by
identified GABAergic neurones in
rat hippocampus in vitro. J. Physiol.
524(Pt 1), 91–116.

Mainen, Z. F., and Sejnowski, T. J. (1996).
Influence of dendritic structure on fir-
ing pattern in model neocortical neu-
rons. Nature 382, 363–366.

Manor, Y., Nadim, F., Abbott, L. F., and
Marder, E. (1997). Temporal dynam-
ics of graded synaptic transmission in
the lobster stomatogastric ganglion. J.
Neurosci. 17, 5610–5621.

Netoff, T. I., Banks, M. I., Dorval, A. D.,
Acker, C. D., Haas, J. S., Kopell, N., and
White, J. A. (2005). Synchronization in
hybrid neuronal networks of the hip-
pocampal formation. J. Neurophysiol.
93, 1197–1208.

Olypher, A., Cymbalyuk, G., and
Calabrese, R. L. (2006). Hybrid sys-
tems analysis of the control of burst
duration by low-voltage-activated
calcium current in leech heart
interneurons. J. Neurophysiol. 96,
2857–2867.

Pike, F. G., Goddard, R. S., Suckling, J. M.,
Ganter, P., Kasthuri, N., and Paulsen,
O. (2000). Distinct frequency prefer-
ences of different types of rat hip-
pocampal neurones in response to
oscillatory input currents. J. Physiol.
529, 205–213.

Prinz, A. A., Abbott, L. F., and Marder, E.
(2004). The dynamic clamp comes of
age. Trends Neurosci. 27, 218–224.

Rotstein, H. G., Pervouchine, D. D., Acker,
C. D., Gillies, M. J., White, J. A., Buhl,
E. H., Whittington, M. A., and Kopell,

spontaneous IPSCs in morphologi-
cally identified cells. J. Neurosci. 17,
8427–8442.

Hines, M. L., and Carnevale, N. T. (1997).
The NEURON simulation environ-
ment. Neural. Comput. 9, 1179–1209.

Hughes, S. W., Lorincz, M., Cope, D. W.,
and Crunelli, V. (2008). NeuReal:
an interactive simulation system for
implementing artificial dendrites and
large hybrid networks. J. Neurosci.
Methods 169, 290–301.

Iravanian, S., and Christini, D. J. (2007).
Optical mapping system with real-time
control capability. Am. J. Physiol. Heart
Circ. Physiol. 293, H2605–H2611.

Izhikevich, E. M. (2004). Which model to
use for cortical spiking neurons? IEEE
Trans. Neural Netw. 15, 1063–1070.

Le Masson, G., Le Masson, S., and
Moulins, M. (1995). From conduct-
ances to neural network properties:
analysis of simple circuits using the
hybrid network method. Prog. Biophys.
Mol. Biol. 64, 201–220.

Lin, R. J., Bettencourt, J., Wha Ite, J.,
Christini, D. J., and Butera, R. J.
(2010). Real-time experiment inter-
face for biological control applications.
Conf. Proc. IEEE Eng. Med. Biol. Soc. 1,
4160–4163.

Lobb, C. J., and Paladini, C. A. (2010).
Application of a NMDA recep-
tor conductance in rat midbrain
dopaminergic neurons using the
dynamic clamp technique. J. Vis. Exp.
Available at: www.jove.com/details.
php?id=2275

Maccaferri, G., Roberts, J. D., Szucs, P.,
Cottingham, C. A., and Somogyi, P.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  12

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Appendix
Installing and running GenNet
Downloading and installing GenNet
General Network can be downloaded at the RTXI plugin website
(http://www.rtxi.org/topics/modules/). All GenNet code is down-
loaded as a single compressed zip archive. When this archive is
extracted, a single directory named “GenNet” results. Inside this
directory are four further directories. The directory called “Matlab
Scripts” contains example code for plotting and reading data files
as well as an example MATLAB script for automatically generating
a Netfile. The three remaining directories each correspond to one
method of running GenNet. Inside each directory is a separate
Makefile which can compile the code for the specified purpose.
“StandAlone Sim” contains the core GenNet code and allows run-
ning stand-alone simulations independent of RTXI. “RTSim” cre-
ates an RTXI model to run real-time simulations. Finally, “Hybrid
Network” will create an RTXI model to run GenNet in hybrid
network mode. To compile and install any of these versions of
GenNet execute the command “make” in either directory. For the
directories with RTXI integration, a subsequent command “make
install” must be issued as the root user. After compiling is complete,
GenNet is ready for use.

Running GenNet in stand-alone mode
Upon starting up, GenNet will produce a summary of the network
specified in the file, the parameters listed and the connections used.
The simulation begins automatically and progress is indicated in
the terminal. Once the run has completed, the simulation data are
written to a file and the program terminates. GenNet accepts one
command line argument (−r) which is used to set the numbering
of the output data file. This parameter takes an argument to specify
the number that is to be used in the name of the data file.

Running parameter sweeps with GenNet
In stand-alone mode, GenNet can be used to run many successive
simulations each with a different set of parameters. This can be
useful to determine the effect of a single parameter, or group of
parameters on network behavior as those parameters are varied
through the range of interest. Such sets of simulations are achieved
by wrapping GenNet with a Python script that invokes the program
repeatedly. A meta-syntax extension is used for these simulations.
Each parameter that is to be varied is replaced by a statement that
indicates the starting, ending, and increment values desired. This
determines the number of simulations that are to be run and the
wrapper script expands these sections, generates the appropriate
Netfile and invokes GenNet using that custom generated Netfile.
After each run, the output data file is intercepted by the script,
permanently stored and renamed so it can be later identified.
Additionally, the Netfile that was generated automatically is copied
as well so that any individual run can be recreated at a later time
if necessary. A meta-syntactic change was introduced to Netfiles
specifically for this purpose to designate a range of parameters
that is to be run. The script parses the Netfile looking for the exact
string “rangef(n1, n2, n3)” where the inside of the parenthesis are
a comma separated list of three numbers (n1, n2, n3) that repre-
sent the start, end and increment of the parameter value which
the “range” directive had replaced. This designation is parsed out

by the wrapper script and converted to regular Netfile syntax so
that GenNet can run normally with no changes. The “rangef”
desigator is permitted at any point in a Netfile. Thus the directive
“rangef(1,10,1)” would run 10 simulations with the parameter value
set as an integer sequence from 1 through 10.

GenNet output data
Output data files consist of the voltages of all cells in the network.
Files are stored in binary format. The data are arranged column wise
and each row (one time point) contains a single voltage value for
each cell in the network. Optionally, data files can contain synaptic
current information but it is not included by default to limit file
size. Basic MATLAB scripts to read in GenNet data are included.
GenNet outputs several data files for each run of the simulator.
The location of the output data directory is a parameter which
users may set in the simulation parameter file “RunParams.cpp.”
Files are named GenNet_Month_Day_Year_A1.dat. In this name
the month is the standard three letter month abbreviation and the
year is represented as a two digit number. The original Netfile along
with a comment and the number of columns stored in the data file
is saved into the “info” file which aids in analysis and reproducing
simulations. The “log” file is unused in the stand-alone version of
GenNet and only meaningful in the RTXI version where the log
file stores information about successive acquisitions of data for
one run of the model.

Running GenNet in hybrid mode
Running GenNet in hybrid mode requires a working installation
of RTXI. As described above, GenNet must then be compiled for
RTXI. A wrapper class is provided that serves to integrate the class
structure of GenNet into the framework of an RTXI plugin. When
compiled in this mode GenNet accepts an additional value for a
cell’s “type” parameter. If a cell’s type is negative (i.e., −1, −2…) then
it is assumed that the cell is intended to be real. All voltage calcula-
tions for this cell will be omitted and instead read from a hardware
channel that is set in the wrapper class. While the number of real
cells is not limited by GenNet, the design of the RTXI dynamic
clamp system fundamentally prevents the system from changing
the number of addressable hardware channels on the DAQ card at
run time. Thus, if a different number of real cells are desired, the
RTXI wrapper class must be recompiled to enable a different set
of hardware channels. Once compiled properly, the experimenter
must patch clamp the desired cell(s) and subsequently load a Netfile
which makes use of real cells.

Netfile syntax
We define the custom syntax for the input files to GenNet that define
the individual components of GenNet networks as well as how
those components are connected with one another. The syntax of
Netfiles was designed to be as simple as possible and tailored specifi-
cally toward the functionality of GenNet. While the file format of
Netfiles is unique to GenNet, ongoing efforts are underway in other
research groups to standardize the description of network and cell
models. The major organizing body of this effort, the INCF Task
Force (http://www.nineml.org/), has set forth a proposed standard
and advocates for the use of the standard regardless of the underly-
ing simulation technology that is used. Adoption of this standard

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  13

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The second value represents the applied current value for that
cell.

Examples:

@0, 1 # This is an Excitatory Cell with 1
 # applied current

@2, 0.1 # This is an Inhibitory Cell with
 # 0.1 applied current

Synapses
Synapse declarations make up the second section of a Netfile. Any
line beginning with the > character is the beginning of a synapse
declaration. A synapse declaration contains four parts:

(1)	Pre-synaptic cell index
(2)	Post-synaptic cell index
(3)	Maximal conductance of the synapse
(4)	Reversal potential of the Synapse

The index refers to the order of the list of cells that were created.
An index of 0 would mean the first cell that was declared (in the first
@ statement) an index of one would refer to the second cell and so on.

Examples:

>0, 1, 0.1, -60 # make a synapse from the
 # first to the second cell
 # with 0.1
 # maximal conductance and
 # a -60 mV reversal
 # potential
 # (eg. Shunting
 # inhibition)

>4, 3, 1, 0 # make a synapse from the
 # 5th to the 4th cell
 # declared with 1
 # maximal conductance and
 # 0 reversal potential
 # (eg. Excitation)

The units of all quantities declared in a Netfile depend on the
requisite manner in which each cell model is defined. For example,
if model quantities are defined in units of mV (for voltages), mS/cm2
(for conductances), μA/cm2 (for currents) and nF (for capacitance)
then quantities defined in Netfiles must have equivalent units.

Example networks
Below are some complete examples of common networks that are
intended to serve as a starting point for new users. Parameters
such as applied current, synaptic conductances and reversal
potentials are model dependent and representative example
values are used.

Two interneurons coupled by reciprocal inhibition.

Cells

@1, 0.1

might prove to be a powerful addition to GenNet in the future,
although at the present time, we feel that the simple Netfile syntax
described here provides a straightforward method for changing
network topologies that may be adopted with minimal effort.

The major components of a Netfile are as follows:

Comments
In a Netfile, any occurrence of the # character is considered to be
the beginning of a comment and any further characters are ignored
until the end of the line.

Examples:

This is a comment

@0, 1 # This is also a comment

Cells
Cell declarations make up the first section of a Netfile. Any line
beginning with the @ character is the beginning of a cell declara-
tion. A cell declaration contains two parts, a type designator and
a DC offset. The units of the DC offset depend on the implemen-
tation of the cell model being used. Frequently, this quantity is
given in microamperes per square centimeter of membrane (μA/
cm2), when conductances are defined in mS/cm2 and voltage is in
units of mV. The type designator refers to the model cell type that
is to be used. Numerous model variants are currently available.
Table A lists several of the types of models implemented and their
type designators.

Table A | Model neurons currently available in GenNet.

Cell type	 Designator	 Reference

Regular-spiking excitatory cell	 0	 Gloveli et al. (2005)

Generic inhibitory Cell	 1	 Gloveli et al. (2005)

Oriens–lacunosum moleculare	 2	 Saraga et al. (2003)

interneuron

Passive membrane	 3	

Izhikevich neuron (Tonic spiking)	 4	 Izhikevich (2004)

Izhikevich neuron (Class 1 excitable)	 5	 Izhikevich (2004)

Fast-spiking interneuron	 6	 Wang and Buzsáki

		 (1996)

Oriens–lacunosum molecular	 7	 Saraga et al. (2003)

interneuron 		 with h-current from

		 Acker et al. (2003)

Pyramidal neuron	 8	 Mainen and Sejnowski

		 (1996)

Fast-spiking interneuron	 9	 Golomb et al. (2007)

Leaky integrate-and fire neuron 1	 10	 Dayan and Abbott (2001)

Leaky integrate-and fire neuron 2	 11	 Dayan and Abbott (2001)

Adaptive exponential integrate-	 12	 Brette and Gerstner

and-fire		 (2005)

Source code for all included cell models can be found with the main GenNet
source code (http://www.rtxi.org/topics/modules/). These code examples can
be used as templates to create custom cell models for use with GenNet. The
Section “Example Model Source Code” in the Supplementary Materials includes
a complete code listing of an example model cell.

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  14

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

>1, 2, 0.07, -60

>1, 3, 0.1, -60

synapses going out from the third cell

>2, 0, 0.07, -80

>2, 1, 0.07, -60

>2, 2, 0.6, -80

>2, 3, 0.1, -60

synapses going out from the fourth cell

>3, 0, 0.8, -80

>3, 1, 0.8, -80

>3, 2, 0.8, -80

Changing non-standard parameters
The simulator allows for changing many parameters not speci-
fied in the default file syntax. In order to do this, the name (e.g.,
the variable name in the code) of the parameter must be known.
While changing any parameter of the model is supported, each
parameter that is to be changed must be handled explicitly. This
means that if support for the parameter of interest is not imple-
mented, then it cannot (yet) be changed using the Netfile. In
order to change a supported parameter first identify the cell or
synapse that is to be changed. To this line append a comma, the
parameter’s name followed by an = (equals sign) and the desired
parameter value. Currently, among the supported parameters
are synaptic rise and decay time constants and the maximal
conductance of the h-current in the model of O–LM cells (neu-
rons with type designator 2, see GenNet Software Design and
Implementation Details).

Examples:
@2, 0.1, gh = 1.0 �# Change Ih to 1.0

for this simulation
overriding the default

>0, 1, 0.1, -80, psgrise = 0.1 �# set the
synaptic
rise time
to 0.1 ms

>1, 0, 0.1, 0, psgfall = 4 �# set the
synaptic fall
time to 4 ms

@0, 1, gk = 100 �# unsupported parameter
change, will produce an
error

@1, 0.1 # each cell if of type ‘1’, with
 # a DC offset of 0.1

Synapses

>0, 1, 0.2, -60 �# this synapse goes from
the 1st cell to the 2nd,
with a

 �# maximal conductance
of 0.2 and a reversal
potential of -60

>1, 0, 0.2, -60

An excitatory cell bi-directionally coupled with an inhibitory cell.
Cells

@0, 0.4

@1, 0.1

Synapses

>0, 1, 0.1, 0 �# an excitatory synapse from
the 1st to the 2nd cell
with a maximal

 �# conductance of 0.1 and
reversal potential of 0

>1, 0, 0.2, -60

Network containing two generic interneurons, one O–LM
interneuron and one generic excitatory cell (a hybrid version of
this network with a real O–LM cell is shown in Figure 7).
Cells

@0, 0.9

@1, 0.25

@1, 0.25

@2, 4.0

Synapses

synapses going out from the first cell

>0, 1, 0.03, 0

>0, 2, 0.03, 0

>0, 4, 0.4, 0

synapses going out from the second cell

>1, 0, 0.07, -80

>1, 1, 0.6, -80

Kispersky et al.	 A novel hybrid network environment

Frontiers in Neuroinformatics	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 11  |  15

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	GenNet: a platform for hybrid network experiments
	Introduction
	GenNet software design and implementation details
	GenNet implementation emphasizes flexible design
	GenNet source code architecture
	Netfiles uniquely and reproducibly describe a simulation
	Advanced Netfile syntax enables rapid parameter screening
	RTXI integration

	Example GenNet applications
	Stand-alone model networks
	Hybrid networks

	Discussion
	Limitations of GenNet
	Challenges in studying large hybrid networks

	Methods
	Programming
	Experimental

	Acknowledgments
	supplementary material
	References
	Appendix
	Installing and running GenNet
	Downloading and installing GenNet
	Running GenNet in stand-alone mode
	Running parameter sweeps with GenNet
	GenNet output data
	Running GenNet in hybrid mode

	Netfile syntax
	Comments
	Cells
	Synapses
	Example networks
	Changing non-standard parameters

