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the reconstruction of the conditions or parameters under which a 
certain experiment or analysis in the past has been performed. Often, 
this information is stored in a non-standardized way in laboratory 
journals, metadata files, or is hidden in the source code of software 
tools. Evidently, providing a dataset with a complete set of metadata is 
a tedious business and hardly possible. Nevertheless, the more infor-
mation can be retrieved easily, the more valuable the data are, and the 
more easily and more often the data can be used. The attempt to start 
recording metadata in a standardized way throughout the experiment 
and analysis process seems a promising approach to ensure future 
re-usability and availability of experimental data.

The problems mentioned above are neither new nor specific to 
the neurosciences (Hey and Trefethen, 2003). Especially in the fields 
of Genomics and Proteomics many efforts, and much progress, 
have been made to organize the sharing of data (Gelbart et al., 1997; 
Stoesser et al., 1997). The general approach is to define ontologies, or 
controlled vocabularies, that specify the names of entities and their 
relations. The open biomedical ontologies Foundry (OBO)4 collects 
and coordinates ontologies in the biological domain. A downside of 
such a “top-down” approach in which an authority defines a “stand-
ard,” i.e., the terms and respective contexts in which these may be used, 
is not flexible and open enough and will inevitably lag behind the 
ever-changing requirements due to the progress in science. Further, 
this “standard” would need to be accepted by the community. We 

1 IntroductIon
Data sharing in the neurosciences is the basis of every successful 
collaboration. However, working with another scientist’s data is usu-
ally quite cumbersome because of a high diversity of data formats 
and insufficient annotations. This diversity is a problem also faced 
by the various platforms for data sharing and publication of raw 
data that are being established1 (e.g., CARMEN, Fletcher et al., 2008; 
CRCNS, Teeters et al., 2008; G-Node, Gardner et al., 2001a; Herz 
et al., 2008). These initiatives are confronted with: (i) the vast variety 
of data formats used in the neurosciences, (ii) the lack of common, 
standardized ways in which data annotations are handled, and (iii) 
the scientific individualism together with reluctance to subdue to 
defined “standards.” The first point is not the scope of this paper and 
has been addressed by other initiatives like Neuroshare2 or SignalML3 
(Durka and Ircha, 2004). In this paper we deal with the last two 
issues. We propose a format for metadata transfer that, on the one 
hand, is free of a specific, complex metadata model but, on the other 
hand, can be used in a standardized way to ensure interoperability. 
Application of this format is by no means restricted to data shar-
ing. Rather, data annotation and metadata handling is an inevitable 
part of everyday scientific work in the lab (Figure 1). For example, 
almost every scientist knows the difficulties that can be involved in 
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instead propose a “bottom-up” approach aiming primarily at the sci-
entific work in the laboratories. Our goal is the convenient, semi, or 
fully automated handling of metadata that can be embedded into the 
laboratory workflow and is thus of direct use for the scientist. At the 
same time we want to foster interoperability by providing a possibility 
to apply “standards” enabling data exchange between tools or via data 
sharing platforms. Thus, we aim at (i) a format in which arbitrary 
information can be stored, and (ii) mechanisms to apply conventions 
regarding the content. The scope of these conventions may vary from 
local, laboratory needs, to a global community scope. Accordingly, our 
approach has two parts. The first is the rather simple open metadata 
Markup Language (odML) format or (meta)data model: In odML so 
called Properties are grouped in Sections resulting in a highly flexible 
hierarchical tree structure. This structure is to some extent similar to 
the way data annotations can be handled in the HDF55 data format. 
HDF5 also contains a hierarchical structure of nodes which can con-
tain data or attributes for data annotation. Nodes and attributes are 
similar to our Sections and Properties, but there are distinct differences 
between these formats which are discussed below (see Section 5). The 
second component of our approach is to provide terminologies for 
definitions of Properties and Sections. The terminologies can be used 
to guarantee interoperability between tools. At the same time it is pos-
sible to immediately provide additional definitions for new Properties 
and Sections. Thus, odML offers the required flexibility and freedom to 
store any information that is necessary to describe a given dataset while 
supporting interoperability by using it in combination with specific 
terminologies. Given its acceptance, this “bottom-up” approach can 
lead to a community driven definition of global terminologies and 
general models of metadata in Neurosciences.

1.1 What are metadata?
In the context of this paper we understand metadata as that informa-
tion that describes the conditions under which a certain dataset has 
been recorded. This includes descriptions of environmental param-
eters like temperature, humidity, date, and time, etc., descriptions 
of the stimulus and recording protocols, settings of the used hard-
ware and software, information about the experimental subject, and 
much more. Storing metadata in as much detail as possible allows 
replication of an experiment or the reconstruction of an analysis and 
thus enables reproducing results. It eases the re-use of once-acquired 
data and thus can increase the outcome of scientific efforts. Our goal 
is to provide the means to conveniently and automatically capture 
as many as possible of what we call the hard metadata, i.e., those 
parameters that can be directly measured (temperature, recording 
date, and time, etc.) or are known in advance (e.g., stimulus param-
eters). The more descriptive, soft metadata (e.g., the experimental 
rationale, context information, etc.) provide important background 
information but are much harder to capture automatically and, even 
if present, can hardly replace a discussion with the experimenter in 
person. In the interest of data sharing and reproducibility, datasets 
should be annotated with as much of the hard metadata as possible.

Annotating data may seem a costly process that requires the sci-
entist to manually record a large number of values. However, most 
hard metadata are directly available and could thus be automatically 
recorded during data acquisition, with minimal manual interven-
tion. Further information is typically derived during subsequent 
processing steps, for example analyses, etc. Ideally, all components of 
the data analysis tool-chain, from data acquisition, data analysis, and 
data management to data sharing, should be able to work hand in 
hand and exchange data and metadata in an automated fashion. The 
goal of odML is to provide the basic components for this automation.
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Figure 1 | The flow of data and metadata in sciences. The basis of this 
“food chain,” on top, is the laboratory in which the data is originally recorded, 
stored, managed and analyzed. Here metadata are important in many respects. 
Data management uses them to categorize and organize the data, during data 
analysis stimulus information is required and further, derived, data characteristics 

are added which again may be useful for querying data, etc. Data may further be 
shared with collaborators for discussion and re-evaluation. Eventually, data may 
be made available via public databases like the G-Node (Herz et al., 2008). On all 
levels data exchange between people as well as computer programs requires a 
detailed annotation of the raw data with metadata.
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also have subsections. Thus, a tree-like structure can be built up 
by nesting Sections. The RootSection, finally, constitutes the root of 
the tree that embraces a set of Sections. This kind of tree-like data 
model is rather generic and thus offers the required flexibility but 
also has some disadvantages (see Section 5).

2.2.2 Elements
In the following we will describe the various elements with respect 
to their purposes.

(1) Storing different types of metadata. Many metadata are 
numbers and can be specified by simple key–value pairs like 
“stimulusRepetitions = 10.” Others contain a unit (e.g., “tem-
perature = 26°C”) or are measured values that comprise some 
uncertainty (e.g., “resting-potential = −58.0 ± 1.5 mV”). Other 
metadata may be purely textual or be even binary content (e.g., 
a microscopic picture of the recorded cell). Accordingly, the 
Property corresponds to a key–value pair with a name (the key) 
and the Value with according value-related information as the 
unit, uncertainty, and data-type. There is no strict restriction on 
the types, but we suggest the usage of the standard types as listed 
in Table A5 in appendix. The type allows tools to adapt their 
interfaces and allows performing consistency checks (see below 
and Table A5 in Appendix for more information). The Section 
groups all these metadata items (i.e., Properties). It is addres-
sed by its name and, more importantly, defines a type element 
which indicates what kind of information can be found in it. For 
example, a Section describing a stimulus would be of the “stimu-
lus” type (see “odML-terminologies” for more information).

(2) Interoperability and automation. These requirements 
demand more information about the content and a stan-
dardization we want to achieve by the terminologies (see 
below). For such purposes it is necessary to provide a defini-
tion for Sections and Properties. These can be omitted if the 
according definition of a Section or Property is provided by a 
terminology. To state where the underlying terminology can 
be found, the Section has the repository element. Sometimes 
Values have definitions, for example when describing the type 
of a recorded cell and linking to a definition in an ontology.

(3) Customization. Different labs or communities in the neu-
rosciences use different names to address the same entities. 
Interoperability between these can only be achieved if an agre-
ement on the terms to use could be reached or if the standard 
terms can be addressed with synonyms. Synonyms are introdu-
ced to odML by defining a mapping from, e.g., a custom Property 
to definitions made in a common terminology. Mappings can 
be provided for Sections and Properties. The odML-libraries 
can apply the mapping and convert the custom metadata to 
the standard terminologies so that tools which can handle the 
terms defined in the standard terminologies can work on the 
metadata.

(4) Miscellaneous. Finally, there are a number of elements that 
have been introduced to help working with the metadata. In the 
context of data management it is required to uniquely identify 
entities that are described by a Section’s or Property’s Value. For 
example a “subject” Section may refer to an entry in the (labora-
tory) database which has a certain id, primary key, etc. This infor-

2 data model
2.1 tWo use cases
The basic idea of the odML approach is to combine a rather general 
data model with domain specific terminologies. Independence of for-
mat and content offers a maximum of flexibility. The terminologies 
introduce the basis for standardization that, however, can be ignored 
or extended when necessary. For example, if the terminology does not 
define a term that is needed for annotation, it should be possible to 
instantaneously add new terms with their respective definitions. The 
odML model is designed for both use cases: (i) exchanging metadata 
and (ii) definition of terminologies. Hence, the format contains more 
elements than are needed for either case alone. Using the same format 
for both the actual content and definitions (the terminologies) may 
seem confusing at first, but in our view is the key for granting immedi-
ate extensibility required to satisfy the ever-changing scientific needs.

2.2 model descrIptIon
The elements of the odML metadata model are derived from the 
requirements: We need a metadata model that offers a flexible struc-
ture, can take various kinds of metadata, offers the means to ensure 
interoperability, and can be used for carrying metadata and for 
defining terminologies, while respecting conventions of the various 
scientific communities through customization. Figure 2 shows the 
data model as an entity-relation diagram. A tabular description 
can be found in the Appendix. We will start the description of the 
model with a coarse description of the structure and then go into 
more detail of the defined elements.

2.2.1 Entities and their relations
The Property is the core entity of the odML data model Figure 2. 
Roughly speaking, it is an extended key–value pair, like “stimu-
lusRepetitions = 10.” A Property contains one or multiple Values. 
To meaningfully organize growing amounts of metadata and to 
allow the same Property name to be used several times, Properties 
are logically grouped in Sections. Besides Properties, a Section can 
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Figure 2 | Open metaData Markup Language entity-relation diagram. 
The odML model is a tree structure of Sections and Properties. Connecting 
lines and “crow’s feet” indicate the relationship between the entities. For 
example: a Section can contain 0 to many (n) Properties which in turn must 
have at least 1 Value. The recursive connection of the Section indicates that 
there can be 0 to many subsections building the tree. All is embraced by a 
RootSection that contains some document-related elements. All elements 
listed in the different entities may at maximum occur once.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


terminologies that are needed to annotate data from electrophysi-
ological recordings6. These cover those parts of the Dublin Core7 that 
apply for annotation of neurophysiological data and also includes the 
definitions suggested by the CARMEN consortium (Gibson et al., 
2008b). Compatibility with terminologies established by existing data 
sharing initiatives (Bowden and Dubach, 2003; Gardner et al., 2008; 
Gibson et al., 2008a) gives the possibility to retrieve the respective 
metadata items from an odML file when data are contributed. In 
addition, odML files can contain much more metadata that will not 
be lost if the odML file is made available with the data.

The rather unconstrained approach proposed here could be 
valuable in refining and adapting these standards through automa-
tized matching with the terminologies used in the community. All 
terminologies described here are available on the odML homepage 
(see text footnote 6). The terminologies will never be complete and 
many more Properties and Sections can and should be specified as 
needed. Extension of the terminologies is necessary and has to be 
driven by the scientific community. The version of a terminology 
is part of the URL and is provided in the terminology RootSection. 
Within one version Properties and Sections may be added, but defi-
nitions will not be altered.

In the following paragraphs selected terminologies will be intro-
duced to point out some conceptual aspects. A list with all currently 
defined section types can be found in the appendix (Table A6 in 
Appendix). Generally, electrophysiological data are recorded from 
a certain preparation of a subject by an experimenter in a recording 
session, using an experimental setup consisting of various hard-
ware components with specific settings, and presenting defined 
stimuli. Accordingly, respective terminologies to describe these 
experimental conditions are needed. The description provided 
by these terminologies is much more detailed than in most cases 
needed for data sharing. However, odML is intended to be also 
of use for metadata management in the laboratory, where all this 
information should be kept available. The following descriptions 
start with the “Dataset” all other metadata are referring to. It is 
then briefly illustrated how the used hardware items and their 
respective settings as well as stimuli can be described using odML.

3.1.1 Dataset terminology
The Dataset terminology is a single Section of the “dataset”-type. It 
defines properties that can be used to provide general information 
about a recorded dataset (Table 1). The name of the Section identifies 
this particular dataset. Here a dataset is understood as a set of files 
that belong together, i.e., have been recorded in the same recording 
session. The “File” Property is of special interest. It occurs twice: (i) 
with the data type “URL” it can provide the location of a file associ-
ated with this dataset and (ii) with the data type “binary” the file 
content itself can be included in the metadata. Even though odML is 
meant to carry data about data, it is nevertheless possible to include 
binary content directly into an odML file. In case binary content is 
included, the filename element can provide a file name that should 
be used when extracting the data from the odML file. Generally, we 
recommend not to include the content of a file but to use the cor-
responding URL property instead. There can be several files related 

mation should be provided with the reference element of Values 
and Sections. Besides numerical or textual metadata, including 
binary content like the picture of a recorded cell could be neces-
sary. Binary data can be included in two different ways: (i) in 
form of an url of the file location or, (ii) directly by including the 
binary content. In the latter case one can use the Value’s filename 
element to note the file name to be used when writing the binary 
content to disk. When binary content is included use the Value’s 
encoder element to state the encoder used. The checksum ele-
ment takes the checksum information to verify a file’s integrity. A 
checksum should be given in the format: “algorithm$checksum” 
(e.g., “crc32$b84892a2” for a checksum calculated with a “crc” 
algorithm applying a 32-bit polynom). The Property further defi-
nes the dependency and dependencyValue elements to allow con-
tent validation or the adaptation of tools. With the dependency 
it can be stated that this Property is only meaningful if also the 
dependency is present. dependencyValue further restricts this in a 
way that the required Property should assume a certain value.

The Section defines two further elements, link and include. These 
are related and are introduced to allow inheritance and to distribute 
information across multiple files, respectively (see “relations outside 
the hierarchy” for more information).

The encapsulating RootSection contains elements to provide 
information about the whole document: these are author, date, 
version, and repository. The repository given in the RootSection 
defines a default repository valid for the whole document unless 
locally redefined.

3 oDml-termInologIes
The odML metadata model is so general that arbitrary content can 
be exchanged or stored. In this form it could be used locally in a 
single lab or by an individual user. However, to achieve interoper-
ability and allow sharing of metadata, standards defining property-
names and section types are needed. The odML-terminologies are 
meant as a starting point for such standards.

An odML-terminology is specified by an odML file that provides 
definitions of Sections and Properties. Usually, there are separate ter-
minologies for each defined Section type and provide the names, 
definitions, units, and data types of Properties and Values. All of this 
information can be overridden by the user, if necessary. The existence 
of a possibly large number of terminologies and contained terms does 
not imply that all these terms must be specified in an actual metadata 
file. The odML approach never requires any information to be pro-
vided by the user. Thus, all terms are suggestions that should be used 
when appropriate, but are not mandatory (see “Using odML” below).

3.1 termInologIes for neurophysIology
Ideally, a metadata terminology should, as much as possible, be in 
agreement with existing terminologies and ontologies (Gardner 
et al., 2001b; Bug et al., 2008; Gibson et al., 2008a; Taylor et al., 2008; 
Frishkoff et al., 2009). However, these standardized sets will often be 
insufficient to fully describe the metadata for a given experiment. In 
particular, terminologies for the field of neurophysiology are cur-
rently still at a developmental stage (Gardner et al., 2008; Gibson et al., 
2008a). To encourage usage of standardized terminologies from the 
very start of data and metadata collection, we started to set up several 

6www.g-node.org/odml
7www.dublincore.org
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can infer from the type that the described entity is a hardware 
item. This does not imply that specialized section types inherit 
all Properties of the parent type. The Section name could be any 
identifying name that is used to uniquely refer to the specific item.

The terminology shown in Table 2 lists Properties that can be 
used to describe an amplifier. Most of the defined Properties are self-
explanatory. A special feature is seen with the “SwitchingFrequency” 
and the “DutyCycle” properties. They define a “dependency” and a 
“dependencyValue,” indicating that they are only meaningful if the 
specified dependency property (here: “OperationMode”) assumes 
a specific value (here: “Discontinuous”). Tools using the metadata 
can make use of the dependency information for consistency checks 
or to adapt a GUI to offer appropriate values and properties.

When describing hardware items we distinguish the proper-
ties of the item from its actual settings. Properties describe the 
fixed characteristics of a hardware component (e.g., the “Model,” 
“Manufacturer,” or the maximum possible sampling rate of an 
analog input “AIMaxSampleRate,” etc.), whereas settings are the 
actual settings of adjustable features of the device (e.g., the currently 
used sampling rate “AISampleRate”). Accordingly there are two 
terminologies containing HardwareProperties or HardwareSettings 
typed sections. These do not define any Properties of their own 
but are meant as containers for respective hardware Sections. This 
separation allows the same name (e.g., “LowpassCutoff”) to be 
used as a hardware property for an amplifier with a fixed filter as 
well as a setting for one with an adjustable filter. Using the same 
Section names in both contexts (properties and settings) relates 
them to the same entity (Figure 3). The separation is not required 
but we consider it helpful when describing setups and hardware.

to the same dataset. In this case the file Property would simply have 
several values. The Value definition can then be used to specify what 
the files contain. Again, we do not aim at providing a description of 
the format the data is saved in. This is a challenge on its own (see, e.g., 
Durka and Ircha, 2004) and should rather be part of the data file itself.

3.1.2 Hardware terminologies
The hardware terminologies provide Section and Property defini-
tions for describing hardware that was part of the experimental 
setup. There is a range of hardware related terminologies to describe 
specific hardware items. All defined hardware terminologies are 
specialized versions of the “hardware” type. The type of a Section 
to describe an amplifier is then “hardware/amplifier.” With this 
construct a reading tool that may have no concept of an  amplifier 

Table 1 | Dataset terminology.

Name Definition Type

Experimenter The person who recorded the data Person

Start The point in time the recording began Datetime

End The point in time the recording ended Datetime

Comment A comment about the dataset Text

File The location (URL) of files of this dataset URL

File The data file itself Binary

Quality An estimate of the dataset quality String

List of properties defined in the dataset terminology describing a set of recorded 
data. The respective section containing these properties is of the “dataset” type.

Table 2 | Amplifier terminology.

Name Description Data type Dependency Dependency value

Model The model name of this hardware item String – –

Manufacturer The manufacturer of this hardware item String – –

Serial no The device serial number String – –

Inventory no The inventory number of the described hardware item String – –

Owner An identifier of the owner of this hardware item String – –

Amplifier type The type of amplifier. E.g., extracellular amplifier, intracellular amplifier, etc. String – –

Measurement type The type of measurement performed. For example the membrane voltage 

was measured or the cell was current clamped

String – –

Operation mode The operation mode the amplifier was in. The operation mode can be 

“continuous” or “discontinuous” for bridge and switched amplifiers, 

respectively

String – –

Switching frequency The switching frequency of the amplifier Float Operation mode Discontinuous

Duty cycle The duty cycle of the current injections in discontinuous/switched mode. 

Note: The duty cycle refers to the setting of a switched amplifier and is not 

to be confused with the duty cycle used to describe a stimulus protocol 

for square wave current injections

Float Operation mode Discontinuous

Gain The gain of the amplifier Float – –

High pass cutoff The high pass-filter cutoff-frequency Float – –

Low pass cutoff The low pass-filter cutoff-frequency Float – –

List of properties that can be used to define the settings and properties of an amplifier used in electrophysiological setups (Section type: “hardware/amplifier”).
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3.1.3 Stimulus terminologies
The stimulus that was used to evoke the recorded neuronal response 
is a highly important piece of information for which, so far, there 
is no standard way of description. This paragraph briefly illustrates 
how the often quite complex information about the stimulus can 
be stored in an odML metadata file. Stimuli are described by a 
“stimulus”-type Section and its subsections. Figure 4 shows how 
such a description might look like. This visual stimulus (trace on 
top of Figure 4) is a combination of three components. A DC 
shift, a sine wave, and a white noise component are combined and 
delivered using the same “OutputChannel” (“LED1”). The timing 
of the stimulus components is defined by the “TemporalOffset” and 
“Duration” properties. A “TemporalOffset” of zero represents the 
beginning of the stimulus and all other times are relative to this. If 
the different components were multimodal (e.g., a visual stimulus 
combined with a current injection) the respective components 
must define their own “Modality” and “OutputChannel” properties.

4 usIng oDml
As indicated above, the odML model contains more elements than 
are necessary during everyday use for data storage and analysis. 
Using odML should leave all options to the user. The only real restric-
tions imposed are almost trivial: any section must be of a specified 
type and should be named. Any property must have a name and a 
value. Optional fields offer further information: for numerical values 
a unit might be necessary and, if appropriate, a value definition 
that points to a resource that defines the value (for an example see 
Table A4 in Appendix). For neurophysiological datasets we strongly 
encourage using the terms as defined in the terminologies (see text 
footnote 6). However, the approach should be pragmatic:

(1) If you find an appropriate property in the respective termi-
nologies, use it.

(2) Ignore properties that are not needed for describing your dataset.
(3) If you do not find appropriate properties in the terminolo-

gies, add new properties as needed to describe your data. For 
each new property provide a definition (recommended), and 
if you consider it of wider relevance suggest it for inclusion 
in the G-Node standard.

(4) If you strongly disagree with a Property’s name and prefer 
your own term, just provide a mapping to the respective ter-
minology term. This ensures that the metadata can be under-
stood by someone using the standard term.

(5) If a Property’s value is defined in some standard, e.g., an 
ontology like NEUROLEX8, use the Value’s definition field to 
provide a link to the respective definition.

4.1 organIzatIon of the metadata
In odML the hierarchical organization of the metadata tree plays a 
central role in defining which metadata belong together, e.g., which 
Sections are related to the same dataset. Regarding the organization 
of the metadata some simple rules should be obeyed:

(1) The hierarchical organization reflects the relations between 
sections. For example, if there is a “Cell” section that is child 
of a “Subject” section, then this cell is from that subject.

500 ms
odML
 MyStimulus - [stimulus]
  - Duration = 2.25 s
  - Repetitions = 25
  - InterstimulusInterval = 5 s
  - Modality = visual
  - OutputChannel = LED1

  DC - [stimulus/dc]
   - StartTime = 0.0 s
   - Intensity = 10.000 photons/s
   - Duration = 2.25 s

  WhiteNoise - [stimulus/whitenoise]
   - Duration = 2.25 s
   - StartTime = 0.0 s
   - MeanIntensity = 0.0 photons/s
   - StandardDeviation = 350 photons/s 
   - UpperCutoffFrequency = 256 Hz

  Sinewave - [stimulus/sinewave]
   - Duration = 1.0 s
   - StartTime = 1.0 s
   - MeanIntensity = 0.0 photons/s
   - Amplitude = 5.000 photons/s
   - Frequency = 5 Hz
   - Phase = 0

Figure 4 | Describing a stimulus in od ML. odML description of a visual 
stimulus which is an additive combination of three components. The trace on 
top shows how the actual stimulus might have looked like. Sections are 
shown in the form “name – [type].”

odML
 HardwareProperties - [collection/hardware_properties]
  Ampl1- [hardware/amplifier]
   - Type = intracellular amplifier
   - Model = SEC-05LX
   - Manufacturer = npi
   - ...
  DAQ  - [hardware/daq]
   - ...
 HardwareSettings - [collection/hardware_settings]
  Ampl1 - [hardware/amplifier]
   - Gain = 10
   - MeasurementType = CC
   - OperationMode = discontinuous
   - SwitchingFrequency = 20kHz
   - LowpassCutoff = 10kHz
   - ...
  DAQ - [hardware/daq]
   - ...

Figure 3 | Hardware descriptions in odML. Hardware descriptions can be 
split up into the HardwareProperties and HardwareSettings. These container 
sections then group subsections for the individual hardware items used in the 
setup. Sections are shown in the form “name – [type].”

8www.neurolex.org
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The dual recording in Figure 5C again yields a simple flat tree 
structure. Regarding rules 1 and 2 the two cells could have been 
children of the subject section but this would “violate” the rule 5 
of a flat tree structure.

To document several datasets recorded in different recording 
sessions, it would be possible to have a number of recording sections 
in the same metadata file. In this case all dataset sections would 
need to be children of the respective recording sections (rule 1).

4.3 relatIons outsIde the hIerarchy
There are situations in which a strict application of the rules about 
the hierarchical organization (see above) would lead to compli-
cated and redundant structures. To avoid this odML Sections define 
link, include, and reference elements which can be used to introduce 
relations that exist outside the hierarchical organization.

A link is used to refer to sections within the document and contains 
a path in the tree. Paths defining the position in the tree are given by 
Section names, separated by slashes (“/”). Paths are absolute, i.e., they 
begin at the root of the tree. To illustrate the use of links, we consider 
a case in which a number of datasets have been recorded using a 
rather complex stimulus. The stimulus is repeated for each dataset, 
but each time a single stimulus parameter, e.g., the intensity, has been 
changed. It would be valid to provide the full stimulus description 
for each dataset individually but, obviously, this would be cumber-
some and inefficient. Instead, one defines the stimulus once within the 
document and then links to it for each dataset. The referring stimulus 
sections contain only the changes (i.e., the “intensity” properties). 
Links can only exist between sections of the same type and include 
all subsections and properties. Local information, given in the linking 
section, overrides items inherited from the linked Section.

The include element can be used to establish relations to sec-
tions (same type) that are located in an external file. Include 
entries can be either an URL or a path in the file system (rela-
tive or absolute). The URL is followed by a hash symbol (#) and 
the absolute path of the target Section. For example, a stimulus 
Section could contain an include element like “stimulus-metadata.
xml#myStimulus.” This indicates that the stimulus information 
is provided in a stimulus-type section of the name “myStimulus” 
located in the “stimulus-metadata.xml” file in the same folder 
in the file system. Of course care has to be taken if the data is 
shared when local files are referenced. As for the link element 
the locally provided information overrides the one given in the 
included section.

Finally, Sections and Values can be descriptions of entities that 
are entries in a data management system. These entries usually 
have an id, or primary key, for unique identification. The reference 
element of Section and Value is meant to keep this reference infor-
mation. For example, a dataset that is already stored in a database 
is exported and used for further analysis. If it is intended to import 
the respective results back into the data management system a cor-
rect linking can be easily done if the primary key is included in the 
reference element.

4.4 synonyms and mappIngs
Different communities, laboratories, or individuals in the neuro-
sciences do not always agree on how to refer to the same entities. 
The odML approach respects this by allowing to avoid the standard 
without breaking it.

(2) The tree structure defines three basic relations between nodes 
(i.e., the Sections in odML trees) are defined: (i) parent, (ii) child, 
and (iii) sibling relationships. In odML these relations have dif-
ferent precedence. The child relation (subsections, and their 
subsections) is strongest. The strength of the relation between 
nodes descends through siblings (sections that have the same 
parent) to parents and their siblings. More distant relations are 
not considered. For example, if a dataset contains data recorded 
from a single cell this dataset is related that cell. In the odML tree 
this relation can be expressed by having the cell section being 
child of the dataset section. If there several datasets originating 
from the same cell, the dataset sections could be children of the 
same cell section. Siblings are treated equally and without order.

(3) Two instances of the same section type that logically belong 
to the same super-section (e.g., two recorded cells that con-
tributed to one dataset) have to be siblings on the same 
branch of the tree.

(4) If some metadatum is described by a combination of subsec-
tions these compositions must be “pure” in the sense that 
all subsections must be of, or derived from, the same type. 
For example a stimulus description can be a composition of 
stimulus-derived subsections (see Figure 4).

(5) The hierarchy should be kept as flat as possible.
(6) There are some restrictions on the style in which Property and 

Section names as well as Section types are given. All must begin 
with a letter and are then treated case insensitive. In case of 
Section names and types, slashes (“/”) are reserved to separate 
paths in the tree, respectively type components (e.g., “hardware/
amplifier”). By convention the Properties and Sections are given 
in “upper CamelCase” while Section types are all lower case.

The following paragraphs exemplify how to use odML and how 
to organize the metadata according to these rules when describing 
electrophysiological data.

4.2 example: InformatIon about recorded datasets
Figure 5 illustrates how to describe quite common situations in 
electrophysiological experiments. (i) a simple experiment in which 
several datasets were recorded from a single cell (Figure 5A). (ii) 
several datasets have been recorded from different cells of the same 
subject (Figure 5B). (iii) several datasets have been recorded in a 
simultaneous recording of two cells (Figure 5C). These situations 
are briefly described in the following paragraphs. As metadata is 
data about data, the linchpin of odML files discussed here are the 
datasets, that is the dataset-type sections.

The first example (Figure 5A) illustrates a very simple case in 
which the hierarchy can be kept flat, since all datasets (two are 
shown in this example) depend on all other sections (rule 2) and 
there is no need for more complex structures in the actual metadata 
file (rules 1 and 5). Other structures to arrange these items are 
possible but not encouraged.

The second example (Figure 5B) shows a case where datasets 
originating from two different cells recorded in the same subject 
have to be described. Again, each of the dataset sections shown 
are related to the same project, experiment, recording, and subject 
information, according to rule 2. Their parent “cell” sections are 
different, reflecting the two different cells from which the datasets 
were obtained.
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there, one can use the carmen_mini terminology http://portal.g-
node.org/odml/terminologies/v1.0/carmenMini/carmen_mini.xml 
which defines the mapping between the MINI and the standard 
odML-terminologies. Thus, transferring data between the CARMEN 
database and an odML compliant tool is directly possible. Figure 6 
shows how the mapping works. The odML tree on the left side is 
created with the terms defined in the carmen_mini terminology. 
The Sections and Properties carry mapping information (the URLs) 
to respective Sections and Properties in the standard odML-termi-
nologies. The odML-libraries (see below) can use these mappings 
to convert the tree to one that complies the odML-terminologies 
(right part of Figure 6). In cases in which a Property does not provide 
mapping information (“SpeciesIdentifier” Property in the “Subject” 
Section) it kept as is and is mapped into the its parent’s counterpart. 
The same principle applies for Sections that do not provide map-
ping information. Generally mapping information is provided in 
the terminologies. Thus, it is not necessary to provide them with 
the actual metadata files. In case of a conflict between the provided 
mapping and the one given in the terminology, the one in the actual 
metadata file overrides the terminology mapping.

Furthermore, the standard odML-terminologies logically group 
properties into sections. This structure may in some cases not match 
the structure a scientist or laboratory uses to describe their meta-
data. In these cases, the possibility to define mappings between own 
Properties and Sections to those in the terminologies provides inter-
operability. With mappings it is possible to define synonyms for single 
Properties or also to define custom compact and non-hierarchical ter-
minologies for everyday use, which defines mappings to the standard 
terminologies. The mapping information can be given for Sections 
and Properties and is provided in form of an URL. For Sections this 
URL points to the terminology of the target Section, whereas the 
reference part of the URL contains the path of the target Section (see 
Figure 6 mapping of “StudySubject”). For Properties the appropriate 
section reference is followed by a colon and the destination prop-
erty (see Figure 6). The odML-libraries (see below) can apply this 
mapping information and convert a metadata file that was written 
according to the local terminology to a file that is compatible to 
the layout suggested by the odML-terminologies. For example, the 
CARMEN consortium works with a specific set of metadata (Gibson 
et al., 2008a). If one is used to work with the  metadata terms defined 

A Single cell recording several datasets

odML
 Project1 - [project]
  - Description

 Experiment1 - [experiment]
  - Description

 Session1 - [recording]
  - Start
  - End
  - Experimenter

 SubjectA - [subject]
  - Species
  - Gender
  - Age
 

 CellA - [cell]
  - Type
  - BrainRegion
  - RecordingLocation
  - RestingPotential

 Dataset1 - [dataset]
  - Start
  - End
  - FileURL
  - Quality

 Dataset2 - [dataset]
  - Start
  - End
  - FileURL
  - Quality

B Two cells subsequently recorded,  several datasets each

odML
 Project2 - [project]

 Experiment2 - [experiment] 

 Session1 - [recording]

 SubjectB - [subject]

 CellA - [Cell]
  Dataset1 - [dataset]
  Dataset2 - [dataset]

 CellB - [Cell]
  Dataset3 - [dataset]
  Dataset4 - [dataset]
  Dataset5 - [dataset]
 

C Two cell simultaneously recorded, several datasets

odML
 Project2 - [project]

 Experiment3 - [experiment] 

 Session1 - [recording]

 SubjectC - [subject]

 CellA - [cell]

 CellB - [cell]

 Dataset1 - [dataset]

 Dataset2 - [dataset]

Figure 5 | Transporting dataset information in odML. (A) Parts of the 
description of a simple electrophysiological experiment in which a single cell was 
recorded and several datasets were saved to disk. (B) Experiments in which 

several datasets have been recorded in a number of cells from the same subject. 
(C) Description of simultaneous recordings of two cells. Note: For clarity 
Properties are omitted in (B,C). Sections are shown in the form “name – [type].”
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apply

mapping 

odML
 CarmenMini
  ContactAndContext
   - DateAndTime  --> http:// ... /recording/recording.xml#recording:Start
   - ResponsiblePerson  --> http:// ... /project/project.xml#project:PrincipleInvestigator
   - ExperimentalContext --> http:// ... /project/project.xml#project:Description
   - ElectrophysioloyType --> http:// ... /experiment/experiment.xml#experiment:Type

  Recording
   - Solutions   --> http:// ... /preparation/preparation.xml#preparation:BathSolution
   - ElectrodeImpedance --> http:// ... /electrode/electrode.xml#electrode:Impedance

  StudySubject   --> http:// ... /subject/subject.xml#subject
   - Species  --> http:// ... /subject/subject.xml#subject:Species
   - Sex   --> http:// ... /subject/subject.xml#subject:Gender
   - Age   --> http:// ... /subject/subject.xml#subject:Age
   - SpeciesIdentifier 

  RecordingLocation 
   - CellType  --> http:// ... /cell/cell.xml#cell:CellType
   - LocationStructure --> http:// ... /cell/cell.xml#cell:Structure
   - BrainArea  --> http:// ... /cell/cell.xml#cell:BrainArea
   - SliceThickness  --> http:// ... /preparation/preparation.xml#preparation:SliceThickness

  TimeSeriesData
   - SamplingRate   --> http:// ... /hardware/daq.xml#daq:AISampleRate
   - FileLocation    --> http:// ... /dataset/dataset.xml#dataset:File

root
 Project
  - PrincipalInvestigator
  - Description

 Recording
  - Start

 Experiment
  - Type

 Subject
  - Species
  - Gender
  - Age
  - SpeciesIdentifier

 Cell
  - CellType 
  - BrainArea
  - Structure

 Preparation
  - BathSolution
  - SliceThickness

 Electrode
  - Impedance

 Hardware
  DataAcquisition
   - AISampleRate

 Dataset
  - FileURL

Figure 6 | using mappings. This figure shows how mappings can be applied 
to convert a metadata tree from one layout to another. The left panel shows 
metadata that are organized as suggested by the CARMEN “Mini” metadata 
standard. The metadata file is in the odML format and refers to the CarmenMini 

terminology which defines mappings for properties and sections. These are 
URLs to the respective properties in the odML-terminologies. Applying this 
mapping information converts the tree to the layout suggested by the 
odML-terminologies (right panel).

LisTiNg 1 | using odML in Matlab. Example code shows how odML could be used during everyday work in the lab. The listing shows Matlab command line 
calls.
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defined by the option flag, includes external files, resolves links, and 
converts the tree, if mapping information is provided. Mappings are 
either specified in the metadata itself or in the used terminologies. 
Line 9 and following: the dataset sections defined in the metadata are 
found. These are retrieved by looking for the “dataset” section type. 
One could also look for them by name, if known. The returned set 
(a Java Vector) contains references to the respective sections in the 
metadata tree which can be passed to the analysis function. Such 
a function is sketched in Listing 2. In this example loading data is 
handled by a further matlab function (that is not part of the odML 
library line 13). The analysis function returns, besides the results, 
the analysis metadata (line 14) which are appended to the dataset 
metadata (line 18). Finally, the new metadata is written to a file 
using an instance of the Writer class (lines 22, 23).

The “powerSpectrum” function sketched in listing 2 takes the 
data, the respective metadata Section and a constant. For the per-
formed tasks it needs to extract some information from the meta-
data. Lines 6 and 7: For this, the library is asked for a related Section 
of the specified type. For example, the rate with which the data is 
sampled should be found in a Property called “SampleRate” that 
is part of a hardware/daq (data acquisition) type section. In odML 
there are no strict rules where this section is located in the metadata 
tree. The library tries to return the section with the strongest rela-
tion according to the rules defined above. If this operation fails the 
code will raise an exception which is caught by the surrounding 
try–catch clause. Line 14: Here, a Section is created that will contain 
the analysis metadata. Line 15: Setting the repository URL indicates 
that the terminology defining a section of this type can be found 
at the specified location. Line 17: this line uses the matlab function 
“mfilename” to find out the actual function name which is inserted 
into the Method–Property. Line 18: An instance of the java.util. Date 
class, which contains the current date, is passed to the Date-Property.

4.5 supportIng tools
On the odML website at www.g-node.org/odml we offer libraries 
and tools to manipulate odML metadata. So far, there is a Java 
implementation which can be easily used with Matlab. We currently 
work on implementations of these odML-libraries in C/C++ and 
Python. By means of these libraries custom software can be easily 
extended to automatically write or read odML files. We also offer an 
editor to create, view, and manipulate odML files. All this software 
is freely available and open-source.

In our laboratory, odML is used to transfer metadata from the 
recording program that automatically writes metadata to disk 
(RELACS by Jan Benda)9 and our data management tool (The LabLog 
by Jan Grewe)10. The G-Node data management system11 supports 
odML as a format for metadata import and export. Furthermore, 
it is planned to integrate odML support into the Vision Egg (Straw, 
2008), a free tool to generate and present visual stimuli.

4.6 example scenarIo
This paragraph briefly describes an example scenario when using 
odML in the lab. For this example it is assumed that a set of data-
sets has been recorded and that the recording tool has written the 
metadata into an odML file. The following listings describe how one 
could use the metadata during data analysis in Matlab. The underly-
ing odML library is written in Java and can be easily used in Matlab.

Line 2: Call of a Matlab function that imports the odML library 
and the used logger to the Matlab classpath. Line 5: the reader 
variable is an instance of the Reader class which handles reading 
of odML files. Line 6: load-function reads the metadata and, as is 

LisTiNg 2 | Dummy Matlab function “powerspectrum.m” to illustrate how metadata can be retrieved and used during data analysis.

9www.relacs.net
10www.lablog.sourceforge.net
11www.g-node.org/data
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(Amari et al., 2002; Gupta et al., 2008), and there are now several 
initiatives that set out to foster the sharing of neurophysiological 
data (Gardner et al., 2001a, 2008; Gibson et al., 2008a; Herz et al., 
2008; Teeters et al., 2008). A particular issue in the sharing of 
neurophysiology data is the relatively large amount of additional 
information necessary to describe an experiment. Moreover, this 
meta-information is often highly complex and can vary from 
laboratory to laboratory and from experiment to experiment, 
depending on the specific scientific context in which the experi-
ment was conducted. This situation is complicated further by the 
lack of a standardized terminology in the field, where different sub 
disciplines may use different terms to describe the same neural 
structure, brain location, or neuron type (Bezgin et al., 2009). For 
some sub themes of the neurosciences standards and ontologies 
have been developed (Gardner et al., 2001b; Crook et al., 2005; 
Bowden et al., 2007; Bug et al., 2008; Frishkoff et al., 2009; Larson 
and Martone, 2009). The main difference between the mentioned 
ontologies and the odML-terminologies is that the ontologies 
define terms for what would be a Value in an odML – Property. 
The odML-terminologies will not be extended in this direction. 
Rather, it is suggested to have values referring to entities defined 
in an ontology (for example by providing the respective resource 
location in NEUROLEX (see text footnote 8) or BrainInfo13 in 
the definition element of the Value).

The odML-terminologies are no replacement for ontologies but 
can support ontology development. For example, currently there 
are no ontologies for setup, hardware, or stimulus descriptions. Our 
proposed method for specifying metadata could in turn provide an 
efficient method to support these developments by analyzing the 
metadata that scientists actually use in certain contexts.

5.3 annotatIons In other data formats
Many data formats like the Exif format for image metadata14 or ID3 
tags for music annotation15 use pre-defined key–value pairs for data 
annotation. This approach is especially useful for cases in which the 
type of data that requires description and thus the required meta-
data terms are known in advance. The situation is more difficult 
when describing scientific data which is variable in many respects. 
The odML approach of storing metadata in the hierarchical way is 
to some extent similar to the way data annotations can be handled 
in other formats. HDF5 specifies the tree structure of nodes. These 
can contain attributes which are essentially key–value pairs. Nodes 
and attributes are thus similar to Sections and Properties but lack the 
opportunity of standardization. The “Scientific Data Set” extension 
of HDF516 offers pre-defined attributes, in addition to the “free” 
attributes. This gives control over the terms used in the attributes 
but requires that the user commits himself to the pre-defined ter-
minology. In our view these solutions are not sufficient for flexible 
and extensible data annotations. For this we decided to keep the 
metadata separated from the actual data and to use a format that 
does not restrict the user but allows to apply the terminologies 
for standardization. For future development we aim at solutions 

5 dIscussIon
The key aspect of our approach to metadata handling is a com-
mon format for both the actual metadata and terminologies. 
This allows for flexible storage of any metadata, since new keys 
 (Property-names) can be immediately added, without the need to 
extend a terminology or schema beforehand. Terminologies guar-
antee interoperability and are built-in a bottom-up way by the sci-
entist that work with the data. With odML we provide a format and 
tools for automated metadata handling, so that the threshold for 
collecting metadata is considerably lowered. We hope that the flex-
ibility of odML will convince scientists to embed metadata handling 
into their recording, data analysis, and management tools, thereby 
laying the foundation for large-scale collaborations, in particular 
in the neurosciences.

5.1 advantages and dIsadvantages of usIng a generIc 
metadata model
We propose to use a generic data model for the metadata. The 
nested tree-like organization, in our opinion, is easily comprehen-
sible and flexible. It further has a very limited number of struc-
tural elements. An alternative would have been a fully defined 
data model with clearly defined terms and constructs, as used in 
most annotation approaches (Gardner et al., 2001a; Gibson et al., 
2008a). Such a design has clear advantages, for example, a guaran-
teed structure with detailed validation options. However, in our 
view it also has severe disadvantages: (i) it is hard to foresee what 
entities any one scientist might need to describe and (ii) using a 
completely specified model means that the user has to internalize 
all of its elements and dependencies and to accept the designated 
terms defined in the model. The odML data model itself does 
not impose standards. The terminologies introduce options for 
standardization and validation in a “soft” fashion which may be 
overridden by the user. This bears the risk of inconsistencies and 
leaves responsibility on validity to the user. However, this loose 
standardization is the key for flexibility and immediate exten-
sibility, which we consider essential for practical application in 
the laboratory. Restricting as little as possible may be the key to 
convince researchers of annotating their data to allow reproduc-
ibility and support data sharing.

One further advantage of the generic model lies in the inter-
change of (meta)data between databases. Instead of writing and 
maintaining converters between all the different data models, it 
would suffice if each tool or platform could import and export 
metadata from the generic model. odML is very different form 
metamodel approaches like XMI12 (which are designed for data 
transfer between different data models). XMI, however, requires 
the existence of detailed data models which do not yet exist for 
neurophysiological metadata.

5.2 termInologIes and ontologIes
Compared to other disciplines in biology, such as Genomics 
and Proteomics (e.g., Gelbart et al., 1997; Stoesser et al., 1997), 
the neurosciences lag behind regarding the use of databases for 
the organization and exchange of data. Only recently attempts 
have been started to integrate neuroscience databases structures 

12www.omg.org/spec/XMI

13www.braininfo.rprc.washington.edu
14www.exif.org
15www.id3.org
16www.hdfgroup.org/sds_api.html
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7.4 xml ImplementatIon
The odML definition is independent of a specific file format. In the 
following we describe its implementation using XML respectively 
as an XML Schema (www.w3.org/TR/xmlschema-2/). XML is a 
widespread markup language and often used for data description 
and exchange (Gardner et al., 2001b, 2008; Durka and Ircha, 2004; 
Crook et al., 2005). It is supported by almost any programming lan-
guage. Implementing odML support in any custom program should 
therefore be easily achieved. The original files can be converted into 
other formats like, for example, HTML for displaying the file in a 
web browser. Using an XML schema definition enables structural 
validation of an odML metadata file with built-in validators of com-
mon XML-parsers. Figure A1 shows the actual schema definition 
(file odML.xsd). Further, using XML leaves the files human readable 
and editable by many text editors and more specialized XML editors.

XML has some disadvantages as well. For example the format 
is not the most efficient regarding file-size or readability. There 
are other quite successful languages like YAML (www.yaml.org) or 
JSON (www.json.org) that can be more efficient and offer some 
other useful features, like a built-in support for lists, which is not 
supported by XML directly. Our format resembles to some extent 
definitions made in the RDF-format (www.w3.org/TR/rdf-schema) 
but is much more focused on the specific uses described here. odML 
could be implemented in any of these languages likewise.

7 appendIx
7.1 element descrIptIons
The following tables contain all elements defined in the odML meta-
data model together with definitions and examples.

All content is encapsulated into a “Root section” which con-
tains some document-related information (Table A1), and a set 
of Sections but no Properties. The elements defined in a Section are 
shown in table Table A2. Sections contain subsections and Properties 
(Table A3) which in turn contain Values (Table A4).

7.2 data types
Table A5 lists the data types to be used in odML files.

7.3 defIned oDml-termInologIes
Table A6 lists all so far defined odML-terminologies together with a 
short definition. This list, is not fixed and will grow. All terminolo-
gies can be found on the project web pages http://www.g-node.
org/odml.

Table A1 | Open metaData Markup Language root section.

element Mandatory Description example

Author No The author of the document –

Date No The date the document was created (yyyy-mm-dd format) –

Version No The version of the document –

Repository No Defines the default repository used in this document. This information is overwritten by repository elements in 

subsections

–

Section(s) Yes (at least 1) The first level subsections of the odML tree –

The root section elements and their meaning in detail.
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Table A2 | Open metaData Markup Language section.

element Mandatory Description example

Type Yes The section type. The type allows categorization. For example we suggest that all 

hardware related section to be of the “hardware” type. A section must have a type 

while the user is free to add new types. Type entries can occur only once in a section

Hardware/amplifier

Name No The section name. This entry should be given but may be overridden by a Property 

named with “name.” Usually the name describes what kind of information can be 

found in this section

AmplifierNo1

Definition No Defines the information contained in the section This section describes the properties 

and settings of an amplifier.

Reference No The identifier for the entity represented by this section as it may be used in a data 

management system, etc.

Ampl-z42

Link No This element defines an internal link within the actual document or odML tree, 

respectively. Links can be used to create sections that “inherit” information from the 

linked section and overwrite and extend it

(See “How to use” paragraph in the 

main text)

Include No This element defines a link to an external odML file or a section within that file. This 

can be the URL, an absolute or relative path

(See “How to use” paragraph in the 

main text)

Repository No A section can be based on a pre-defined terminology (see below). The repository 

element specifies the file in which the definition can be found, e.g., http://

portal.g-node.org/odml/terminologies/v1.0/terminologies.xml

Mapping No A section may also map to another section. When conversion is requested, all 

containing properties, as long as they themselves don’t define a mapping, will be put 

into the target section

Section No A section can have subsections allowing to build a tree-like structure

Property No A section can have properties which constitute the actual content of the section

The section elements and their meaning in detail.

Table A3 | odML-property.

element Mandatory Description example

Name Yes The name of the property “Firing rate”

Value Yes The value (see Table A4) of the property. It is allowed to have more than one value 

element

–

Definition No This entry defines the meaning of this property. Can be given only once The number of action potentials 

fired by a neuron per second

Mapping No The mapping element maps a property to a different one, e.g., one defined in an 

odML-terminology

Dependency No This element offers the opportunity to introduce dependencies between properties: 

i.e., this very property may only be meaningful if a certain other property is also 

specified in the same section (see Table 2 for an example). The odML library or 

Graphical User Interfaces (GUIs) can use this information to validate the content or to 

adjust the GUI. Can be given only once

–

Dependency value No The dependencyValue further specifies the dependencies of this property. It can 

restrict the dependency to the case in which the property referred by the dependency 

field assumes the very value given with this field (see Table 2 for an example). Can be 

given only once

–

The property elements and their meaning in detail.

Grewe et al. odML bottom-up approach to data annotation

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 16 | 15

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Table A4 | odML value.

element Mandatory Description example

Value Yes The value of the property 53.4

Uncertainty No Specifies the uncertainty of the value. The number of uncertainty values given should 

match the number of values. Error estimates must have the same unit as the value (e.g., 

SD not the variance). What kind of uncertainty measure is used can be specified in the 

definition element

6.2

Unit No The unit of the value and the uncertainty. Can be given only once. Hz

Type No This entry specifies the data-type (see Table A5) of the value. This can be used by tools 

to adjust the appearance and handling of, e.g., “integer” or “text” entries. Can be 

specified only once

Float

Definition No This entry is meant for definitions regarding the value. For example it can be used to 

refer to an ontology, http://neurolex.org/wiki/Category:Hippocampus_CA1_pyramidal_

cell

Reference No The reference entry can be used to, e.g., refer to an entry in a database –

Filename No The filename that should be used if binary content is transported in this property. There 

may be one filename for each value entry

–

Encoder No Binary content must be encoded into ascii to be included in odML files. State the 

applied encoder using this element

Base64

Checksum No If binary content is directly included or if the URL of an external file is given, the 

checksum entry can be used to validate the file’s identity, integrity. Use this element to 

indicate the algorithm and the checksum in the format algorithm$checksum

crc32$b84892a2 for a checksum 

calculated with a crc 32 bit algorithm

The value elements and their meaning in detail.

Table A5 | Data types.

Type Description example

Int Integer value −1024

Float Floating point value −3.1416

String Any short string of characters A short comment

Text Longer text potentially spanning several lines A much longer text that might require more than one line

n-Tuple Tuples with n elements embraced in parentheses separated by “;.” n indicates the 

number of elements. These are typically integer or float values but there is no hard 

restriction in the format

E.g., resolution of a screen (1024;768) pixel, or 

coordinate information.

Date Date in yyyy-mm-dd format 2009-05-26

Time The local time in hh:mm:ss format 11:51:00

Date time Date and time joined (“yyyy-mm-dd hh:mm:ss”-format) 2009-05-26 11:51:00

Boolean True or false True

URL A resource (file) location on the local filesystem or on the web

Binary Binary content of, e.g., an image file (base64 encoded)

Person The entered value describes a person. Data type used for name matching in the 

library

John Doe or Doe, John, or J. Doe, etc.

Valid data types for values and uncertainties of a odML-Property that should be used when specifying metadata. These types are not restricted in the format or 
implementation thus, new types could be invented.
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Table A6 | section types.

section type Description

Analysis Descriptions of an analysis.

Analysis/psth Properties to describe a peri stimulus time histogram.

Analysis/power spectrum Properties to describe a power spectrum.

Analysis/coherence Properties to describe a coherence spectrum.

Cell Descriptions of a recorded cell.

Collection/event list Section to combine lists of events.

Collection/hardware properties Descriptions of the hardware characteristics.

Collection/hardware settings Descriptions of the actual hardware settings like filter adjustments, etc.

Dataset Description of a dataset. Recording time, files, etc.

Electrode Description of an electrode.

Event Generic descriptions of an event.

Experiment General Experiment descriptions.

Experiment/behavior For descriptions of an behavioral experiment.

Experiment/electrophysiology Properties to describe an electrophysiological experiment.

Experiment/imaging Properties to describe an imaging experiment.

Experiment/psychophysics Properties to describe psychophysical experiments.

Hardware Descriptions of an hardware item.

Hardware/amplifier Descriptions of an electrophysiological amplifier (type, operations mode…).

Hardware/attenuator Descriptions of an attenuator device (gain…).

Hardware/camera objective Description of an camera objectives (focal length, aperture…).

Hardware/daq Properties and settings of a data acquisition device.

Hardware/eyetracker Properties and settings of an eyetracker device.

Hardware/filter Description of a filter device (lowpass, bandpass, highpass, etc.).

Hardware/filterSet Description of a filter set or filter cube used in a microscope.

Hardware/iaq Properties and settings of an image acquisition device (camera, frame grabber)

Hardware/light source Description of a light source.

Hardware/microscope Description of a microscope.

Hardware/microscope objective Descriptions of a microscope objective.

Hardware/scanner Descriptions of the scanner used to sample microscope images.

Hardware/stimulus isolator Descriptions of an stimulus isolator device.

Person Descriptions of a person.

Preparation Properties to describe preparation procedures (in vivo, in vitro, etc.)

Project Properties to describe the scientific project to which recorded data belongs

Recording Properties to describe a recording session. (date, experimenter, etc.)

Setup Properties to describe a recording setup

Stimulus Properties to describe a stimulus

Stimulus/dc A constant stimulus (DC) or stimulus intensity offset

Stimulus/gabor Definition of a gabor stimulus

Stimulus/grating Definition of a grating stimulus (squareqwave or sine wave, etc.)

Stimulus/movie Definitions of an image sequence

Stimulus/pulse Description of a pulse stimulus (width, intensity, timing…)

Stimulus/ramp Description of a ramp stimulus (slope start intensity…)

Stimulus/random dot Description of random dot stimulus

Stimulus/sawtooth Descriptions of a sawtooth stimulus

Stimulus/sine wave Descriptions of a sine wave stimulus (frequency, amplitude…)

Stimulus/squareWave Descriptions of a squarewave stimulus (frequency, amplitude…)

Stimulus/whiteNoise Descriptions of a white noise stimulus (cutoff-frequency, SD…)

Subject Description of an experimental subject (species, age, sex…)

The type of a section defines what kind of information is contained.
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<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  targetNamespace=”http://www.g-node.org/odml”>
<!--                         1                           -->
<!--      THE PROPERTY TYPE IS THE BUILDING BLOCK OF ALL odML METADATA.   -->
<!--          PROPERTIES BASICALLY CONSIST OF name/value PAIRS.     -->

<!-- A: Value Subtype                                               -->
<xs:element name ="value" type=”xs:string”>
   <xs:complexType>
      <xs:choice minOccurs="0" maxOccurs="unbounded">
         <xs:element name="type" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="uncertainty" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="unit" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="reference" type="xs:string" minOccurs="0" maxOccurs="1"/>
    <xs:element name="definition" minOccurs="0" maxOccurs="1"/>
         <xs:element name="filename" minOccurs="0" maxOccurs="1"/>

      </xs:choice>
   </xs:complexType>
</xs:element>
<!-- B: Property                                               -->
<xs:element name ="property">
   <xs:complexType>
      <xs:choice minOccurs="0" maxOccurs="unbounded">

<!-- if there is a NAME there must also be a VALUE  -->
         <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
         <xs:element ref="value" minOccurs="1" maxOccurs="unbounded"/> 

<!-- all other elements are optional  -->
    <xs:element name="definition" type="xs:string" minOccurs="0" maxOccurs="1"/>   
    <xs:element name="mapping" type=”xs:string” minOccurs="0" maxOccurs="1"/>
    <xs:element name="dependency" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="dependencyValue" type="xs:string" minOccurs="0" maxOccurs="1"/>
      </xs:choice>
   </xs:complexType>
</xs:element>
<!--                       2                   -->     
<!--    SECTIONS ARE MEANT TO CONTAIN PROPERTIES THAT BELONG     -->
<!--      LOGICALLY TOGETHER THESE MAY HAVE SUBSECTIONS         -->   
<xs:element name="section">
   <xs:complexType mixed="true">
      <xs:choice minOccurs="0" maxOccurs="unbounded">
         <xs:element name="name" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="type" type="xs:string" minOccurs="1" maxOccurs="1"/>
         <xs:element name="reference" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="definition" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="link" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="include" type="xs:string" minOccurs="0" maxOccurs="1"/>
         <xs:element name="repository" type="xs:string" minOccurs="0" maxOccurs="1"/>
      <xs:element name="mapping" type=”xs:string” minOccurs="0" maxOccurs="1"/>
         <xs:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
         <xs:element ref="section" minOccurs="0" maxOccurs="unbounded"/>
      </xs:choice>
   </xs:complexType>
</xs:element>
<!--                          3                               -->
<!-- THE ROOT ELEMENT THAT CAN CONTAIN ALL THE INFORMATION THE USER WANTS TO PROVIDE -->
<!--    THE ROOT ELEMENT ITSELF CAN ONLY CONTAIN SECTIONS BUT NO PROPERTIES     -->
<xs:element name="odML">
   <xs:complexType mixed="true">
      <xs:choice minOccurs="0" maxOccurs="unbounded">
         <xs:element name="author" type=”xs:string” minOccurs="0" maxOccurs="1"/>
         <xs:element name="date" type=”xs:date” minOccurs="0" maxOccurs="1"/>
         <xs:element name="version" type=”xs:string” minOccurs="0" maxOccurs="1"/>
    <xs:element name=”repository” type="xs:string" minOccurs="0" maxOccurs="1"/>
    <xs:element ref="section" minOccurs="1" maxOccurs="unbounded"/>
     </xs:choice>
   <xs:attribute name="version" type="xs:string"/>
  </xs:complexType>
</xs:element>
</xs:schema>

         <xs:element name="encoder" minOccurs="0" maxOccurs="1"/>
         <xs:element name="checksum" minOccurs="0" maxOccurs="1"/>

Figure A1 | The odML schema. XML-schema definition of the odML format. 
This schema can be used to validate odML files, i.e., check their structural 
conformity. Note that XML is case-sensitive. This means that the tags (“property,” 

“section,” “name,” etc.) have to be written as defined in this schema. In our 
schema all tags use the “lower camelCase” or “compoundNames” which is 
lower case except for the first letter of subsequent words in composite terms.
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