
NEUROINFORMATICS

the reconstruction of the conditions or parameters under which a
certain experiment or analysis in the past has been performed. Often,
this information is stored in a non-standardized way in laboratory
journals, metadata files, or is hidden in the source code of software
tools. Evidently, providing a dataset with a complete set of metadata is
a tedious business and hardly possible. Nevertheless, the more infor-
mation can be retrieved easily, the more valuable the data are, and the
more easily and more often the data can be used. The attempt to start
recording metadata in a standardized way throughout the experiment
and analysis process seems a promising approach to ensure future
re-usability and availability of experimental data.

The problems mentioned above are neither new nor specific to
the neurosciences (Hey and Trefethen, 2003). Especially in the fields
of Genomics and Proteomics many efforts, and much progress,
have been made to organize the sharing of data (Gelbart et al., 1997;
Stoesser et al., 1997). The general approach is to define ontologies, or
controlled vocabularies, that specify the names of entities and their
relations. The open biomedical ontologies Foundry (OBO)4 collects
and coordinates ontologies in the biological domain. A downside of
such a “top-down” approach in which an authority defines a “stand-
ard,” i.e., the terms and respective contexts in which these may be used,
is not flexible and open enough and will inevitably lag behind the
ever-changing requirements due to the progress in science. Further,
this “standard” would need to be accepted by the community. We

1 IntroductIon
Data sharing in the neurosciences is the basis of every successful
collaboration. However, working with another scientist’s data is usu-
ally quite cumbersome because of a high diversity of data formats
and insufficient annotations. This diversity is a problem also faced
by the various platforms for data sharing and publication of raw
data that are being established1 (e.g., CARMEN, Fletcher et al., 2008;
CRCNS, Teeters et al., 2008; G-Node, Gardner et al., 2001a; Herz
et al., 2008). These initiatives are confronted with: (i) the vast variety
of data formats used in the neurosciences, (ii) the lack of common,
standardized ways in which data annotations are handled, and (iii)
the scientific individualism together with reluctance to subdue to
defined “standards.” The first point is not the scope of this paper and
has been addressed by other initiatives like Neuroshare2 or SignalML3
(Durka and Ircha, 2004). In this paper we deal with the last two
issues. We propose a format for metadata transfer that, on the one
hand, is free of a specific, complex metadata model but, on the other
hand, can be used in a standardized way to ensure interoperability.
Application of this format is by no means restricted to data shar-
ing. Rather, data annotation and metadata handling is an inevitable
part of everyday scientific work in the lab (Figure 1). For example,
almost every scientist knows the difficulties that can be involved in

A bottom-up approach to data annotation in neurophysiology

Jan Grewe1,2*, Thomas Wachtler1,3 and Jan Benda1,2

1 Department Biology II, Ludwig-Maximilians Universität München, Martinsried, Germany
2 Bernstein Center for Computational Neuroscience Munich, Munich, Germany
3 German Neuroinformatics Node, Ludwig-Maximilians Universität München, Martinsried, Germany

Metadata providing information about the stimulus, data acquisition, and experimental conditions
are indispensable for the analysis and management of experimental data within a lab. However,
only rarely are metadata available in a structured, comprehensive, and machine-readable form.
This poses a severe problem for finding and retrieving data, both in the laboratory and on the
various emerging public data bases. Here, we propose a simple format, the “open metaData
Markup Language” (odML), for collecting and exchanging metadata in an automated, computer-
based fashion. In odML arbitrary metadata information is stored as extended key–value pairs
in a hierarchical structure. Central to odML is a clear separation of format and content, i.e.,
neither keys nor values are defined by the format. This makes odML flexible enough for storing
all available metadata instantly without the necessity to submit new keys to an ontology or
controlled terminology. Common standard keys can be defined in odML-terminologies for
guaranteeing interoperability. We started to define such terminologies for neurophysiological
data, but aim at a community driven extension and refinement of the proposed definitions. By
customized terminologies that map to these standard terminologies, metadata can be named and
organized as required or preferred without softening the standard. Together with the respective
libraries provided for common programming languages, the odML format can be integrated
into the laboratory workflow, facilitating automated collection of metadata information where
it becomes available. The flexibility of odML also encourages a community driven collection
and definition of terms used for annotating data in the neurosciences.

Keywords: metadata, ontology, neuroscience, datamodel, datasharing

Edited by:
Ulla Ruotsalainen, Tampere University
of Technology, Finland

Reviewed by:
Friedrich T. Sommer, University of
California at Berkeley, USA
Jari Peltonen, Tampere University of
Technology, Finland

*Correspondence:
Jan Grewe, Department Biology II,
Ludwig-Maximilians Universität
München, Großhaderner Str. 2, 82152
Martinsried, Germany.
e-mail: grewe@bio.lmu.de

1www.neurodatabase.org
2www.neuroshare.org
3www.signalml.org 4www.obofoundry.org

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 1

Original research article
published: 30 August 2011

doi: 10.3389/fninf.2011.00016

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00016/abstract
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/people/jangrewe/13464
http://www.frontiersin.org/people/thomaswachtler/13465
http://www.frontiersin.org/people/janbenda/11830
www.neurodatabase.org
www.neuroshare.org
www.signalml.org
www.obofoundry.org

instead propose a “bottom-up” approach aiming primarily at the sci-
entific work in the laboratories. Our goal is the convenient, semi, or
fully automated handling of metadata that can be embedded into the
laboratory workflow and is thus of direct use for the scientist. At the
same time we want to foster interoperability by providing a possibility
to apply “standards” enabling data exchange between tools or via data
sharing platforms. Thus, we aim at (i) a format in which arbitrary
information can be stored, and (ii) mechanisms to apply conventions
regarding the content. The scope of these conventions may vary from
local, laboratory needs, to a global community scope. Accordingly, our
approach has two parts. The first is the rather simple open metadata
Markup Language (odML) format or (meta)data model: In odML so
called Properties are grouped in Sections resulting in a highly flexible
hierarchical tree structure. This structure is to some extent similar to
the way data annotations can be handled in the HDF55 data format.
HDF5 also contains a hierarchical structure of nodes which can con-
tain data or attributes for data annotation. Nodes and attributes are
similar to our Sections and Properties, but there are distinct differences
between these formats which are discussed below (see Section 5). The
second component of our approach is to provide terminologies for
definitions of Properties and Sections. The terminologies can be used
to guarantee interoperability between tools. At the same time it is pos-
sible to immediately provide additional definitions for new Properties
and Sections. Thus, odML offers the required flexibility and freedom to
store any information that is necessary to describe a given dataset while
supporting interoperability by using it in combination with specific
terminologies. Given its acceptance, this “bottom-up” approach can
lead to a community driven definition of global terminologies and
general models of metadata in Neurosciences.

1.1 What are metadata?
In the context of this paper we understand metadata as that informa-
tion that describes the conditions under which a certain dataset has
been recorded. This includes descriptions of environmental param-
eters like temperature, humidity, date, and time, etc., descriptions
of the stimulus and recording protocols, settings of the used hard-
ware and software, information about the experimental subject, and
much more. Storing metadata in as much detail as possible allows
replication of an experiment or the reconstruction of an analysis and
thus enables reproducing results. It eases the re-use of once-acquired
data and thus can increase the outcome of scientific efforts. Our goal
is to provide the means to conveniently and automatically capture
as many as possible of what we call the hard metadata, i.e., those
parameters that can be directly measured (temperature, recording
date, and time, etc.) or are known in advance (e.g., stimulus param-
eters). The more descriptive, soft metadata (e.g., the experimental
rationale, context information, etc.) provide important background
information but are much harder to capture automatically and, even
if present, can hardly replace a discussion with the experimenter in
person. In the interest of data sharing and reproducibility, datasets
should be annotated with as much of the hard metadata as possible.

Annotating data may seem a costly process that requires the sci-
entist to manually record a large number of values. However, most
hard metadata are directly available and could thus be automatically
recorded during data acquisition, with minimal manual interven-
tion. Further information is typically derived during subsequent
processing steps, for example analyses, etc. Ideally, all components of
the data analysis tool-chain, from data acquisition, data analysis, and
data management to data sharing, should be able to work hand in
hand and exchange data and metadata in an automated fashion. The
goal of odML is to provide the basic components for this automation.

Data Analysis

Data Recording Data Management

Data Analysis

Data Analysis

∫log 2 1+
S (f)
N (f))dfC=

)

Lab

Collaborator

World

Data Storage/Sharing∫log 2 1+
S (f)
N (f))dfC=

)

∫log 2 1+
S (f)
N (f))dfC=

)

Figure 1 | The flow of data and metadata in sciences. The basis of this
“food chain,” on top, is the laboratory in which the data is originally recorded,
stored, managed and analyzed. Here metadata are important in many respects.
Data management uses them to categorize and organize the data, during data
analysis stimulus information is required and further, derived, data characteristics

are added which again may be useful for querying data, etc. Data may further be
shared with collaborators for discussion and re-evaluation. Eventually, data may
be made available via public databases like the G-Node (Herz et al., 2008). On all
levels data exchange between people as well as computer programs requires a
detailed annotation of the raw data with metadata.

5www.hdfgroup.org

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
www.hdfgroup.org

also have subsections. Thus, a tree-like structure can be built up
by nesting Sections. The RootSection, finally, constitutes the root of
the tree that embraces a set of Sections. This kind of tree-like data
model is rather generic and thus offers the required flexibility but
also has some disadvantages (see Section 5).

2.2.2 Elements
In the following we will describe the various elements with respect
to their purposes.

(1) Storing different types of metadata. Many metadata are
numbers and can be specified by simple key–value pairs like
“stimulusRepetitions = 10.” Others contain a unit (e.g., “tem-
perature = 26°C”) or are measured values that comprise some
uncertainty (e.g., “resting-potential = −58.0 ± 1.5 mV”). Other
metadata may be purely textual or be even binary content (e.g.,
a microscopic picture of the recorded cell). Accordingly, the
Property corresponds to a key–value pair with a name (the key)
and the Value with according value-related information as the
unit, uncertainty, and data-type. There is no strict restriction on
the types, but we suggest the usage of the standard types as listed
in Table A5 in appendix. The type allows tools to adapt their
interfaces and allows performing consistency checks (see below
and Table A5 in Appendix for more information). The Section
groups all these metadata items (i.e., Properties). It is addres-
sed by its name and, more importantly, defines a type element
which indicates what kind of information can be found in it. For
example, a Section describing a stimulus would be of the “stimu-
lus” type (see “odML-terminologies” for more information).

(2) Interoperability and automation. These requirements
demand more information about the content and a stan-
dardization we want to achieve by the terminologies (see
below). For such purposes it is necessary to provide a defini-
tion for Sections and Properties. These can be omitted if the
according definition of a Section or Property is provided by a
terminology. To state where the underlying terminology can
be found, the Section has the repository element. Sometimes
Values have definitions, for example when describing the type
of a recorded cell and linking to a definition in an ontology.

(3) Customization. Different labs or communities in the neu-
rosciences use different names to address the same entities.
Interoperability between these can only be achieved if an agre-
ement on the terms to use could be reached or if the standard
terms can be addressed with synonyms. Synonyms are introdu-
ced to odML by defining a mapping from, e.g., a custom Property
to definitions made in a common terminology. Mappings can
be provided for Sections and Properties. The odML-libraries
can apply the mapping and convert the custom metadata to
the standard terminologies so that tools which can handle the
terms defined in the standard terminologies can work on the
metadata.

(4) Miscellaneous. Finally, there are a number of elements that
have been introduced to help working with the metadata. In the
context of data management it is required to uniquely identify
entities that are described by a Section’s or Property’s Value. For
example a “subject” Section may refer to an entry in the (labora-
tory) database which has a certain id, primary key, etc. This infor-

2 data model
2.1 tWo use cases
The basic idea of the odML approach is to combine a rather general
data model with domain specific terminologies. Independence of for-
mat and content offers a maximum of flexibility. The terminologies
introduce the basis for standardization that, however, can be ignored
or extended when necessary. For example, if the terminology does not
define a term that is needed for annotation, it should be possible to
instantaneously add new terms with their respective definitions. The
odML model is designed for both use cases: (i) exchanging metadata
and (ii) definition of terminologies. Hence, the format contains more
elements than are needed for either case alone. Using the same format
for both the actual content and definitions (the terminologies) may
seem confusing at first, but in our view is the key for granting immedi-
ate extensibility required to satisfy the ever-changing scientific needs.

2.2 model descrIptIon
The elements of the odML metadata model are derived from the
requirements: We need a metadata model that offers a flexible struc-
ture, can take various kinds of metadata, offers the means to ensure
interoperability, and can be used for carrying metadata and for
defining terminologies, while respecting conventions of the various
scientific communities through customization. Figure 2 shows the
data model as an entity-relation diagram. A tabular description
can be found in the Appendix. We will start the description of the
model with a coarse description of the structure and then go into
more detail of the defined elements.

2.2.1 Entities and their relations
The Property is the core entity of the odML data model Figure 2.
Roughly speaking, it is an extended key–value pair, like “stimu-
lusRepetitions = 10.” A Property contains one or multiple Values.
To meaningfully organize growing amounts of metadata and to
allow the same Property name to be used several times, Properties
are logically grouped in Sections. Besides Properties, a Section can

author
date
version
repository

RootSection

name
type

de�nition
repository
mapping
link
include

Section

Property
name
de�nition
mapping
dependency
dependencyValue

Value
value
uncertainty
unit
type
de�nition
reference
�lename

(0...n)
(1...n)

reference

encoder
checksum

Figure 2 | Open metaData Markup Language entity-relation diagram.
The odML model is a tree structure of Sections and Properties. Connecting
lines and “crow’s feet” indicate the relationship between the entities. For
example: a Section can contain 0 to many (n) Properties which in turn must
have at least 1 Value. The recursive connection of the Section indicates that
there can be 0 to many subsections building the tree. All is embraced by a
RootSection that contains some document-related elements. All elements
listed in the different entities may at maximum occur once.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

terminologies that are needed to annotate data from electrophysi-
ological recordings6. These cover those parts of the Dublin Core7 that
apply for annotation of neurophysiological data and also includes the
definitions suggested by the CARMEN consortium (Gibson et al.,
2008b). Compatibility with terminologies established by existing data
sharing initiatives (Bowden and Dubach, 2003; Gardner et al., 2008;
Gibson et al., 2008a) gives the possibility to retrieve the respective
metadata items from an odML file when data are contributed. In
addition, odML files can contain much more metadata that will not
be lost if the odML file is made available with the data.

The rather unconstrained approach proposed here could be
valuable in refining and adapting these standards through automa-
tized matching with the terminologies used in the community. All
terminologies described here are available on the odML homepage
(see text footnote 6). The terminologies will never be complete and
many more Properties and Sections can and should be specified as
needed. Extension of the terminologies is necessary and has to be
driven by the scientific community. The version of a terminology
is part of the URL and is provided in the terminology RootSection.
Within one version Properties and Sections may be added, but defi-
nitions will not be altered.

In the following paragraphs selected terminologies will be intro-
duced to point out some conceptual aspects. A list with all currently
defined section types can be found in the appendix (Table A6 in
Appendix). Generally, electrophysiological data are recorded from
a certain preparation of a subject by an experimenter in a recording
session, using an experimental setup consisting of various hard-
ware components with specific settings, and presenting defined
stimuli. Accordingly, respective terminologies to describe these
experimental conditions are needed. The description provided
by these terminologies is much more detailed than in most cases
needed for data sharing. However, odML is intended to be also
of use for metadata management in the laboratory, where all this
information should be kept available. The following descriptions
start with the “Dataset” all other metadata are referring to. It is
then briefly illustrated how the used hardware items and their
respective settings as well as stimuli can be described using odML.

3.1.1 Dataset terminology
The Dataset terminology is a single Section of the “dataset”-type. It
defines properties that can be used to provide general information
about a recorded dataset (Table 1). The name of the Section identifies
this particular dataset. Here a dataset is understood as a set of files
that belong together, i.e., have been recorded in the same recording
session. The “File” Property is of special interest. It occurs twice: (i)
with the data type “URL” it can provide the location of a file associ-
ated with this dataset and (ii) with the data type “binary” the file
content itself can be included in the metadata. Even though odML is
meant to carry data about data, it is nevertheless possible to include
binary content directly into an odML file. In case binary content is
included, the filename element can provide a file name that should
be used when extracting the data from the odML file. Generally, we
recommend not to include the content of a file but to use the cor-
responding URL property instead. There can be several files related

mation should be provided with the reference element of Values
and Sections. Besides numerical or textual metadata, including
binary content like the picture of a recorded cell could be neces-
sary. Binary data can be included in two different ways: (i) in
form of an url of the file location or, (ii) directly by including the
binary content. In the latter case one can use the Value’s filename
element to note the file name to be used when writing the binary
content to disk. When binary content is included use the Value’s
encoder element to state the encoder used. The checksum ele-
ment takes the checksum information to verify a file’s integrity. A
checksum should be given in the format: “algorithm$checksum”
(e.g., “crc32$b84892a2” for a checksum calculated with a “crc”
algorithm applying a 32-bit polynom). The Property further defi-
nes the dependency and dependencyValue elements to allow con-
tent validation or the adaptation of tools. With the dependency
it can be stated that this Property is only meaningful if also the
dependency is present. dependencyValue further restricts this in a
way that the required Property should assume a certain value.

The Section defines two further elements, link and include. These
are related and are introduced to allow inheritance and to distribute
information across multiple files, respectively (see “relations outside
the hierarchy” for more information).

The encapsulating RootSection contains elements to provide
information about the whole document: these are author, date,
version, and repository. The repository given in the RootSection
defines a default repository valid for the whole document unless
locally redefined.

3 oDml-termInologIes
The odML metadata model is so general that arbitrary content can
be exchanged or stored. In this form it could be used locally in a
single lab or by an individual user. However, to achieve interoper-
ability and allow sharing of metadata, standards defining property-
names and section types are needed. The odML-terminologies are
meant as a starting point for such standards.

An odML-terminology is specified by an odML file that provides
definitions of Sections and Properties. Usually, there are separate ter-
minologies for each defined Section type and provide the names,
definitions, units, and data types of Properties and Values. All of this
information can be overridden by the user, if necessary. The existence
of a possibly large number of terminologies and contained terms does
not imply that all these terms must be specified in an actual metadata
file. The odML approach never requires any information to be pro-
vided by the user. Thus, all terms are suggestions that should be used
when appropriate, but are not mandatory (see “Using odML” below).

3.1 termInologIes for neurophysIology
Ideally, a metadata terminology should, as much as possible, be in
agreement with existing terminologies and ontologies (Gardner
et al., 2001b; Bug et al., 2008; Gibson et al., 2008a; Taylor et al., 2008;
Frishkoff et al., 2009). However, these standardized sets will often be
insufficient to fully describe the metadata for a given experiment. In
particular, terminologies for the field of neurophysiology are cur-
rently still at a developmental stage (Gardner et al., 2008; Gibson et al.,
2008a). To encourage usage of standardized terminologies from the
very start of data and metadata collection, we started to set up several

6www.g-node.org/odml
7www.dublincore.org

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
www.g-node.org/odml
www.dublincore.org

can infer from the type that the described entity is a hardware
item. This does not imply that specialized section types inherit
all Properties of the parent type. The Section name could be any
identifying name that is used to uniquely refer to the specific item.

The terminology shown in Table 2 lists Properties that can be
used to describe an amplifier. Most of the defined Properties are self-
explanatory. A special feature is seen with the “SwitchingFrequency”
and the “DutyCycle” properties. They define a “dependency” and a
“dependencyValue,” indicating that they are only meaningful if the
specified dependency property (here: “OperationMode”) assumes
a specific value (here: “Discontinuous”). Tools using the metadata
can make use of the dependency information for consistency checks
or to adapt a GUI to offer appropriate values and properties.

When describing hardware items we distinguish the proper-
ties of the item from its actual settings. Properties describe the
fixed characteristics of a hardware component (e.g., the “Model,”
“Manufacturer,” or the maximum possible sampling rate of an
analog input “AIMaxSampleRate,” etc.), whereas settings are the
actual settings of adjustable features of the device (e.g., the currently
used sampling rate “AISampleRate”). Accordingly there are two
terminologies containing HardwareProperties or HardwareSettings
typed sections. These do not define any Properties of their own
but are meant as containers for respective hardware Sections. This
separation allows the same name (e.g., “LowpassCutoff”) to be
used as a hardware property for an amplifier with a fixed filter as
well as a setting for one with an adjustable filter. Using the same
Section names in both contexts (properties and settings) relates
them to the same entity (Figure 3). The separation is not required
but we consider it helpful when describing setups and hardware.

to the same dataset. In this case the file Property would simply have
several values. The Value definition can then be used to specify what
the files contain. Again, we do not aim at providing a description of
the format the data is saved in. This is a challenge on its own (see, e.g.,
Durka and Ircha, 2004) and should rather be part of the data file itself.

3.1.2 Hardware terminologies
The hardware terminologies provide Section and Property defini-
tions for describing hardware that was part of the experimental
setup. There is a range of hardware related terminologies to describe
specific hardware items. All defined hardware terminologies are
specialized versions of the “hardware” type. The type of a Section
to describe an amplifier is then “hardware/amplifier.” With this
construct a reading tool that may have no concept of an amplifier

Table 1 | Dataset terminology.

Name Definition Type

Experimenter The person who recorded the data Person

Start The point in time the recording began Datetime

End The point in time the recording ended Datetime

Comment A comment about the dataset Text

File The location (URL) of files of this dataset URL

File The data file itself Binary

Quality An estimate of the dataset quality String

List of properties defined in the dataset terminology describing a set of recorded
data. The respective section containing these properties is of the “dataset” type.

Table 2 | Amplifier terminology.

Name Description Data type Dependency Dependency value

Model The model name of this hardware item String – –

Manufacturer The manufacturer of this hardware item String – –

Serial no The device serial number String – –

Inventory no The inventory number of the described hardware item String – –

Owner An identifier of the owner of this hardware item String – –

Amplifier type The type of amplifier. E.g., extracellular amplifier, intracellular amplifier, etc. String – –

Measurement type The type of measurement performed. For example the membrane voltage

was measured or the cell was current clamped

String – –

Operation mode The operation mode the amplifier was in. The operation mode can be

“continuous” or “discontinuous” for bridge and switched amplifiers,

respectively

String – –

Switching frequency The switching frequency of the amplifier Float Operation mode Discontinuous

Duty cycle The duty cycle of the current injections in discontinuous/switched mode.

Note: The duty cycle refers to the setting of a switched amplifier and is not

to be confused with the duty cycle used to describe a stimulus protocol

for square wave current injections

Float Operation mode Discontinuous

Gain The gain of the amplifier Float – –

High pass cutoff The high pass-filter cutoff-frequency Float – –

Low pass cutoff The low pass-filter cutoff-frequency Float – –

List of properties that can be used to define the settings and properties of an amplifier used in electrophysiological setups (Section type: “hardware/amplifier”).

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

3.1.3 Stimulus terminologies
The stimulus that was used to evoke the recorded neuronal response
is a highly important piece of information for which, so far, there
is no standard way of description. This paragraph briefly illustrates
how the often quite complex information about the stimulus can
be stored in an odML metadata file. Stimuli are described by a
“stimulus”-type Section and its subsections. Figure 4 shows how
such a description might look like. This visual stimulus (trace on
top of Figure 4) is a combination of three components. A DC
shift, a sine wave, and a white noise component are combined and
delivered using the same “OutputChannel” (“LED1”). The timing
of the stimulus components is defined by the “TemporalOffset” and
“Duration” properties. A “TemporalOffset” of zero represents the
beginning of the stimulus and all other times are relative to this. If
the different components were multimodal (e.g., a visual stimulus
combined with a current injection) the respective components
must define their own “Modality” and “OutputChannel” properties.

4 usIng oDml
As indicated above, the odML model contains more elements than
are necessary during everyday use for data storage and analysis.
Using odML should leave all options to the user. The only real restric-
tions imposed are almost trivial: any section must be of a specified
type and should be named. Any property must have a name and a
value. Optional fields offer further information: for numerical values
a unit might be necessary and, if appropriate, a value definition
that points to a resource that defines the value (for an example see
Table A4 in Appendix). For neurophysiological datasets we strongly
encourage using the terms as defined in the terminologies (see text
footnote 6). However, the approach should be pragmatic:

(1) If you find an appropriate property in the respective termi-
nologies, use it.

(2) Ignore properties that are not needed for describing your dataset.
(3) If you do not find appropriate properties in the terminolo-

gies, add new properties as needed to describe your data. For
each new property provide a definition (recommended), and
if you consider it of wider relevance suggest it for inclusion
in the G-Node standard.

(4) If you strongly disagree with a Property’s name and prefer
your own term, just provide a mapping to the respective ter-
minology term. This ensures that the metadata can be under-
stood by someone using the standard term.

(5) If a Property’s value is defined in some standard, e.g., an
ontology like NEUROLEX8, use the Value’s definition field to
provide a link to the respective definition.

4.1 organIzatIon of the metadata
In odML the hierarchical organization of the metadata tree plays a
central role in defining which metadata belong together, e.g., which
Sections are related to the same dataset. Regarding the organization
of the metadata some simple rules should be obeyed:

(1) The hierarchical organization reflects the relations between
sections. For example, if there is a “Cell” section that is child
of a “Subject” section, then this cell is from that subject.

500 ms
odML
 MyStimulus - [stimulus]
 - Duration = 2.25 s
 - Repetitions = 25
 - InterstimulusInterval = 5 s
 - Modality = visual
 - OutputChannel = LED1

 DC - [stimulus/dc]
 - StartTime = 0.0 s
 - Intensity = 10.000 photons/s
 - Duration = 2.25 s

 WhiteNoise - [stimulus/whitenoise]
 - Duration = 2.25 s
 - StartTime = 0.0 s
 - MeanIntensity = 0.0 photons/s
 - StandardDeviation = 350 photons/s
 - UpperCutoffFrequency = 256 Hz

 Sinewave - [stimulus/sinewave]
 - Duration = 1.0 s
 - StartTime = 1.0 s
 - MeanIntensity = 0.0 photons/s
 - Amplitude = 5.000 photons/s
 - Frequency = 5 Hz
 - Phase = 0

Figure 4 | Describing a stimulus in od ML. odML description of a visual
stimulus which is an additive combination of three components. The trace on
top shows how the actual stimulus might have looked like. Sections are
shown in the form “name – [type].”

odML
 HardwareProperties - [collection/hardware_properties]
 Ampl1- [hardware/amplifier]
 - Type = intracellular amplifier
 - Model = SEC-05LX
 - Manufacturer = npi
 - ...
 DAQ - [hardware/daq]
 - ...
 HardwareSettings - [collection/hardware_settings]
 Ampl1 - [hardware/amplifier]
 - Gain = 10
 - MeasurementType = CC
 - OperationMode = discontinuous
 - SwitchingFrequency = 20kHz
 - LowpassCutoff = 10kHz
 - ...
 DAQ - [hardware/daq]
 - ...

Figure 3 | Hardware descriptions in odML. Hardware descriptions can be
split up into the HardwareProperties and HardwareSettings. These container
sections then group subsections for the individual hardware items used in the
setup. Sections are shown in the form “name – [type].”

8www.neurolex.org

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 6

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
www.neurolex.org

The dual recording in Figure 5C again yields a simple flat tree
structure. Regarding rules 1 and 2 the two cells could have been
children of the subject section but this would “violate” the rule 5
of a flat tree structure.

To document several datasets recorded in different recording
sessions, it would be possible to have a number of recording sections
in the same metadata file. In this case all dataset sections would
need to be children of the respective recording sections (rule 1).

4.3 relatIons outsIde the hIerarchy
There are situations in which a strict application of the rules about
the hierarchical organization (see above) would lead to compli-
cated and redundant structures. To avoid this odML Sections define
link, include, and reference elements which can be used to introduce
relations that exist outside the hierarchical organization.

A link is used to refer to sections within the document and contains
a path in the tree. Paths defining the position in the tree are given by
Section names, separated by slashes (“/”). Paths are absolute, i.e., they
begin at the root of the tree. To illustrate the use of links, we consider
a case in which a number of datasets have been recorded using a
rather complex stimulus. The stimulus is repeated for each dataset,
but each time a single stimulus parameter, e.g., the intensity, has been
changed. It would be valid to provide the full stimulus description
for each dataset individually but, obviously, this would be cumber-
some and inefficient. Instead, one defines the stimulus once within the
document and then links to it for each dataset. The referring stimulus
sections contain only the changes (i.e., the “intensity” properties).
Links can only exist between sections of the same type and include
all subsections and properties. Local information, given in the linking
section, overrides items inherited from the linked Section.

The include element can be used to establish relations to sec-
tions (same type) that are located in an external file. Include
entries can be either an URL or a path in the file system (rela-
tive or absolute). The URL is followed by a hash symbol (#) and
the absolute path of the target Section. For example, a stimulus
Section could contain an include element like “stimulus-metadata.
xml#myStimulus.” This indicates that the stimulus information
is provided in a stimulus-type section of the name “myStimulus”
located in the “stimulus-metadata.xml” file in the same folder
in the file system. Of course care has to be taken if the data is
shared when local files are referenced. As for the link element
the locally provided information overrides the one given in the
included section.

Finally, Sections and Values can be descriptions of entities that
are entries in a data management system. These entries usually
have an id, or primary key, for unique identification. The reference
element of Section and Value is meant to keep this reference infor-
mation. For example, a dataset that is already stored in a database
is exported and used for further analysis. If it is intended to import
the respective results back into the data management system a cor-
rect linking can be easily done if the primary key is included in the
reference element.

4.4 synonyms and mappIngs
Different communities, laboratories, or individuals in the neuro-
sciences do not always agree on how to refer to the same entities.
The odML approach respects this by allowing to avoid the standard
without breaking it.

(2) The tree structure defines three basic relations between nodes
(i.e., the Sections in odML trees) are defined: (i) parent, (ii) child,
and (iii) sibling relationships. In odML these relations have dif-
ferent precedence. The child relation (subsections, and their
subsections) is strongest. The strength of the relation between
nodes descends through siblings (sections that have the same
parent) to parents and their siblings. More distant relations are
not considered. For example, if a dataset contains data recorded
from a single cell this dataset is related that cell. In the odML tree
this relation can be expressed by having the cell section being
child of the dataset section. If there several datasets originating
from the same cell, the dataset sections could be children of the
same cell section. Siblings are treated equally and without order.

(3) Two instances of the same section type that logically belong
to the same super-section (e.g., two recorded cells that con-
tributed to one dataset) have to be siblings on the same
branch of the tree.

(4) If some metadatum is described by a combination of subsec-
tions these compositions must be “pure” in the sense that
all subsections must be of, or derived from, the same type.
For example a stimulus description can be a composition of
stimulus-derived subsections (see Figure 4).

(5) The hierarchy should be kept as flat as possible.
(6) There are some restrictions on the style in which Property and

Section names as well as Section types are given. All must begin
with a letter and are then treated case insensitive. In case of
Section names and types, slashes (“/”) are reserved to separate
paths in the tree, respectively type components (e.g., “hardware/
amplifier”). By convention the Properties and Sections are given
in “upper CamelCase” while Section types are all lower case.

The following paragraphs exemplify how to use odML and how
to organize the metadata according to these rules when describing
electrophysiological data.

4.2 example: InformatIon about recorded datasets
Figure 5 illustrates how to describe quite common situations in
electrophysiological experiments. (i) a simple experiment in which
several datasets were recorded from a single cell (Figure 5A). (ii)
several datasets have been recorded from different cells of the same
subject (Figure 5B). (iii) several datasets have been recorded in a
simultaneous recording of two cells (Figure 5C). These situations
are briefly described in the following paragraphs. As metadata is
data about data, the linchpin of odML files discussed here are the
datasets, that is the dataset-type sections.

The first example (Figure 5A) illustrates a very simple case in
which the hierarchy can be kept flat, since all datasets (two are
shown in this example) depend on all other sections (rule 2) and
there is no need for more complex structures in the actual metadata
file (rules 1 and 5). Other structures to arrange these items are
possible but not encouraged.

The second example (Figure 5B) shows a case where datasets
originating from two different cells recorded in the same subject
have to be described. Again, each of the dataset sections shown
are related to the same project, experiment, recording, and subject
information, according to rule 2. Their parent “cell” sections are
different, reflecting the two different cells from which the datasets
were obtained.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 7

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

there, one can use the carmen_mini terminology http://portal.g-
node.org/odml/terminologies/v1.0/carmenMini/carmen_mini.xml
which defines the mapping between the MINI and the standard
odML-terminologies. Thus, transferring data between the CARMEN
database and an odML compliant tool is directly possible. Figure 6
shows how the mapping works. The odML tree on the left side is
created with the terms defined in the carmen_mini terminology.
The Sections and Properties carry mapping information (the URLs)
to respective Sections and Properties in the standard odML-termi-
nologies. The odML-libraries (see below) can use these mappings
to convert the tree to one that complies the odML-terminologies
(right part of Figure 6). In cases in which a Property does not provide
mapping information (“SpeciesIdentifier” Property in the “Subject”
Section) it kept as is and is mapped into the its parent’s counterpart.
The same principle applies for Sections that do not provide map-
ping information. Generally mapping information is provided in
the terminologies. Thus, it is not necessary to provide them with
the actual metadata files. In case of a conflict between the provided
mapping and the one given in the terminology, the one in the actual
metadata file overrides the terminology mapping.

Furthermore, the standard odML-terminologies logically group
properties into sections. This structure may in some cases not match
the structure a scientist or laboratory uses to describe their meta-
data. In these cases, the possibility to define mappings between own
Properties and Sections to those in the terminologies provides inter-
operability. With mappings it is possible to define synonyms for single
Properties or also to define custom compact and non-hierarchical ter-
minologies for everyday use, which defines mappings to the standard
terminologies. The mapping information can be given for Sections
and Properties and is provided in form of an URL. For Sections this
URL points to the terminology of the target Section, whereas the
reference part of the URL contains the path of the target Section (see
Figure 6 mapping of “StudySubject”). For Properties the appropriate
section reference is followed by a colon and the destination prop-
erty (see Figure 6). The odML-libraries (see below) can apply this
mapping information and convert a metadata file that was written
according to the local terminology to a file that is compatible to
the layout suggested by the odML-terminologies. For example, the
CARMEN consortium works with a specific set of metadata (Gibson
et al., 2008a). If one is used to work with the metadata terms defined

A Single cell recording several datasets

odML
 Project1 - [project]
 - Description

 Experiment1 - [experiment]
 - Description

 Session1 - [recording]
 - Start
 - End
 - Experimenter

 SubjectA - [subject]
 - Species
 - Gender
 - Age

 CellA - [cell]
 - Type
 - BrainRegion
 - RecordingLocation
 - RestingPotential

 Dataset1 - [dataset]
 - Start
 - End
 - FileURL
 - Quality

 Dataset2 - [dataset]
 - Start
 - End
 - FileURL
 - Quality

B Two cells subsequently recorded, several datasets each

odML
 Project2 - [project]

 Experiment2 - [experiment]

 Session1 - [recording]

 SubjectB - [subject]

 CellA - [Cell]
 Dataset1 - [dataset]
 Dataset2 - [dataset]

 CellB - [Cell]
 Dataset3 - [dataset]
 Dataset4 - [dataset]
 Dataset5 - [dataset]

C Two cell simultaneously recorded, several datasets

odML
 Project2 - [project]

 Experiment3 - [experiment]

 Session1 - [recording]

 SubjectC - [subject]

 CellA - [cell]

 CellB - [cell]

 Dataset1 - [dataset]

 Dataset2 - [dataset]

Figure 5 | Transporting dataset information in odML. (A) Parts of the
description of a simple electrophysiological experiment in which a single cell was
recorded and several datasets were saved to disk. (B) Experiments in which

several datasets have been recorded in a number of cells from the same subject.
(C) Description of simultaneous recordings of two cells. Note: For clarity
Properties are omitted in (B,C). Sections are shown in the form “name – [type].”

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 8

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

apply

mapping

odML
 CarmenMini
 ContactAndContext
 - DateAndTime --> http:// ... /recording/recording.xml#recording:Start
 - ResponsiblePerson --> http:// ... /project/project.xml#project:PrincipleInvestigator
 - ExperimentalContext --> http:// ... /project/project.xml#project:Description
 - ElectrophysioloyType --> http:// ... /experiment/experiment.xml#experiment:Type

 Recording
 - Solutions --> http:// ... /preparation/preparation.xml#preparation:BathSolution
 - ElectrodeImpedance --> http:// ... /electrode/electrode.xml#electrode:Impedance

 StudySubject --> http:// ... /subject/subject.xml#subject
 - Species --> http:// ... /subject/subject.xml#subject:Species
 - Sex --> http:// ... /subject/subject.xml#subject:Gender
 - Age --> http:// ... /subject/subject.xml#subject:Age
 - SpeciesIdentifier

 RecordingLocation
 - CellType --> http:// ... /cell/cell.xml#cell:CellType
 - LocationStructure --> http:// ... /cell/cell.xml#cell:Structure
 - BrainArea --> http:// ... /cell/cell.xml#cell:BrainArea
 - SliceThickness --> http:// ... /preparation/preparation.xml#preparation:SliceThickness

 TimeSeriesData
 - SamplingRate --> http:// ... /hardware/daq.xml#daq:AISampleRate
 - FileLocation --> http:// ... /dataset/dataset.xml#dataset:File

root
 Project
 - PrincipalInvestigator
 - Description

 Recording
 - Start

 Experiment
 - Type

 Subject
 - Species
 - Gender
 - Age
 - SpeciesIdentifier

 Cell
 - CellType
 - BrainArea
 - Structure

 Preparation
 - BathSolution
 - SliceThickness

 Electrode
 - Impedance

 Hardware
 DataAcquisition
 - AISampleRate

 Dataset
 - FileURL

Figure 6 | using mappings. This figure shows how mappings can be applied
to convert a metadata tree from one layout to another. The left panel shows
metadata that are organized as suggested by the CARMEN “Mini” metadata
standard. The metadata file is in the odML format and refers to the CarmenMini

terminology which defines mappings for properties and sections. These are
URLs to the respective properties in the odML-terminologies. Applying this
mapping information converts the tree to the layout suggested by the
odML-terminologies (right panel).

LisTiNg 1 | using odML in Matlab. Example code shows how odML could be used during everyday work in the lab. The listing shows Matlab command line
calls.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

defined by the option flag, includes external files, resolves links, and
converts the tree, if mapping information is provided. Mappings are
either specified in the metadata itself or in the used terminologies.
Line 9 and following: the dataset sections defined in the metadata are
found. These are retrieved by looking for the “dataset” section type.
One could also look for them by name, if known. The returned set
(a Java Vector) contains references to the respective sections in the
metadata tree which can be passed to the analysis function. Such
a function is sketched in Listing 2. In this example loading data is
handled by a further matlab function (that is not part of the odML
library line 13). The analysis function returns, besides the results,
the analysis metadata (line 14) which are appended to the dataset
metadata (line 18). Finally, the new metadata is written to a file
using an instance of the Writer class (lines 22, 23).

The “powerSpectrum” function sketched in listing 2 takes the
data, the respective metadata Section and a constant. For the per-
formed tasks it needs to extract some information from the meta-
data. Lines 6 and 7: For this, the library is asked for a related Section
of the specified type. For example, the rate with which the data is
sampled should be found in a Property called “SampleRate” that
is part of a hardware/daq (data acquisition) type section. In odML
there are no strict rules where this section is located in the metadata
tree. The library tries to return the section with the strongest rela-
tion according to the rules defined above. If this operation fails the
code will raise an exception which is caught by the surrounding
try–catch clause. Line 14: Here, a Section is created that will contain
the analysis metadata. Line 15: Setting the repository URL indicates
that the terminology defining a section of this type can be found
at the specified location. Line 17: this line uses the matlab function
“mfilename” to find out the actual function name which is inserted
into the Method–Property. Line 18: An instance of the java.util. Date
class, which contains the current date, is passed to the Date-Property.

4.5 supportIng tools
On the odML website at www.g-node.org/odml we offer libraries
and tools to manipulate odML metadata. So far, there is a Java
implementation which can be easily used with Matlab. We currently
work on implementations of these odML-libraries in C/C++ and
Python. By means of these libraries custom software can be easily
extended to automatically write or read odML files. We also offer an
editor to create, view, and manipulate odML files. All this software
is freely available and open-source.

In our laboratory, odML is used to transfer metadata from the
recording program that automatically writes metadata to disk
(RELACS by Jan Benda)9 and our data management tool (The LabLog
by Jan Grewe)10. The G-Node data management system11 supports
odML as a format for metadata import and export. Furthermore,
it is planned to integrate odML support into the Vision Egg (Straw,
2008), a free tool to generate and present visual stimuli.

4.6 example scenarIo
This paragraph briefly describes an example scenario when using
odML in the lab. For this example it is assumed that a set of data-
sets has been recorded and that the recording tool has written the
metadata into an odML file. The following listings describe how one
could use the metadata during data analysis in Matlab. The underly-
ing odML library is written in Java and can be easily used in Matlab.

Line 2: Call of a Matlab function that imports the odML library
and the used logger to the Matlab classpath. Line 5: the reader
variable is an instance of the Reader class which handles reading
of odML files. Line 6: load-function reads the metadata and, as is

LisTiNg 2 | Dummy Matlab function “powerspectrum.m” to illustrate how metadata can be retrieved and used during data analysis.

9www.relacs.net
10www.lablog.sourceforge.net
11www.g-node.org/data

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 10

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
www.relacs.net
www.lablog.sourceforge.net
www.g-node.org/data

(Amari et al., 2002; Gupta et al., 2008), and there are now several
initiatives that set out to foster the sharing of neurophysiological
data (Gardner et al., 2001a, 2008; Gibson et al., 2008a; Herz et al.,
2008; Teeters et al., 2008). A particular issue in the sharing of
neurophysiology data is the relatively large amount of additional
information necessary to describe an experiment. Moreover, this
meta-information is often highly complex and can vary from
laboratory to laboratory and from experiment to experiment,
depending on the specific scientific context in which the experi-
ment was conducted. This situation is complicated further by the
lack of a standardized terminology in the field, where different sub
disciplines may use different terms to describe the same neural
structure, brain location, or neuron type (Bezgin et al., 2009). For
some sub themes of the neurosciences standards and ontologies
have been developed (Gardner et al., 2001b; Crook et al., 2005;
Bowden et al., 2007; Bug et al., 2008; Frishkoff et al., 2009; Larson
and Martone, 2009). The main difference between the mentioned
ontologies and the odML-terminologies is that the ontologies
define terms for what would be a Value in an odML – Property.
The odML-terminologies will not be extended in this direction.
Rather, it is suggested to have values referring to entities defined
in an ontology (for example by providing the respective resource
location in NEUROLEX (see text footnote 8) or BrainInfo13 in
the definition element of the Value).

The odML-terminologies are no replacement for ontologies but
can support ontology development. For example, currently there
are no ontologies for setup, hardware, or stimulus descriptions. Our
proposed method for specifying metadata could in turn provide an
efficient method to support these developments by analyzing the
metadata that scientists actually use in certain contexts.

5.3 annotatIons In other data formats
Many data formats like the Exif format for image metadata14 or ID3
tags for music annotation15 use pre-defined key–value pairs for data
annotation. This approach is especially useful for cases in which the
type of data that requires description and thus the required meta-
data terms are known in advance. The situation is more difficult
when describing scientific data which is variable in many respects.
The odML approach of storing metadata in the hierarchical way is
to some extent similar to the way data annotations can be handled
in other formats. HDF5 specifies the tree structure of nodes. These
can contain attributes which are essentially key–value pairs. Nodes
and attributes are thus similar to Sections and Properties but lack the
opportunity of standardization. The “Scientific Data Set” extension
of HDF516 offers pre-defined attributes, in addition to the “free”
attributes. This gives control over the terms used in the attributes
but requires that the user commits himself to the pre-defined ter-
minology. In our view these solutions are not sufficient for flexible
and extensible data annotations. For this we decided to keep the
metadata separated from the actual data and to use a format that
does not restrict the user but allows to apply the terminologies
for standardization. For future development we aim at solutions

5 dIscussIon
The key aspect of our approach to metadata handling is a com-
mon format for both the actual metadata and terminologies.
This allows for flexible storage of any metadata, since new keys
 (Property-names) can be immediately added, without the need to
extend a terminology or schema beforehand. Terminologies guar-
antee interoperability and are built-in a bottom-up way by the sci-
entist that work with the data. With odML we provide a format and
tools for automated metadata handling, so that the threshold for
collecting metadata is considerably lowered. We hope that the flex-
ibility of odML will convince scientists to embed metadata handling
into their recording, data analysis, and management tools, thereby
laying the foundation for large-scale collaborations, in particular
in the neurosciences.

5.1 advantages and dIsadvantages of usIng a generIc
metadata model
We propose to use a generic data model for the metadata. The
nested tree-like organization, in our opinion, is easily comprehen-
sible and flexible. It further has a very limited number of struc-
tural elements. An alternative would have been a fully defined
data model with clearly defined terms and constructs, as used in
most annotation approaches (Gardner et al., 2001a; Gibson et al.,
2008a). Such a design has clear advantages, for example, a guaran-
teed structure with detailed validation options. However, in our
view it also has severe disadvantages: (i) it is hard to foresee what
entities any one scientist might need to describe and (ii) using a
completely specified model means that the user has to internalize
all of its elements and dependencies and to accept the designated
terms defined in the model. The odML data model itself does
not impose standards. The terminologies introduce options for
standardization and validation in a “soft” fashion which may be
overridden by the user. This bears the risk of inconsistencies and
leaves responsibility on validity to the user. However, this loose
standardization is the key for flexibility and immediate exten-
sibility, which we consider essential for practical application in
the laboratory. Restricting as little as possible may be the key to
convince researchers of annotating their data to allow reproduc-
ibility and support data sharing.

One further advantage of the generic model lies in the inter-
change of (meta)data between databases. Instead of writing and
maintaining converters between all the different data models, it
would suffice if each tool or platform could import and export
metadata from the generic model. odML is very different form
metamodel approaches like XMI12 (which are designed for data
transfer between different data models). XMI, however, requires
the existence of detailed data models which do not yet exist for
neurophysiological metadata.

5.2 termInologIes and ontologIes
Compared to other disciplines in biology, such as Genomics
and Proteomics (e.g., Gelbart et al., 1997; Stoesser et al., 1997),
the neurosciences lag behind regarding the use of databases for
the organization and exchange of data. Only recently attempts
have been started to integrate neuroscience databases structures

12www.omg.org/spec/XMI

13www.braininfo.rprc.washington.edu
14www.exif.org
15www.id3.org
16www.hdfgroup.org/sds_api.html

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 11

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
www.braininfo.rprc.washington.edu
www.exif.org
www.id3.org
www.hdfgroup.org/sds_api.html

digms for collaboration in neurophys-
iology,” in 6th International Meeting on
Substrate-Integrated Microelectrodes,
2008, Reutlingen.

Gibson, F., Overton, P., Smulders, T.,
Schultz, S., Eglen, S., Ingram, C.,
Panzeri, S., Bream, P., Whittington, M.,
Sernagor, E., Cunningham, M., Adams,
C., Echtermeyer, C., Simonotto, J.,
Kaiser, M., Swan, D., Fletcher, M., and
Lord, P. (2008b). Minimum informa-
tion about a neuroscience investiga-
tion (MINI): electrophysiology. Nat.
Precedings. Available at: http://hdl.
handle.net/10101/npre.2009.1720.2

Gupta, A., Bug, W., Marenco, L., Qian, X.,
Condit, C., Rangarajan, A., Müller, H.
M., Miller, P. L., Sanders, B., Grethe,
J. S., Astakhov, V., Shepherd, G.,
Sternberg, P. W., and Martone, M.
E. (2008). Federated access to het-
erogeneous information resources
in the neuroscience information
framework (nif). Neuroinformatics
6, 205–217.

Herz, A. V. M., Meier, R., Nawrot, M.
P., Schiegel, W., and Zito, T. (2008).
G-node: an integrated tool-sharing
platform to support cellular and
systems neurophysiology in the age
of global neuroinformatics. Neural.
Netw. 21, 1070–1075.

Dynamic publication model for
neurophysiology databases. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 356,
1229–1247.

Gardner, D., Knuth, K. H., Abato, M.,
Erde, S. M., White, T., DeBellis, R., and
Gardner, E. P. (2001b). Common data
model for neuroscience data and data
model exchange. J. Am. Med. Inform.
Assoc. 8, 17–33.

Gardner, D., Goldberg, D. H., Grafstein,
B., Robert, A., and Gardner, E. P.
(2008). Terminology for neurosci-
ence data discovery: multi-tree syntax
and investigator-derived semantics.
Neuroinformatics 6, 161–174.

Gelbart, W. M., Crosby, M., Matthews, B.,
Rindone, W. P., Chillemi, J., Twombly,
S. R., Emmert, D., Ashburner,
M., Drysdale, R. A., Whitfield,
E., Millburn, G. H., de Grey, A.,
Kaufman, T., Matthews, K., Gilbert,
D., Strelets, V., and Tolstoshev, C.
(1997). Flybase: a drosophila data-
base. the flybase consortium. Nucleic
Acids Res. 25, 63–66.

Gibson, F., Austin, J., Ingram, C., Fletcher,
M., Jackson, T., Jessop, M., Knowles,
A., Liang, B., Lord, P., Pitsilis, G.,
Periorellis, P., Simonotto, J., Watson,
P., and Smith, L. (2008a). “The carmen
virtual laboratory: web-based para-

Martone, M. E. (2008). The nifstd
and birnlex vocabularies: building
comprehensive ontologies for neuro-
science. Neuroinformatics 6, 175–194.

Crook, S., Beeman, D., Gleeson, P., and
Howell, F. (2005). XML for model
specification in neuroscience. Brains
Minds Media 1. Available at: http://
www.brains-minds-media.org/
archive/228

Durka, P., and Ircha, D. (2004). Signalml:
metaformat for description of bio-
medical time series. Comput. Methods
Programs Biomed. 76, 253–259.

Fletcher, M., Liang, B., Smith, L., Knowles,
A., Jackson, T., Jessop, M., and Austin,
J. (2008). Neural network based pat-
tern matching and spike detection
tools and services – in the carmen
neuroinformatics project. Neural.
Netw. 21, 1076–1084.

Frishkoff, G., LePendu, P., Frank,
R., Liu, H., and Dou, D. (2009).
“Development of neural electro-
magnetic ontologies (NEMO):
ontology-based tools for representa-
tion and integration of event-related
brain potentials,” in Proceedings
of the International Conference on
Biomedical Ontologies, Buffalo, NY.

Gardner, D., Abato, M., Knuth, K. H.,
DeBellis, R., and Erde, S. M. (2001a).

references
Amari, S.-I., Beltrame, F., Bjaalie, J. G.,

Dalkara, T., De Schutter, E., Egan,
G. F., Goddard, N. H., Gonzalez, C.,
Grillner, S., Herz, A., Hoffmann, K.-P.,
Jaaskelainen, I., Koslow, S. H., Lee,
S.-Y., Matthiessen, L., Miller, P. L., Da
Silva, F. M., Novak, M., Ravindranath,
V., Ritz, R., Ruotsalainen, U., Sebestra,
V., Subramaniam, S., Tang, Y., Toga, A.
W., Usui, S., Van Pelt, J., Verschure, P.,
Willshaw, D., and Wrobel, A. (2002).
Neuroinformatics: the integration of
shared databases and tools towards
integrative neuroscience. J. Integr.
Neurosci. 1, 117–128.

Bezgin, G., Reid, A. T., Schubert, D., and
Kötter, R. (2009). Matching spatial
with ontological brain regions using
java tools for visualization, database
access, and integrated data analysis.
Neuroinformatics 7, 7–22.

Bowden, D. M., Dubach, M., and Park, J.
(2007). Creating neuroscience ontolo-
gies. Methods Mol. Biol. 401, 67–87.

Bowden, D. M., and Dubach, M. F. (2003).
Neuronames 2002. Neuroinformatics
1, 43–59.

Bug, W. J., Ascoli, G. A., Grethe, J. S.,
Gupta, A., Fennema-Notestine, C.,
Laird, A. R., Larson, S. D., Rubin, D.,
Shepherd, G. M., Turner, J. A., and

via an XML interface. This means, however, that only the set of
pre-specified metadata elements can be provided and additional
information, which may be essential to meaningfully analyze the
data, cannot be entered easily.

The main design goal of odML is its immediate extensibility.
Any metadata item can be included into a valid odML file, no
matter whether it is already defined in a standard terminology. At
the same time no information is mandatory. With odML, the only
restriction is the metadata model, not its content. A big advantage
of this approach may be the future possibility of machine-aided
construction, extension, and refinement of ontologies. Analyzing
the structure and terminology of the metadata provided by a large
number of scientists from a given neuroscience subfield may enable
a “bottom-up” development of ontologies for this subfield, which
may be an efficient complement to the “top-down” approach of
gathering experience and contributions from selected experts. In
order to have the necessary metadata in machine-readable formats
in the future, it is time to start collecting them in the laboratories
now.

acknoWledgments
We would like to thank Andrey Sobolev, Christine Seitz, Christian
Kellner, and Christian Tatarau for programming and discus-
sions, Adrian Stoewer, Alvaro Tejero-Cantero, Colin Ingram, Fritz
Sommer, Gwen Jacobs, Marianne Martone, Piotr Durka, and
Raphael Ritz for fruitful discussions. Raphael Ritz and Zbigniew
Jędrzejewsky-Szmek for comments on an earlier version of the
manuscript. Supported by BMBF grants 01GQ0802 and 01GQ0801.

(in the form of an API) that bring data and metadata again closer
together while ideally being independent of the actual format in
which data and metadata are stored.

5.4 applIcatIon to data sharIng In cellular and systems
neurophysIology
For databases and data sharing platforms in the neurosciences to be
useful in the long run, machine-readable data annotation should
not require additional manual effort when data are uploaded to
a database. Instead, data annotation would be ideally integrated
within the data acquisition and analysis workflow in the laboratory.
This would have the further benefit of facilitated data manage-
ment and data analysis for the individual scientist, independent
of whether the data are uploaded to a data sharing platform or
not. Moreover, scientists may be much more willing to contribute
to data sharing initiatives if the upload is just a single command
or button click because the metadata already exist in a machine-
readable form and do not have to be entered manually. odML
provides a format that enables this computer-based metadata
management and exchange from the local laboratory to global
neuroscience databases.

Currently, none of the data sharing portals for neurophysi-
ology (Gardner et al., 2001a; Gibson et al., 2008a; Teeters et al.,
2008) offers the possibility to routinely enter the metadata into
a database by providing them in a machine-readable format. At
the CARMEN platform, users can define metadata templates to
ease the manual metadata entry for similar data sets. At the (see
text footnote 1) database, data, and metadata upload is possible

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 12

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

could be construed as a potential conflict
of interest.

Received: 25 March 2010; accepted: 12 August
2011; published online: 30 August 2011.
Citation: Grewe J, Wachtler T and
Benda J (2011) A bottom-up approach
to data annotation in neurophysiology.
Front. Neuroinform. 5:16. doi: 10.3389/
fninf.2011.00016
Copyright © 2011 Grewe, Wachtler and
Benda. This is an open-access article sub-
ject to a non-exclusive license between the
authors and Frontiers Media SA, which per-
mits use, distribution and reproduction in
other forums, provided the original authors
and source are credited and other Frontiers
conditions are complied with.

H., Schober, D., Smith, B., Snape, J.,
Stoeckert, C. J., Tipton, K., Sterk, P.,
Untergasser, A., Vandesompele, J.,
and Wiemann, S. (2008). Promoting
coherent minimum reporting guide-
lines for biological and biomedical
investigations: the mibbi project. Nat.
Biotechnol. 26, 889–896.

Teeters, J. L., Harris, K. D., Millman, K.
J., Olshausen, B. A., and Sommer, F.
T. (2008). Data sharing for computa-
tional neuroscience. Neuroinformatics
6, 47–55.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that

Taylor, C. F., Field, D., Sansone, S.-A.,
Aerts, J., Apweiler, R., Ashburner, M.,
Ball, C. A., Binz, P.-A., Bogue, M.,
Booth, T., Brazma, A., Brinkman,
R. R., Clark, A. M., Deutsch, E. W.,
Fiehn, O., Fostel, J., Ghazal, P., Gibson,
F., Gray, T., Grimes, G., Hancock, J.
M., Hardy, N. W., Hermjakob, H.,
Julian, R. K., Kane, M., Kettner, C.,
Kinsinger, C., Kolker, E., Kuiper,
M., Novère, N. L., Leebens-Mack,
J., Lewis, S. E., Lord, P., Mallon,
A.-M., Marthandan, N., Masuya, H.,
McNally, R., Mehrle, A., Morrison, N.,
Orchard, S., Quackenbush, J., Reecy,
J. M., Robertson, D. G., Rocca-Serra,
P., Rodriguez, H., Rosenfelder, H.,
Santoyo-Lopez, J., Scheuermann, R.

Hey, T., and Trefethen, A. (2003). The
Data Deluge: An E-Science Perspective.
Chichester, West Sussex: Wiley & Sons,
809–824.

Larson, S. D., and Martone, M. E. (2009).
Ontologies for neuroscience: what
are they and what are they good for?
Front. Neurosci. 3:1. doi: 10.3389/
neuro.01.007.2009

Stoesser, G., Sterk, P., Tuli, M. A., Stoehr,
P. J., and Cameron, G. N. (1997). The
embl nucleotide sequence database.
Nucleic Acids Res. 25, 7–14.

Straw, A. D. (2008). Vision egg: an
open-source library for realtime
visual stimulus generation. Front.
Neuroinformatics 2:4. doi: 10.3389/
neuro.11.004.2008

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 13

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

7.4 xml ImplementatIon
The odML definition is independent of a specific file format. In the
following we describe its implementation using XML respectively
as an XML Schema (www.w3.org/TR/xmlschema-2/). XML is a
widespread markup language and often used for data description
and exchange (Gardner et al., 2001b, 2008; Durka and Ircha, 2004;
Crook et al., 2005). It is supported by almost any programming lan-
guage. Implementing odML support in any custom program should
therefore be easily achieved. The original files can be converted into
other formats like, for example, HTML for displaying the file in a
web browser. Using an XML schema definition enables structural
validation of an odML metadata file with built-in validators of com-
mon XML-parsers. Figure A1 shows the actual schema definition
(file odML.xsd). Further, using XML leaves the files human readable
and editable by many text editors and more specialized XML editors.

XML has some disadvantages as well. For example the format
is not the most efficient regarding file-size or readability. There
are other quite successful languages like YAML (www.yaml.org) or
JSON (www.json.org) that can be more efficient and offer some
other useful features, like a built-in support for lists, which is not
supported by XML directly. Our format resembles to some extent
definitions made in the RDF-format (www.w3.org/TR/rdf-schema)
but is much more focused on the specific uses described here. odML
could be implemented in any of these languages likewise.

7 appendIx
7.1 element descrIptIons
The following tables contain all elements defined in the odML meta-
data model together with definitions and examples.

All content is encapsulated into a “Root section” which con-
tains some document-related information (Table A1), and a set
of Sections but no Properties. The elements defined in a Section are
shown in table Table A2. Sections contain subsections and Properties
(Table A3) which in turn contain Values (Table A4).

7.2 data types
Table A5 lists the data types to be used in odML files.

7.3 defIned oDml-termInologIes
Table A6 lists all so far defined odML-terminologies together with a
short definition. This list, is not fixed and will grow. All terminolo-
gies can be found on the project web pages http://www.g-node.
org/odml.

Table A1 | Open metaData Markup Language root section.

element Mandatory Description example

Author No The author of the document –

Date No The date the document was created (yyyy-mm-dd format) –

Version No The version of the document –

Repository No Defines the default repository used in this document. This information is overwritten by repository elements in

subsections

–

Section(s) Yes (at least 1) The first level subsections of the odML tree –

The root section elements and their meaning in detail.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 14

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Table A2 | Open metaData Markup Language section.

element Mandatory Description example

Type Yes The section type. The type allows categorization. For example we suggest that all

hardware related section to be of the “hardware” type. A section must have a type

while the user is free to add new types. Type entries can occur only once in a section

Hardware/amplifier

Name No The section name. This entry should be given but may be overridden by a Property

named with “name.” Usually the name describes what kind of information can be

found in this section

AmplifierNo1

Definition No Defines the information contained in the section This section describes the properties

and settings of an amplifier.

Reference No The identifier for the entity represented by this section as it may be used in a data

management system, etc.

Ampl-z42

Link No This element defines an internal link within the actual document or odML tree,

respectively. Links can be used to create sections that “inherit” information from the

linked section and overwrite and extend it

(See “How to use” paragraph in the

main text)

Include No This element defines a link to an external odML file or a section within that file. This

can be the URL, an absolute or relative path

(See “How to use” paragraph in the

main text)

Repository No A section can be based on a pre-defined terminology (see below). The repository

element specifies the file in which the definition can be found, e.g., http://

portal.g-node.org/odml/terminologies/v1.0/terminologies.xml

Mapping No A section may also map to another section. When conversion is requested, all

containing properties, as long as they themselves don’t define a mapping, will be put

into the target section

Section No A section can have subsections allowing to build a tree-like structure

Property No A section can have properties which constitute the actual content of the section

The section elements and their meaning in detail.

Table A3 | odML-property.

element Mandatory Description example

Name Yes The name of the property “Firing rate”

Value Yes The value (see Table A4) of the property. It is allowed to have more than one value

element

–

Definition No This entry defines the meaning of this property. Can be given only once The number of action potentials

fired by a neuron per second

Mapping No The mapping element maps a property to a different one, e.g., one defined in an

odML-terminology

Dependency No This element offers the opportunity to introduce dependencies between properties:

i.e., this very property may only be meaningful if a certain other property is also

specified in the same section (see Table 2 for an example). The odML library or

Graphical User Interfaces (GUIs) can use this information to validate the content or to

adjust the GUI. Can be given only once

–

Dependency value No The dependencyValue further specifies the dependencies of this property. It can

restrict the dependency to the case in which the property referred by the dependency

field assumes the very value given with this field (see Table 2 for an example). Can be

given only once

–

The property elements and their meaning in detail.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 15

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Table A4 | odML value.

element Mandatory Description example

Value Yes The value of the property 53.4

Uncertainty No Specifies the uncertainty of the value. The number of uncertainty values given should

match the number of values. Error estimates must have the same unit as the value (e.g.,

SD not the variance). What kind of uncertainty measure is used can be specified in the

definition element

6.2

Unit No The unit of the value and the uncertainty. Can be given only once. Hz

Type No This entry specifies the data-type (see Table A5) of the value. This can be used by tools

to adjust the appearance and handling of, e.g., “integer” or “text” entries. Can be

specified only once

Float

Definition No This entry is meant for definitions regarding the value. For example it can be used to

refer to an ontology, http://neurolex.org/wiki/Category:Hippocampus_CA1_pyramidal_

cell

Reference No The reference entry can be used to, e.g., refer to an entry in a database –

Filename No The filename that should be used if binary content is transported in this property. There

may be one filename for each value entry

–

Encoder No Binary content must be encoded into ascii to be included in odML files. State the

applied encoder using this element

Base64

Checksum No If binary content is directly included or if the URL of an external file is given, the

checksum entry can be used to validate the file’s identity, integrity. Use this element to

indicate the algorithm and the checksum in the format algorithm$checksum

crc32$b84892a2 for a checksum

calculated with a crc 32 bit algorithm

The value elements and their meaning in detail.

Table A5 | Data types.

Type Description example

Int Integer value −1024

Float Floating point value −3.1416

String Any short string of characters A short comment

Text Longer text potentially spanning several lines A much longer text that might require more than one line

n-Tuple Tuples with n elements embraced in parentheses separated by “;.” n indicates the

number of elements. These are typically integer or float values but there is no hard

restriction in the format

E.g., resolution of a screen (1024;768) pixel, or

coordinate information.

Date Date in yyyy-mm-dd format 2009-05-26

Time The local time in hh:mm:ss format 11:51:00

Date time Date and time joined (“yyyy-mm-dd hh:mm:ss”-format) 2009-05-26 11:51:00

Boolean True or false True

URL A resource (file) location on the local filesystem or on the web

Binary Binary content of, e.g., an image file (base64 encoded)

Person The entered value describes a person. Data type used for name matching in the

library

John Doe or Doe, John, or J. Doe, etc.

Valid data types for values and uncertainties of a odML-Property that should be used when specifying metadata. These types are not restricted in the format or
implementation thus, new types could be invented.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 16

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Table A6 | section types.

section type Description

Analysis Descriptions of an analysis.

Analysis/psth Properties to describe a peri stimulus time histogram.

Analysis/power spectrum Properties to describe a power spectrum.

Analysis/coherence Properties to describe a coherence spectrum.

Cell Descriptions of a recorded cell.

Collection/event list Section to combine lists of events.

Collection/hardware properties Descriptions of the hardware characteristics.

Collection/hardware settings Descriptions of the actual hardware settings like filter adjustments, etc.

Dataset Description of a dataset. Recording time, files, etc.

Electrode Description of an electrode.

Event Generic descriptions of an event.

Experiment General Experiment descriptions.

Experiment/behavior For descriptions of an behavioral experiment.

Experiment/electrophysiology Properties to describe an electrophysiological experiment.

Experiment/imaging Properties to describe an imaging experiment.

Experiment/psychophysics Properties to describe psychophysical experiments.

Hardware Descriptions of an hardware item.

Hardware/amplifier Descriptions of an electrophysiological amplifier (type, operations mode…).

Hardware/attenuator Descriptions of an attenuator device (gain…).

Hardware/camera objective Description of an camera objectives (focal length, aperture…).

Hardware/daq Properties and settings of a data acquisition device.

Hardware/eyetracker Properties and settings of an eyetracker device.

Hardware/filter Description of a filter device (lowpass, bandpass, highpass, etc.).

Hardware/filterSet Description of a filter set or filter cube used in a microscope.

Hardware/iaq Properties and settings of an image acquisition device (camera, frame grabber)

Hardware/light source Description of a light source.

Hardware/microscope Description of a microscope.

Hardware/microscope objective Descriptions of a microscope objective.

Hardware/scanner Descriptions of the scanner used to sample microscope images.

Hardware/stimulus isolator Descriptions of an stimulus isolator device.

Person Descriptions of a person.

Preparation Properties to describe preparation procedures (in vivo, in vitro, etc.)

Project Properties to describe the scientific project to which recorded data belongs

Recording Properties to describe a recording session. (date, experimenter, etc.)

Setup Properties to describe a recording setup

Stimulus Properties to describe a stimulus

Stimulus/dc A constant stimulus (DC) or stimulus intensity offset

Stimulus/gabor Definition of a gabor stimulus

Stimulus/grating Definition of a grating stimulus (squareqwave or sine wave, etc.)

Stimulus/movie Definitions of an image sequence

Stimulus/pulse Description of a pulse stimulus (width, intensity, timing…)

Stimulus/ramp Description of a ramp stimulus (slope start intensity…)

Stimulus/random dot Description of random dot stimulus

Stimulus/sawtooth Descriptions of a sawtooth stimulus

Stimulus/sine wave Descriptions of a sine wave stimulus (frequency, amplitude…)

Stimulus/squareWave Descriptions of a squarewave stimulus (frequency, amplitude…)

Stimulus/whiteNoise Descriptions of a white noise stimulus (cutoff-frequency, SD…)

Subject Description of an experimental subject (species, age, sex…)

The type of a section defines what kind of information is contained.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 17

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace=”http://www.g-node.org/odml”>
<!-- 1 -->
<!-- THE PROPERTY TYPE IS THE BUILDING BLOCK OF ALL odML METADATA. -->
<!-- PROPERTIES BASICALLY CONSIST OF name/value PAIRS. -->

<!-- A: Value Subtype -->
<xs:element name ="value" type=”xs:string”>
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="type" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="uncertainty" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="unit" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="reference" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="definition" minOccurs="0" maxOccurs="1"/>
 <xs:element name="filename" minOccurs="0" maxOccurs="1"/>

 </xs:choice>
 </xs:complexType>
</xs:element>
<!-- B: Property -->
<xs:element name ="property">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">

<!-- if there is a NAME there must also be a VALUE -->
 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="value" minOccurs="1" maxOccurs="unbounded"/>

<!-- all other elements are optional -->
 <xs:element name="definition" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="mapping" type=”xs:string” minOccurs="0" maxOccurs="1"/>
 <xs:element name="dependency" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="dependencyValue" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 </xs:complexType>
</xs:element>
<!-- 2 -->
<!-- SECTIONS ARE MEANT TO CONTAIN PROPERTIES THAT BELONG -->
<!-- LOGICALLY TOGETHER THESE MAY HAVE SUBSECTIONS -->
<xs:element name="section">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="name" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="type" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="reference" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="definition" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="link" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="include" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="repository" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="mapping" type=”xs:string” minOccurs="0" maxOccurs="1"/>
 <xs:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="section" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
</xs:element>
<!-- 3 -->
<!-- THE ROOT ELEMENT THAT CAN CONTAIN ALL THE INFORMATION THE USER WANTS TO PROVIDE -->
<!-- THE ROOT ELEMENT ITSELF CAN ONLY CONTAIN SECTIONS BUT NO PROPERTIES -->
<xs:element name="odML">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="author" type=”xs:string” minOccurs="0" maxOccurs="1"/>
 <xs:element name="date" type=”xs:date” minOccurs="0" maxOccurs="1"/>
 <xs:element name="version" type=”xs:string” minOccurs="0" maxOccurs="1"/>
 <xs:element name=”repository” type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="section" minOccurs="1" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attribute name="version" type="xs:string"/>
 </xs:complexType>
</xs:element>
</xs:schema>

 <xs:element name="encoder" minOccurs="0" maxOccurs="1"/>
 <xs:element name="checksum" minOccurs="0" maxOccurs="1"/>

Figure A1 | The odML schema. XML-schema definition of the odML format.
This schema can be used to validate odML files, i.e., check their structural
conformity. Note that XML is case-sensitive. This means that the tags (“property,”

“section,” “name,” etc.) have to be written as defined in this schema. In our
schema all tags use the “lower camelCase” or “compoundNames” which is
lower case except for the first letter of subsequent words in composite terms.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 18

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	A bottom-up approach to data annotation in neurophysiology
	1 Introduction
	1.1 What are metadata?
	2 Data model
	2.1 Two use cases
	2.2 Model description
	2.2.1 Entities and their relations
	2.2.2 Elements

	3 odML-terminologies
	3.1 Terminologies for neurophysiology
	3.1.1 Dataset terminology
	3.1.2 Hardware terminologies
	3.1.3 Stimulus terminologies

	4 Using odML
	4.1 Organization of the metadata
	4.2 Example: information about recorded datasets
	4.3 Relations outside the hierarchy
	4.4 Synonyms and mappings
	4.5 Supporting tools
	4.6 Example scenario

	5 Discussion
	5.1 Advantages and disadvantages of using a genericmetadata model
	5.2 Terminologies and ontologies
	5.3 Annotations in other data formats
	5.4 Application to data sharing in cellular and systemsneurophysiology

	Acknowledgments
	References
	7 Appendix
	7.1 Element descriptions
	7.2 Data types
	7.3 Defined odML-terminologies
	7.4 XML implementation

