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INTRODUCTION

In this work we use a large scale regularization approach based on penalized logistic regres-
sion to automatically classify structural MRI images (sMRI) according to cognitive status.
Its performance is illustrated using sMRI data from the Alzheimer Disease Neuroimaging
Initiative (ADNI) clinical database. We downloaded sMRI data from 98 subjects (49 cog-
nitive normal and 49 patients) matched by age and sex from the ADNI website. Images
were segmented and normalized using SPM8 and ANTS software packages. Classifica-
tion was performed using GLMNET library implementation of penalized logistic regression
based on coordinate-wise descent optimization techniques. To avoid optimistic estimates
classification accuracy, sensitivity, and specificity were determined based on a combina-
tion of three-way split of the data with nested 10-fold cross-validations. One of the main
features of this approach is that classification is performed based on large scale regulariza-
tion. The methodology presented here was highly accurate, sensitive, and specific when
automatically classifying sMRI images of cognitive normal subjects and Alzheimer disease
(AD) patients. Higher levels of accuracy, sensitivity, and specificity were achieved for gray
matter (GM) volume maps (85.7, 82.9, and 90%, respectively) compared to white matter
volume maps (81.1, 80.6, and 82.5%, respectively). We found that GM and white matter
tissues carry useful information for discriminating patients from cognitive normal subjects
using sMRI brain data. Although we have demonstrated the efficacy of this voxel-wise clas-
sification method in discriminating cognitive normal subjects from AD patients, in principle
it could be applied to any clinical population.

Keywords: high dimensional, large scale regularization, logistic regression, GLMNET, ADNI, curse of dimensionality,
elastic net

Brain aging classification analyses of structural MRI images

Machine learning methods have become powerful tools for analyz-
ing neuroimaging data. Their multivariate nature allows them to
take into consideration correlations present in the data, overcom-
ing limitations of standard analytical approaches. In particular,
the prediction capabilities of machine learning methods are ideal
for many clinical applications. One area of neuroimaging research
where these techniques have gained attention is in the early detec-
tion and diagnosis of Alzheimer’s disease (AD). Since it is very
likely that the pathophysiologic processes leading to AD start well
before the onset of clinically detectable symptoms, methods of
early detection are paramount to facilitate subsequent interven-
tions that might decrease progression and morbidity associated
with this devastating disease (Mueller et al., 2005a,b). Machine
learning techniques could be of great utility for their potential
to uncover subtle atrophy patterns in the neuroimaging data that
otherwise are very difficult to detect by a human expert using
traditional analyses and diagnostic techniques (Davatzikos, 2004).

(sMRI) are especially challenging due to the high dimension-
ality defined by the large number of voxels, while the number
of available samples is often small. This characteristic makes the
classification problem intrinsically ill-posed and regularization is
needed to solve it (Tikhonov and Arsenin, 1977). One way to alle-
viate the problem is to use dimensionality reduction, for example,
via region of interest (ROI) based measures instead of voxels as
input features (Lerch et al., 2008; Magnin et al., 2009), principal
component analysis (Teipel et al., 2007), or partial least squares
(PLS; Phan et al,, 2010). Vemuri et al. (2008) have developed a
method composed of several steps that uses down sampling of the
sMRI images and feature selection to construct the final feature
vectors that are fed into a linear support vector machine (SVM;
Boser et al., 1992; Vapnik, 1998) for the final classification step.
Davatzikos and colleagues have developed a methodology called
COMPARE (Fan et al., 2007) that also consists of several steps
that combine filtering, image processing, and feature selection
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procedures, with the goal of identifying homogeneously discrim-
inative regions that are fed into a non-linear SVM. In the case
of COMPARE, the processing steps are preceded by a normal-
ization procedure based on a high dimensional warping method
called HAMMER (Shen and Davatzikos, 2002). Potential draw-
backs of all these approaches are the possibility of discarding
useful information present in the images during the dimension
reduction process and producing features that do not necessar-
ily follow the patterns associated with different disease processes.
In order to avoid these problems it would be desirable to have
a classification procedure able to directly operate on voxel space.
We introduce here a large scale classification method based on
penalized logistic regression, as well as on recent methodological
developments in optimization and regularization theory. Different
versions of penalized logistic regression have been used before in
genetics research to analyze microarray and sequence data (She-
vade and Keerthi, 2003; Zhu and Hastie, 2004; Liu et al., 2007;
Park and Hastie, 2008), stroke deficits prediction (Phan et al.,
2010), fMRI data analysis (Yamashita et al., 2008; Ryali et al.,
2011), and to study associations of brain tissue atrophy to hor-
mone therapy treatments (Casanova et al., 2011). Here, our main
aim is prediction of cognitive status based on sMRI images via
large scale regularization, or, in other words, solving problems of
very large size. For this purpose we applied PLR with coordinate-
wise descent optimization as implemented in the GLMNET library
(Friedman et al., 2007, 2010) to solve the classification problem.
This family of methods is very efficient and has the ability to deal
with very large classification and regression problems, as the one
posed by voxel-wise classification of sMRI images. We combine
our classification procedures with a high dimensional normaliza-
tion procedure implemented in the software package ANTS, which
is based on symmetric diffeomorphic registration (SyN; Avants
et al., 2008). In the largest evaluation of non-linear brain regis-
tration algorithms to date, SyN was found to be a top-ranking
performer, providing among the best results according to over-
lap and distance measures, and delivering the most consistently
high accuracy across subjects and label sets (Klein et al., 2009).
Previous work has evaluated ANTS performance when automated
labeling of elderly and neurodegenerative brain images is carried
out (Avants et al.,, 2008) and also the impact of ANTS similar-
ity metrics on brain image registration (Avants et al., 2011). Our
work sheds further light about ANTS performance in the context
of machine learning analyses of brain imaging data and specifically
for automatic detection of AD.

There are a few classification methodologies that rely on large
scale regularization; most are based on SVM (Ashburner, 2007;
Kloppel et al., 2008; Cuingnet et al., 2010a) and the kernel
approach. For example, Kloppel and colleagues used linear SVM
for automatic classification of gray matter (GM) maps combining
it with a high dimensional normalization technique called DAR-
TEL (Ashburner, 2007; Kloppel et al., 2008). We characterize the
performance of our approach by reporting the accuracy, sensitiv-
ity, and specificity of classifying sMRI images downloaded from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) website
(Mueller et al., 2005a; Petersen et al., 2009). We also study how
informative different brain tissues and morphometric measures
are for automatic classification of sMRI in AD.

MATERIALS AND METHODS

ADNI DATABASE

Magnetic resonance imaging (MRI) data used in this study were
obtained from the ADNI database! sponsored by the NIH and
industrial partners. The primary goal of ADNI is to test whether
serial MRI, positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment can
measure the progression of mild cognitive impairment (MCI) and
early AD. Further information can be found in (Mueller et al,,
2005b) and at www.adni-info.org.

PARTICIPANTS

We used baseline 1.5T T1-weighted MRI data as described in the
ADNI acquisition protocol (Jack et al., 2008) from 49 subjects with
AD and 49 cognitively normal controls (CN). The selected controls
did not convert to MCI across the follow-up period of 36 months.
The average age and baseline MMSE score was 76 and 29.9 for the
controls, and 75 and 23.6 for the AD group, respectively. The two
groups were matched approximately by sex (AD — 24 m, 25 f and
CN - 25,24 m).

MRI SCANS

The ADNI protocol acquires two sets of structural data at each
visit. These data are rated for image quality and artifacts by
ADNI investigators (Jack et al., 2008). To enhance standardization
across sites and platforms, the best quality data set then under-
goes additional preprocessing, including correction for gradient
non-linearity (Jovicich et al., 2006) and correction for intensity
non-uniformity (Narayana et al., 1988). In the present study, these
optimally pre-processed images were downloaded from the ADNI
database and used for subsequent analysis in this study.

IMAGE PROCESSING

Symmetric diffeomorphic registration

Identification of differences in populations on the basis of imag-
ing studies is highly dependent on the ability to precisely align
the cortical and subcortical features between different subjects.
SyN uses diffeomorphisms (differentiable and invertible maps
with differentiable inverse) to capture both large deformations and
small shape changes (Avants et al., 2008). The SyN normalization
procedures have been implemented in the freely available ANTS
software toolbox. A separate pipedream toolbox is also available,
which scripts the procedures for implementation on grid com-
puting systems. We created a series of in-house matlab wrappers
for accessing the ANTS and pipedream programs allowing user-
tunable parameter modifications and work-flow definition with
run-time batch script generation for implementation on the Sun
Grid Engine. The data were processed using a 30-node computer
cluster. In Figure 1 a flowchart outlining the preprocessing steps
described next is presented.

Custom template construction

A custom MRI template representing the average of the brain
images from a subset of 12 elderly normal subjects, selected
at random from the 49 CN described above, was built using a

!www.loni.ucla.edu/ADNI
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FIGURE 1 | A flowchart outlining the preprocessing steps is presented.
The non-linear transformations from the SyN procedure provide deformation
tensor fields describing the voxel-wise shape changes from the template to
each subject’s brain. The Jacobian determinants of these deformation fields
indicate the fractional volume expansion and contraction at each voxel

required to match the template. The native space gray matter segmentation

maps generated from the SPM8 new segment procedure were brought into
template space using the combined SyN transform. The Jacobian maps were
then multiplied by the respective GM or WM segmentation maps to limit
analysis to gray matter or white matter volume changes. The modulated GM,
WM, and Jacobian maps were evaluated separately in the machine learning
analyses.

diffeomorphic shape and intensity averaging technique Parame-
ters for the template construction procedure included a four-level
Gaussian pyramid as the multi-resolution strategy and the cross-
correlation similarity metric, with 200 maximum iterations. A
two-step normalization procedure was used to generate a highly
accurate skull-stripped version of the custom template normal-
ized to the ICBM atlas. The steps for building the template can be
summarized as follows:

(1) Selecting 12 CN subjects at random

(2) Using SyN (Avants and Gee, 2004; Avants et al., 2008)

an unbiased average shape and appearance template was

generated.

The resulting study template was then normalized to the

ICBM T1 label atlas® in order to allow automated label infor-

mation to be obtained from each subject. The ICBM atlas files

include a high resolution T1 image, segmented labels, and a

brain mask.

(4) A skull-stripped version of the custom template is generated
by applying the inverse transformation resulting from the pre-
vious step to the ICBM brain mask with then is applied to the
original custom template to remove the skull.

(5) A second SyN normalization was then performed using the
skull-stripped custom template and the skull-stripped ICBM
atlas to generate the final transformation parameters defining
custom template space to ICBM template space.

3)

2www.loni.ucls.edu/ICBM

These procedures produced a full custom template (with scalp),
a scalp stripped version of the custom template, a custom tem-
plate brain mask, and fully invertible parameters defining custom
template space to ICBM atlas space.

Segmentation

The optimal T1-weighted data for each subject were segmented
using the SPM8 new segment tool (Ashburner and Friston, 2005).
This performs a five-class segmentation using prior probabil-
ity maps with classes for GM, white matter, CSF, adipose tissue,
and bone. The procedure also performs a high dimensional nor-
malization to the SPM MNI template based on a model with
approximately 1000 parameters. The normalized MNI space trans-
formations and images generated by SPM however, were not
employed in this study.

Spatial normalization

The native space optimal T1-weighted images obtained from the
ADNI database for each subject were used for image analysis. These
images had already undergone gradient field inhomogeneity cor-
rection, and N3 bias correction. Each optimal subject T1 image
was normalized to the custom study template using SyN (Avants
and Gee, 2004; Avants et al., 2008) in a two-step process similar to
the one used to generate the custom template in ICBM space. The
steps can be summarized as follows:

(1) Each subject image was normalized to the full custom
template.

Frontiers in Neuroinformatics

www.frontiersin.org

October 2011 | Volume 5 | Article 22 | 3


http://www.loni.ucls.edu/ICBM
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Casanova et al.

High dimensional classification analysis

(2) The inverse transformation and the custom template brain
mask were then used to generate a skull-stripped version of
the subject T1 image in native space.

(3) Asecond SyN normalization was then performed between the
skull-stripped native T1 image and the skull-stripped custom
template.

(4) The previously computed custom template to ICBM normal-
ization parameters were combined with the native space to
custom template parameters, generating a set of transforma-
tion parameters to bring native space T1 images into ICBM
space with a single resampling step.

The non-linear transformations from the SyN procedure pro-
vide deformation tensor fields describing the voxel-wise shape
changes from the template to each subject’s brain. The Jacobian
determinants of these deformation fields indicate the fractional
volume expansion and contraction at each voxel required to match
the template. These maps can be used directly as in tensor-based
morphometry to determine population differences, or they can be
combined with the segmentation maps to generate maps of tissue-
specific volume change (modulated maps). The native space GM
segmentation maps generated from the SPM8 new segment pro-
cedure were brought into template space using the combined SyN
transform. The Jacobian maps were then multiplied by the respec-
tive GM or WM segmentation maps (thresholded at 0.3) to limit
analysis to GM or white matter volume changes. The modulated
GM, WM, and Jacobian maps were evaluated separately in the
machine learning analyses.

PENALIZED LOGISTIC REGRESSION

Logistic regression is a common choice when the response variable
Y is binary. It models the class-conditional probabilities through
a linear function of predictors

(Pr(Y =1/x)

_ T
Pr(yzz/x)>—ﬁo+x6 (1)

In problems where the number of predictors (voxels in our
case) is much greater than the number of samples (vectorized
GM, WM, and Jacobian images in our case) it is necessary to apply
regularization (Tikhonov and Arsenin, 1977). In the present study,
we evaluate the performance of penalized logistic regression when
applied to classification of sMRI images as implemented in the
GLMNET library (Friedman et al., 2010). In general GLMNET
solves the problem defined by

min

Bo, BERP+1 —-C (BO) B) Xis yl) + NP (B) (2)

C (Bo,B) = % iyi (Bo +78) —log (1 +elotal®),
i=1

p 1—
pe =3[ 506 +ul]

j=1

where N is the number of samples (98 subjects in our case), x;€ RP
is the ith sample or feature vector containing the gray and/or white

matter voxels entering the analysis, p is the number of voxels enter-
ing the analysis, y;€{1,2} is the ith label (1 for CN and 2 for AD
participants), Bo, B€ RP+ I are the parameters of the model,and \ is
the regularization parameter. The regularization scheme described
by Eq. 2 contains two terms: a loss term defined by the logistic loss
or binomial deviance function and a penalty term called elastic
net which is a linear combination of L; and L, penalties. The first
term drives the fidelity of the solution to the data and the second
term introduces constrains to the solution in order to stabilize
the problem. The regularization parameter \ regulates a tradeoff
between these two criteria. In this case we forced a = 0 in order to
enforce the L, penalization in a similar manner to ridge regression
(Hoerl, 1962).

The GLMNET library (Friedman et al, 2010) uses a very
efficient optimization technique called coordinate-wise descent
(Friedman et al., 2007). The basic idea of the method is to solve
a sequence of one dimensional optimization problems by fixing
all variables except one. The process is iterated until convergence.
This class of methods has been independently developed by differ-
ent groups (Fu, 1998; Daubechies et al., 2004; Krishnapuram and
Hartemink, 2005) and its convergence has been proven for classes
of convex optimization problems (Tseng, 1988). Our software
implementation is based on MATLAB where the glmnet library
is called using a freely available matlab wrapper developed by Hui
Iiang.3

EVALUATION OF CLASSIFIER PERFORMANCE AND ESTIMATION OF
REGULARIZATION PARAMETERS

To estimate the optimal values of the regularization parameters,
we combined a three-way split of the data (training—validation—
testing) with 10-fold cross-validations (CV) and grid search. This
was done to avoid upward bias in the metrics of performance esti-
mates (Guyon and Elisseeff, 2003; Ritchie et al., 2003; Su et al,,
2007; Cheng et al., 2008; Chu, 2009a; Ryali et al., 2010). We imple-
mented an external K;-fold CV where at each step we leave onefold
for testing and use the remaining K; — 1-folds for training and
validation. These last two procedures are implemented by using
a nested K,-fold CV. We divide the K; — 1-folds into K,-folds
and we leave onefold for validation and K, — 1-folds for training
combined with a grid search to determine the optimal parameters.
The grid we used in our analyses was A =0.5, 1, 5,10, 11, 12...98,
99, 100, 200, 500, 1000. At each grid point, the classifier is trained
and its performance is assessed using the fold left for validation
by estimating the classification accuracy. We select the regulariza-
tion parameters that produce maximum average accuracy across
the K,-folds of the internal CV procedure. The classifier is then
retrained using the data in the K; — 1-folds left for training and
validation and the selected optimal regularization parameters. The
classifier’s generalization capability is then evaluated by computing
the classification accuracy, sensitivity, and specificity (see below)
using the fold originally left for testing in the external CV. This
is repeated K times and the average classification accuracy is
computed.

Shttp://www-stat.stanford.edu/~tibs/glmnet-matlab/.
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Finally, the discriminative maps are generated. The vector §§ of
parameters (or classifier’s weights) described in Eq. 2 are esti-
mated using the whole data set and the average values of the
selected optimal regularization parameters across the K-folds.
These weights (one per voxel) are then employed to generate
the discriminative maps which reflect the brain areas that were
more informative when discriminating between the two groups
of subjects. The discriminative maps presented in Figure 2 rep-
resent the average of the weights vectors  obtained across 10
repetitions of the computations to evaluate variability due to CV
partitioning.

In our analyses we used K; =10 and K, =10. We used 10-
fold CV (K7 =K, =10) because it has been recommended in
the general machine learning literature (Breiman and Spector,
1992; Kohavi, 1995). The leave-one-out (LOO) CV is known to
be approximately unbiased but highly variable and in addition

FIGURE 2 | These are the average discriminative maps computed using
the PLR model parameters (voxels weights) that were estimated
across the 10 repetitions of the computations. The left and right columns
present coronal, sagittal and axial views of the discriminative maps
associated to GM and WM tissues respectively. The views follow the
neurological convention. In blue are indicated brain areas associated with
increased likelihood of classification as AD while red indicates the
opposite.

computationally time consuming. Tenfold CV is a less time
consuming tradeoff between both criteria.

METRICS OF PERFORMANCE
We computed overall classification accuracy, sensitivity, and
specificity to evaluate classifier performance:

TP + TN
Acc = (3)
TP + FN + TN + FP
TP
SEN= — (4)
TP + FN
TN
SPE= ——— (5)
TN + FP

where TP are AD patients correctly identified as AD, TN are con-
trols correctly classified as controls, FN are AD patients incorrectly
identified as controls and FP are controls incorrectly identified as
AD. These metrics describe the degree to which gray and white
matter tissue types are informative when predicting CN and AD,
using the specific tissue voxel-wise volumetric and deformation
information. To study the variation due to different CV partitions
we repeat the computation 10 times and report mean and SD of
the three metrics described above (Table 1).

RESULTS

Both gray and white matter tissue types were very informative
for CN-AD classification, although GM produced typically higher
and less variable values than white matter (Table 1). The use of
the deformation data instead of the modulated volumes did not
lead to improvement in subsequently calculated metrics. Figure 2
shows the discriminative maps obtained by averaging the weight
maps of the 10 repetitions using gray and white matter volumetric
information. The blue areas indicate increased likelihood of clas-
sification as AD while the red areas are associated with increased
likelihood of classification as CN.

The GM discriminative maps show excellent localization to
temporal lobe structures including the hippocampus, parahip-
pocampal gyrus and inferior and middle temporal gyri. Other
areas include bilateral basal ganglia, posterior parietal cortex,

Table 1 | Overall accuracy, sensitivity, and specificity obtained for
different brain tissues.

Logistic regression

Metric/volume Overall accuracy Sensitivity Specificity
VOLUMES

GM 85.7% (1.0%) 82.9% (1.9%) 90.0% (1.5%)
WM 81.1% (2.5%) 80.6% (2.3%) 82.5% (4.6%)
JACOBIAN

GM 85.4% (1.4%) 79.8% (4.1%) 90.7% (1.4%)
WM 80.2% (2.7%) 78.2% (2.9%) 82.7% (5.0%)
Both 84.3% (1.56%) 81.2% (2.1%) 88.2% (2.6%)

The mean and std across 10 repetitions of the computations are shown. Volumes
refer to Jacobian modulated volumes while Jacobian refers to the use of the
Jacobian of the transformation tensors.
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frontal, and cerebellar areas. The white matter discriminative
maps localize to temporal lobe white matter areas associated with
the hippocampus, parahippocampal gyrus, inferior, and middle
temporal gyri. Additional areas include the anterior commissure,
splenium and body of the corpus callosum, forniceal columns,
external capsule and bilateral parietal and occipital white matter
regions.

DISCUSSION

We have evaluated the use of penalized logistic regression for the
automatic voxel-wise classification of sMRI images of a subset
of CN and AD ADNI participants. We have based our analyses
on very recent and powerful methodological developments in the
fields of optimization and regularization theory. The GLMNET
library employed in this work solves the problem described by
Eq. 2 using coordinate-wise descent techniques (Friedman et al.,
2007,2010) that provide an efficient mechanism to solve problems
of high dimension.

The approach applied here is one of the few (Kloppel et al.,
2008; Cuingnet et al., 2010b; Hinrichs et al., 2011) reported in
the AD classification sMRI literature that directly operate in the
voxel space. Some previous approaches (Fan et al., 2007; Vemuri
et al., 2008; Davatzikos et al., 2009) developed complex image
processing steps that are time consuming driven by the need of
dealing with the curse of dimensionality (Bellman, 1961; Donoho,
2000). While the curse of dimensionality is a real problem (which
is still poorly understood), its effects on machine learning algo-
rithms vary. One of the main merits of our work is to show
that by using PLR and coordinate-wise descent techniques, it is
possible to achieve excellent prediction performance when solv-
ing very large classification problems. The number of voxels in
our analyses for the different tissues varied between 5.7 x 10°
(WM analyses), 7.4 x 10° (GM analyses), and 2 x 10° (whole
brain analyses Jacobian based), while operating with 98 samples.
Our results taken together with those previously reported in rela-
tion to SVMs and kernel approaches (Kloppel et al., 2008; Chu,
2009b) suggest that the regularization mechanisms associated to
these linear classifiers effectively deal with classification problems
of very large dimension. The difference is that the approach pre-
sented here operates directly in the voxel space via coordinate-wise
descent optimization while previous SVM work (Kloppel et al,,
2008) by making use of the kernel approach (representer theorem;
Kimeldorf and Wahba, 1971; Scholkopf and Smola, 2002) solve
an optimization problem of much lower dimensions. This work
provides evidence that is not the dimension reduction implicit in
linear SVM kernel based methods what makes them to deal effec-
tively with problems of large size but the associated regularization
penalty.

On the other hand, the results obtained with PLR predicting
cognitive status seem to be very competitive with other previously
reported by other researchers. The sensitivities and specificities of
10 of the most successful sMRI classification methods have recently
been compared using ADNI data (Cuingnet et al., 2010c). The best
performer in this group achieved sensitivity of 81% and specificity
of 95% using a voxel-wise approach with a SVM and the high
dimensional DARTEL normalization procedure. Although these
results cannot be directly compared to ours for several reasons

(differing ADNI samples, sample size, CV procedures, etc.) they
serve as a reference, suggesting that our approach reaches similar
levels of sensitivity and specificity to the best performers in the
comparison.

One advantage of penalized logistic regression over SVMs
which have dominated the field so far is that logistic regres-
sion directly models the class-conditional probabilities providing
a decision probability and not just binary classification, which
is very desirable property in a classification algorithm that can
be very useful in a clinical setting. These probabilities could
be used as an alternative to already existing diagnostic metrics
such as STAND-scores or SPARE-AD index (Vemuri et al., 2008;
Davatzikos et al., 2009). There several potential ways to improve
the approach presented here, for example: (1) by introducing spa-
tial constraints via regularization operators (Pascual-Marqui et al.,
1994; Casanova et al., 2009; Cuingnet et al., 2010b); (2) By incor-
porating feature selection and (3) By using more sophisticated
penalties.

We found that both GM and WM carry useful information for
classification of CN and AD sMRI images, producing high levels
of accuracy, sensitivity, and specificity. The large scale regulariza-
tion approach used here provides discriminative maps localizing
the changes to GM structures known to be involved in AD. For
example, changes in GM associated with AD have been described
to affect the entorhinal cortex and hippocampus before spread-
ing to other temporal, frontal, and parietal areas, many of which
were useful for discriminating AD patients from CN subjects in
the present study (Braak and Braak, 1991, 1997; Gomez-Isla et al.,
1996; Laakso et al., 1996, 1998; Insausti et al., 1998; Frisoni et al.,
1999,2007; Van Hoesen et al., 2000; Dickerson et al., 2001; Thomp-
son etal.,2003,2007; Apostolova and Thompson, 2008). The white
matter discriminative maps add to a growing body of literature on
white matter volume loss in AD (Black et al., 2000; Moon et al.,
2008; Di Paola et al., 2010). Several studies have identified volume
loss in various portions of the corpus callosum (Di Paola et al,,
2010). The callosal white matter loss has been related to Wallerian
degeneration, receiving axons from the temporo-parietal regions
involved in AD. Other regions of white matter loss in AD have
been less well studied.

Several methodological aspects of this study are worth noting.
We utilized a high dimensional warping algorithm to bring the
individual structural images into alignment. In particular, we used
the SyN methodology, which has been shown to be a top perform-
ing method for image normalization. In addition, we used the
SyN methodology in a two-step normalization procedure, with
the sole purpose of the first step to perform skull-stripping. While
there are a variety of skull-stripping algorithms available, in our
own testing, we have found the quality of the SyN full brain nor-
malization to provide consistently excellent results allowing direct
masking of the results on the basis of the template brain image,
without the need for additional manual editing. This enables a sec-
ond high dimensional normalization of the skull-stripped brain
to a skull-stripped template, allowing for a more accurate registra-
tion procedure without confounds of extraneous tissues affecting
the normalization. We combined the SyN methodology with the
SPM8 new segment tool for primary tissue type segmentation.
While there are a variety of image segmentation methods available,
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we have found that the SPM8 multi-class segmentation algorithm
performs especially well with elderly brain images as in the ADNI
cohort. Proper segmentation in this age group can be very prob-
lematic due to the high white matter lesion load, which intensity
based segmentation procedures can erroneously classify as GM,
adversely affecting classification accuracy. In comparing classifi-
cation accuracy for modulated GM, modulated white matter, and
direct use of the Jacobian, we found the highest accuracy for the
modulated GM maps. Interestingly, although classification accu-
racies were also high for the other input image types, the use
of the full Jacobian map (which includes deformation informa-
tion on gray, white, and CSF) did not improve the classification
accuracy (not presented). A limitation of this study is that we
did not study here the performance of this approach to detect
patients with prodromal AD something that will be pursued in
future work.

CONCLUSION

In this work we have introduced a large scale regularization
approach based on penalized logistic regression to automatically
classify sMRI according to cognitive status. Its performance is
illustrated using sMRI data from the ADNI clinical database. This
research represents one of the first steps of this voxel-wise method-
ology which could be improved by using more sophisticated penal-
ties such as group lasso (Xu et al., 2010) or through combinations
with other methods. We have shown that very large classification
problems can be dealt with directly in the in the voxel space with-
out severe dimension reduction measures such as filtering, PCA,
PLS, etc., via the use of coordinate-wise descent techniques. To
avoid optimistic estimates classification accuracy, sensitivity, and
specificity were determined based on a combination of three-way
split of the data with nested 10-fold CV.

In the future we intend to develop this work in several direc-
tions: (1) study the performance of imaging biomarkers for early
prediction of AD based on the conditional probabilities modeled
by PLR; (2) The evaluation of these technologies in the context of
large size problems characteristic of imaging genetics and (3) the
application of these methods to analyses across imaging clinical
databases.
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