frontiers in

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 31 January 2012
doi: 10.3389/fninf.2012.00001

=

PLDAPS: a hardware architecture and software toolbox for
neurophysiology requiring complex visual stimuli and
online behavioral control

Kyler M. Eastman* and Alexander C. Huk

Neurobiology, Psychology, and Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA

Edited by:
Markus Diesmann, Research Center
Juelich, Germany

Reviewed by:

Graham J. Galloway, The University of
Queensland, Australia

Lars Schwabe, University of Rostock,
Germany

*Correspondence:

Kyler M. Eastman, Center for
Perceptual Systems, The University of
Texas at Austin, 1 University Station,
A8000, SEA 4.328, Austin, TX 78712,
USA.

e-mail: kyler.eastman@gmail.com

Neurophysiological studies in awake, behaving primates (both human and non-human)
have focused with increasing scrutiny on the temporal relationship between neural signals
and behaviors. Consequently, laboratories are often faced with the problem of develop-
ing experimental equipment that can support data recording with high temporal precision
and also be flexible enough to accommodate a wide variety of experimental paradigms.
To this end, we have developed a MATLAB toolbox that integrates several modern pieces
of equipment, but still grants experimenters the flexibility of a high-level programming
language. Our toolbox takes advantage of three popular and powerful technologies: the
Plexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas, TX, USA), a Dat-
apixx peripheral (Vpixx Technologies, Saint-Bruno, QC, Canada) for control of analog, digital,
and video input—output signals, and the Psychtoolbox MATLAB toolbox for stimulus gener
ation (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The PLDAPS (“Platypus”) system is
designed to support the study of the visual systems of awake, behaving primates during
multi-electrode neurophysiological recordings, but can be easily applied to other related
domains. Despite its wide range of capabilities and support for cutting-edge video displays
and neural recording systems, the PLDAPS system is simple enough for someone with

basic MATLAB programming skills to design their own experiments.

Keywords: eye tracking, software, behavioral control, MATLAB, neurophysiology

INTRODUCTION
The rate of progress in cognitive and systems neuroscience is often
constrained by the ability of a research group to design new exper-
iments while taking advantage of advances in technology. In the
last few years, several companies have made significant progress in
providing user-friendly hardware and software for increasingly
advanced forms of stimulus presentation, behavioral measure-
ments, and neurophysiological recording. However, the task of
integrating these experimental technologies has been left to the
programming abilities of individual laboratories. This has led
some laboratories to delay adopting these new technologies in
order to avoid a set of daunting technical hurdles. Other labora-
tories have built custom, lab-internal systems that work for the
range of experiments currently used by the lab. These systems
become a burden when the primary developer leaves the lab, or the
direction of research requires a significantly different experimen-
tal paradigm. Because of these issues, labs often are constrained
to the reduced set of scientific questions that can be answered by
small adaptations of their current experimental equipment. Pri-
mary investigators at the beginning of their careers are forced to
“inherit” paradigms because of the burden of developing a new
system from scratch.

As a solution to these challenges, our lab devel-
oped the Plexon-Datapixx—Psychtoolbox system (PLDAPS)
(pronounced “platypus”) system. It is a MATLAB-based

toolbox for integrating several pieces of hardware and
software (http://hukdata.cps.utexas.edu/archive/PLDAPS.html)
already used in the behavioral and neurological sciences. PLDAPS
was designed to provide developers with a basic knowledge of
MATLARB the tools necessary for designing their own electrophys-
iological experiments. More specifically, we wished to develop a
system that would be used by researchers to extend the well-
established Psychophysics Toolbox (Brainard, 1997; Pelli, 1997;
Kleiner et al., 2007) into electrophysiological research. The techni-
cal issues of coordinating neurological and behavioral events, file
management, and stimulus generation are taken care of in a trans-
parent way, allowing the developer to focus on their experimental
design. In this report, we show how PLDAPS integrates informa-
tion from the three hardware components, demonstrate some of
the features that enhance programming flexibility, and show that
it can be used as a finished system in the context of single and
multi-unit electrophysiology in awake, behaving primates.

The following sections give an overview of PLDAPS, review
the three motivating but conflicting goals, and explain how spe-
cific features are designed to accommodate these goals. Then,
specifics of the system are described in terms of hardware and soft-
ware, results of some timing performance tests are reported, and
solutions to some technical challenges are summarized. Finally,
PLDAPS is compared to other existing systems, and possible future
applications are explored.

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1| 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00001/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=38149&sname=kylereastman
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=673&sname=alexanderhuk
mailto:kyler.eastman@gmail.com
http://hukdata.cps.utexas.edu/archive/PLDAPS.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

MOTIVATING GOALS OF PLDAPS
Plexon—Datapixx—Psychtoolbox was developed in response to the
problem of simultaneously satisfying three separate and con-
flicting goals: (1) usability, (2) programming flexibility, and (3)
temporal precision. Each of these goals may have been individually
satisfied by existing systems. However, in doing so, their designs
have led to compromises in the other two. PLDAPS’s novel contri-
bution is that it satisfies all of them with few sacrifices. Moreover,
these goals are in addition to the basic function of PLDAPS, which
is to coordinate stimulus generation, behavioral monitoring, and
electrophysiological recording. The PLDAPS system uses a single
Macintosh Pro running MATLAB, enabling behavioral monitor-
ing and stimulus generation to happen almost concurrently, on a
single computer, in a single set of MATLAB functions (as opposed
to being split, for example, between an experimental-control com-
puter and a video display “slave” computer). In addition, a major
challenge of any such system is the ability to acquire a wide set
of signals and events, from continuous analog signals (e.g., eye
position, motion tracking, electromyography) to digital records
of experimental “events” (e.g., the onset of a visual stimulus, the
detection of a behavioral responses). These need to be temporally
co-registered with the video display and the neurophysiological
signals of primary interest. In the PLDAPS system, this analog
and digital data input (and output) is handled with high temporal
precision by a Datapixx input/output device and controlled (i.e.,
polled input or controlled output) by low-level MATLAB func-
tions supported by the PsychToolbox and further facilitated by
our PLDAPS software toolbox (see Figure 1).

PROGRAMMING FLEXIBILITY

The issue of programming flexibility, i.e., the speed and extent to
which current experimental setups can be adapted to new para-
digms, is a major problem that can inhibit the rate of scientific
production in both individual labs and in the field of neuropsy-
chological research in general. PLDAPS was intended to address
this issue by taking advantage of the popularity and functionality
of MATLAB, a high-level programming language that has replaced
lower level languages like C/C++ or Java as a common language
for experimental design and data analysis. In fact, all three com-
ponents of PLDAPS include MATLAB-based functionality; both
Plexon and VPixx technologies provide Toolbox interfaces with
their hardware, and Psychtoolbox has been refined over many
years to provide MATLAB users the ability to program increasingly
sophisticated psychological experiments. Thus, the main design
goal of PLDAPS was to simply preserve the functionality that each
of these components already provide. By recognizing that more
and more graduate students are required to already know MAT-
LAB to perform data analysis and behavioral experiments (with
Psychtoolbox), PLDAPS leverages that knowledge into the ability
to design and implement electrophysiological experiments.

Prior experimental systems have often emphasized usability
(i.e., a robust GUI) at the expense of programming flexibility,
and/or have assumed that such flexibility would come at the cost
of a loss of temporal precision. By relying on modern computing
hardware and a high-level programming language, PLDAPS can
simultaneously support usability, flexibility, and temporal preci-
sion. This is because solutions for individual experimental needs

can be easily and quickly prototyped, iterated, and implemented —
all without needing to delve into low-level aspects of hardware
I/0.

For example, consider one experimental issue, in which the size
of an eyetracking target window often needs to be adjusted in the
middle of an experiment. The experimenter can create a user inter-
face where that window size parameter can be adjusted by editing a
value in a MATLAB m-file, or even by interacting with a GUI slider
button. Now consider a large number of such experiment-specific
needs, all of which together form an interface that consists of a vari-
ety of experiment-specific controls, along with some controls that
overlap with the needs of other related experiments. When a new
experimental procedure is required, less flexible systems require
one of two possible directions: either work with the existing inter-
face or create a new one. The former solution often exposes a
lack of flexibility and thus leads to ad hoc changes, leading to an
amalgam of idiosyncratic or unused code, and interface detritus;
the latter solution requires significant coding and consideration of
low-level hardware—software interface. These issues become more
severe when the primary developers (most often graduate stu-
dents) change labs or universities. For this reason, PLDAPS was
designed to be built with a minimal amount of paradigm-specific
architecture, but its MATLAB backbone allows for easy sharing of
modular pieces of code.

USABILITY

While the primary design of PLDAPS provides the developer with
the ability to program a wide range of experiments, that capability
is irrelevant if the experimental programs are not usable enough
to carry them out. Electrophysiology sessions on awake-behaving
monkeys are unusual in that the experimental paradigms require
a high amount of cognitive load on the experimenter. The exper-
imenter has to monitor a range of concerns, such as the welfare
of the monkey, the functionality of the behavioral monitoring
(such as the eyetracking signal), and the status of the electrode
signal, which may compromised due to a wide range of electri-
cal and mechanical issues. On top of this monitoring, the success
of the experimental session is dependent upon a series of subjec-
tive perceptual decisions: to judge that a cell is task-related, has a
distinctive receptive field, is capable of being isolated, or that bet-
ter cells may exist along the electrode path. These judgments are
multiplied when the paradigm attempts recording from multiple
neurons.

The cognitive burden on the experimenter can be exacerbated
by the opaque nature of the system interface. Many of the current
systems require opening and closing multiple windows to adjust
a single parameter, many of which need to be adjusted dozens of
times during an experiment. For this reason, PLDAPS must be
able to have these adjustments made quickly and in a straight-
forward manner. Furthermore, perceptual judgments that affect
the outcome of the experiment, such as the location and shape
of a receptive field, are usually done ad hoc, partly due to the
constraints of the software. Now that more programming flexi-
bility is provided from PLDAPS, graphs, and scopes of behavioral
and neural processes, or other decision aids, are no longer on a
wishlist but are instead capable of being quickly developed on a
paradigm-by-paradigm basis.

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1| 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

Mac w/ Psychtoolbox

0 g O

MATLAB

Stimulus Display

experimenter copy (CLUT #2)

S

i En‘ “analog” signal, | (i)_E)—\;I""E
i unit spikes (TTL) E 1
| '

(8) Out:Reward &
DATAPixx control

DATApixx

/7/\

Subject

Stimulus Display

K subject copy (CLUT #1) /

multi-function 10 peripheral

Reward System
(analog/digital pulse)

i] | G —— 3]

FIGURE 1 | Roadmap: an overview of the information flow within
PLDAPS. In addition to the subject (which presumably has a brain), there are
five components: a Plexon MAP device, the Datapixx USB peripheral, a Mac
computer running Psychtoolbox, a reward dispensing system, and an input
device (such as a keyboard, joystick, or eye tracker). (1) The Mac, running an
experimental program in Psychtoolbox, sends digital video information to
the video buffer on the Datapixx peripheral. (2) The Datapixx box splits the
video information to two displays, made slightly different by two different
color look-up tables (CLUT). One screen is for the subject, while the other
has additional window and input markings (such as eye position) for the
experimenter to monitor the subject’s activity in real-time. (3) The subject,
responding to the screen, generates neural signals that are recorded by the

Plexon MAP (4) The subject also manipulates the input device. (5)
Redundant analog signals are sent both to the Plexon device and the
Datapixx box. (6) The Datapixx box sends the subject’s input back to the
Mac, where the experimental program updates events in the trial (such as
fixating on a target). (7) Timestamp markers of events in the trial are sent via
TTL pulses to the Plexon MAP via an 8-bit digital cable from the Datapixx. At
the end of the trial, more complex trial information is transmitted via 8-bit
strobed words. (8) An analog or digital pulse is sent to the system that
dispenses a reward. (9) An option is to send TTL pulses of neural spikes to
the Datapixx box. This is used to closed-loop experiments where
experimental parameters for the next trial are determined from neural
activity in the previous trials.

TEMPORAL PRECISION

An increasing amount of temporal precision is required by the
line of current experiments. Plexon, Datapixx, and Psychtoolbox
have devoted a considerable amount of time to maintaining pre-
cision. Therefore, the design goal of PLDAPS is to maintain this
precision during the coordination of the hardware systems. While
these systems are faithful to their internal clocks, as we show later
with performance tests, the internal clocks have enough of a dif-
ference to require care when the timestamps of those clocks are
coordinated.

PLDAPS FEATURES

When designing PLDAPS, we initially identified key design fea-
tures that enabled PLDAPS to satisfy the goals described above.
None of these features map on to a single design goal. Instead,
each of them represents ways to optimize the overall utility

of PLDAPS by providing the best compromise across multiple
goals.

TOOLBOX FORMAT

While we intended to build a functional electrophysiology sys-
tem, we also intended PLDAPS to be a library of functions
for others to combine in their own programming efforts. The
most straightforward path to this end was to develop PLDAPS
in the MATLAB toolbox format that MATLAB users are already
familiar with. The main component of the PLDAPS tool-
box is a MATLAB script, such as letsgorun, with three basic
sections: code that manages experiment files, a function that
gets the Datapixx box ready, and a WHILE loop that iter-
ates a trial function, which iterates a single trial. Two differ-
ent functions are included in the toolbox, runMapTrial (runs
a mapping trial, e.g., for localizing a visual receptive field),

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1| 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

and runDecisionTrial (a two-alternative forced choice visual
discrimination task).

COMMAND-LINE INTERFACE

The PLDAPS system consists of a layout for connecting several
pieces of hardware, and a set of sample scripts and functions that
demonstrate how they can be functionally integrated. This leaves
the specific computer programs for running experiments to the
individual. In contrast to many current options, we chose not to
develop a graphical interface, which often limits the capacity of
the user to make changes, and also removes them from the actual
underlying code. Thus, the PLDAPS system returns the actual pro-
gramming of the visual stimuli and experimental logic to the
experimenter, while still supporting the integration of multiple
hardware systems.

In PLDAPS, a real-time display of all the experimental para-
meters is generated by outputting the structure defined in the
condition file after every trial (see Figure 2). Although this is
(intentionally) crude, it avoids the potential coding burden or loss
of flexibility associated with a graphical interface for a specific
application (users can easily build GUIs on top of this structure).

YeYe) MATLAB 7.7.0 (R2008b)
File Edit Debug Desktop Window Help
O & 29 7D e ;lman/Desktop/PLDAPS/'] . ®

Shortcuts 2] Howto Add (2] What's New
soundt: [1x1000 double]
pitch: 1500
correctsound: [1x1000 double]
cohchoices: [0 3.2000 12.8000 25.6000 51.2000])
useDataPixxBool: 0

1
: 0
: 0
js 1
finish: 3
movav: 20
keyboard: -1
je: [2 0 5 2.3000)
reward_time: 0.1000
screen_number: 0
freeduration:
fixwaitduration:
fixwaitstop:
fixholdduration:
dotstart:
dotminduration:
dotmaxduration:
waitafterdots:
stopafterfix:
targwait:
tastart:
tastop:
middlexy:
targlR:
targlA:
offsetA:
fixA:
fplWindw:
fplWindH:
fp2Windw:
fp2WindH:
targWindw:
targWindH:
fixdotw:
targdotW:
cursorW: 10
humanCLUT: [256x3 double]
monkeyCLUT: [256x3 double] (D

.2000

.5000

HFNFWNOHWUWN

[0.1000 0.1000]
{300.1000 0.2000]
{720 450]

0

.7000
.7000

PONNOO U W®

fx >> v

4\ Start “

FIGURE 2 | Command Window User Interface. The condition structure is
displayed in the command window at the end of each trial, clearly
displaying all necessary information. On-the-fly changes to individual fields
are made by pressing “p” (for pause), which keyboard access. Typing return
will continue the experiment.

Any parameters that are defined during experiment prototyping
will be displayed during the experiment. If the experimenter wants
to change them in the middle of the experiment, he or she starts by
pressing “p,” which pauses the experiment. It also gives a keyboard
prompt. The experimenter can then change any of the parame-
ters in the condition structure. For example, to change the size
of a window width, one would type in cl.targWindW = 30 and
then type “return.” This process can be accelerated by scrolling
through commands with the UP arrow key. If a more substan-
tial adjustment needs to be made, the experimenter types “q” for
quit.

Graphical displays of behavioral or neurological data can be
developed as needed. For example, if one would want to develop
a display of the percent correct out of the last 10 trials, one would
only need to insert the code plot [smooth(PDS.correct,10)] at the
bottom of the WHILE loop. However, making such displays may
introduce some timing variability, and are best kept in between tri-
als. In Figure 3, we show an example of an interactive display. This
“RF scope” was designed to help with the perceptual decision-
making while experimenters are searching for a task-related cell
with a distinguishable receptive field. A measure of selectivity is
computed for each trial. A Gaussian process regression of all selec-
tivity measurements is plotted as a heat map. The slider on the right
allows the user to select a threshold on the map. The center-of-mass
is calculated on the surface above the threshold, giving an approx-
imation of the center of the receptive field. To insert this code, two
functions were developed: initRFmap, and updateRFmap. Such a
scope was developed for a specific experiment in less than thirty
minutes.

Threshold: 12 Spikes/s , X,Y coord: -7 -6

degrees

degrees

FIGURE 3 | Receptive Field Map. This graph shows the spatial selectivity
(pre-saccade firing rate-base firing rate) of a neuron during each trial as a
function of the target location. As the plot updates after each trial, it allows
the experimenter another method of evaluating the size and shape of the
neuron’s response field during the experiment. A threshold (black contour
line) for calculating a center-of-mass for RF is movable with the slider button
on the right hand side. Such interfaces can be developed and customized
quickly according to the experimenter's tastes.

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

MULTIPLE-DISPLAY, MULTI-CLUT SYSTEM

It is often helpful for the experimenter to be able to view a copy
of what the experimental subject is viewing. However, it is often
critical for them to also have a “behind-the-curtain” view of this;
for example, to know where the subject’s eye position is relative
to desired spatial “windows,” where the location of the correct
response target is on each trial, etc. Usually this requires two
screens: one is a direct, mirrored copy of the actual experimen-
tal video display, and the other is an iconic representation of the
underlying “semantics” of the task relative to the stimuli. The
PLDAPS system solves this in an elegant manner using two differ-
ent color look-up tables (CLUTs). Specifically, the Datapixx box
splits the video signal, and one copy is shown to the experimental
subject, and the other is viewed on a separate monitor by the exper-
imenter. However, the two displays have slightly different CLUTS,
allowing the experimenter’s display (but not the subject’s) to also
animate the online eye position, target windows, and other seman-
tics. This is accomplished by setting the corresponding CLUT
entries for the subject to be the same as the background color,
and also by drawing the experimenter-specific elements first, and
letting the “real” stimuli be drawn over them. This ensures that the
actual stimulus never shows the experimenter-specific elements,
nor is ever occluded by the experimenter elements. Furthermore,
this trick is computationally efficient: the Macintosh simply gen-
erates one copy of the stimulus (including experimenter-view
elements), and the two distinct views arise solely from the dif-
ference in the CLUTs. Thus there is no need to create two parallel
views, reducing computational and animation resources. In our
experience, a single modern Macintosh Pro can both generate
very advanced graphical stimuli and control the experimental state
logic at conventional video frame rates.

MATERIALS AND METHODS

ARCHITECTURE AND COMPONENTS

The essential components of the PLDAPS system consists of a
Macintosh Pro computer for stimulus generation (“Mac Pro”
hereafter), A VPixx technologies Datapixx USB I/O peripheral
(“Datapixx box”), a Plexon electrophysiological recording system
consisting of a multi-channel acquisition processor (MAP) and
a Dell data management computer (“Plexon MAP”), and input
devices, such as eye trackers, joysticks, etc. The general architecture
of the system is outlined in Figure 1.

Computer specifications

The stimulus generating computer was a Mac Pro with an Intel
Quad-Core Xeon processor running at 2.66 GHz and containing
16 GB of DDR3 RAM (Apple Inc., Cupertino, CA, USA). The oper-
ating system was Mac OSX Version 10.5.8. The graphics card was
an NIVIDIA Quadro FX 4800 with 1.5 GB of GDDR3 SDRAM.
MATLAB (version 2010a, MathWorks, Inc., Natick, MA, USA) was
used to write the PLDAPS toolbox, and to run timing tests. Stim-
ulus generation was carried out through Psychtoolbox Version 3.0
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

The Datapixx box

A central component of our system was the Datapixx multi-
function data and video processing USB peripheral (VPixx Tech-
nologies). The device contains a dual-display video processor and

both digital (16-bit) and analog (16 ADC and 4 DAC) 1/O chan-
nels. Because the video controller and I/O control is on the same
circuit board, the Datapixx box can synchronize inputs and out-
puts to the video refresh. In addition, a Datapixx software toolbox
comes bundled with Psychtoolbox 3.0 and is also available on the
Vpixx website. This toolbox allows complete control over all func-
tions of the Datapixx box within Matlab. The multi-CLUT system
required a special firmware update from VPixx.

The Plexon MAP system

The Plexon MAP was used for all spike monitoring functions
which interfaced with A WS-T3400 Dell Precision T3400 Work-
station. This workstation had a 3.33-GHz Core 2 Duo processor.
A PBX3/16sp-r-G1000 Preamplifier box was used for neural sig-
nal pre-amplification. A HST/32V-G20 headstage unit was used
for simulated neural recordings. In addition, a National Instru-
ments A/D subsystem plus accessories (C-HUB, 2 m CBL/C-HUB
cable, and PCI-6071e A/D board) for 64-channel analog recording
(1.25MS/s, 12-bit resolution) were used. The SortClient software
application was used during prototyping. To simulate a typical
spike signal, a WAV file was played from the Plexon computer
through the headstage unit via the headphone jack. To use our
communication protocol between the Datapixx and Plexon, we
chose to configure our digital input to allow 8 bits of time stamp
information and 8 bits of strobed words (mode 2) (See Web Ref-
erences for details). To enable closed-loop experiments, a custom
DB-15 to BNC cable was fabricated to enable real-time neural
(spike) event marking (Plexon offers other hardware solutions for
this application).

Video display specifications

There are no firm constraints on video displays. In our devel-
opment and testing, three (rather different) monitors were used:
a 21” Dell p1130 CRT display with a resolution of 1280 x 1024
pixel resolution at 75 Hz, a Dell 2208 WEFPt Flat Panel Display at
1680 x 1950 pixel resolution at 60 Hz, and a 55” LG LH90 1080p
1920 x 1080 pixel resolution display running at 60 Hz.

Other input devices

During development and testing, we used an analog joystick as a
proxy for any sort of device (e.g., an eye tracker) that would pro-
vide analog outputs to the system. The voltage ranges were from
(0-2/5V x-axis, 2.5-5V y-axis). The ease of incorporating other
input devices is discussed in the discussion section.

Experimental setup
Almost any experimental paradigm has a list of parameters that
are repeatedly used for experimental sessions, but are often copied
and adjusted over time to create multiple conditions, additional
experiments, etc. Our experimental design is no different, with all
relevant parameters listed in a MATLAB condition structure, C.
The elements of this structure are defined in a single file that, in
total, represents the conditions of a particular experiment. Since
this file isa MATLAB “m-file,” it can be modified in any text editor.
Likewise, almost any experiment requires a file of recorded data.
Our data file, with the extension “PDS,” lists all of the data as a
single MATLAB structure (in a conventional MATLAB “mat” file

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

format). This allows different kinds of data (with different sizes)
to be labeled and organized by trial. For example, a PDS structure
for 100 trials of a two-alternative forced choice task can contain
both PDS.choices [a 100 x 1 boolean array representing the left
(0) or right (1) choice], as well as PDS.Spikes (a 100 x variable
length cell array that contains timestamps for all spikes associated
with each trial). Furthermore, the structure format allows simple
extension to a multi-session analysis; a multi-PDS array can easily
be constructed of PDS structures by looping over individual PDS
sessions.

It is common for neurophysiological experiments to be stopped
and re-started in the middle of a session, often during challenging
points of the experiment that require on-the-fly adjustments by
the experimenter. It is therefore critical that such a system be robust
to such stop—start use, maintaining the integrity of data files. The
PLDAPS toolbox saves MAT files that contain both the C (Condi-
tion) and PDS (data) structures. If the experiment is stopped and
then re-started, a dialog box prompts the experimenter for either
a new experiment name or an existing one. If an existing PDS file
is used, the experiment will continue from where it left off.

Contingencies have been developed for an event that abruptly
stops PLDAPS from functioning, such as a power outage. To pre-
serve the existing data, small temporary files are saved to a location
defined by the user (potentially off-site). Each of these files is essen-
tially a PDS structure of each individual trial. Temporary files can
be gathered using the gather script.

Experimental function architecture

We chose an architecture with many of the conventions of finite-
state machines (see Wagner, 2006) with starting states, entry, exit,
input, and transition actions. In this case, the states are time peri-
ods where the stimulus program enters and exits depending on
particular actions, such as an eye position entering into a window.
These conventions are still implemented with MATLAB proce-
dural code, with a WHILE loop, and a state variable that gets
changed within a series of modular conditions IF statements. As
the WHILE loop iterates, it checks for certain behavioral condi-
tions (such as an eye position entering a window), records relevant
data, and continually updates the screen (such as the next frame of
a movie). Starting in state 0, it waits until the conditions are met,
and, if they are met, will simply update the state parameter to state
1. A pseudocode example is shown in Figure 4. This is done with an
IF statement containing IF state =N (or in MATLAB, state =N).
Though the states could have string names, we used numbers to
indicate a sequential order. Within each IF statement, there just
needs to be an assignment to the next state (state =N+ 1) when
conditions are met. With a series of independent IF statements,
only the code within the statement will be implemented in each
cycle of the WHILE loop, allowing a modular design with each IF
statement acting as an independent state.

On a modern Mac Pro, the WHILE loop cycles at a rate
>10kHz, a rate significantly faster than both the screen refresh
and what is necessary to record our behavioral data. For this rea-
son, we include two different conditional statements that regulate
the speed of the recording and screen updating. To minimize com-
putational cycles and to simplify coding, all semantic windows and
markers were drawn on the screen for every screen flip. To make

state =0
While state ~= 2 || state ~=3

If state=0
change screen colors
if behavioral conditions met
state =1
else
state=3
end
end
If state=1
change screen parameters
continuously record data
if behavioral conditions

good trial met

state =2
else
state=3
end
end
end

FIGURE 4 | State diagram, implemented with pseudocode starting
with state 0, the WHILE loop will cycle until conditions are met to
enter state 1, and likewise state 2. |f these conditions are not met, state
3 is entered, indicating an incomplete trial.

the window invisible for a particular state, a marker was drawn as
black, thereby matching the background.

The types of conditions that allow state transitions are only
limited by the experimenter’s imagination. However, the ones that
are currently used are three types: a button press, an eyetrack
or joystick window, or a time elapse. All three of these contin-
gencies take advantage of variables that are updated at the end
of each while loop, the time at the start of the trial, the cur-
rent eyetrack/joystick position, and a current keypress (used by
the PsychToolbox function KbCheck). Most timing contingen-
cies, however, are usually defined in reference to the start of each
state, which requires that to be checked as a variable. For example,
one may want to define a time limit for a subject to fixate on a
cue, which has only appears at the start of state 1. In this case, one
would use a current_time > enter_statel_time + state_1_start.

Of course, there is no reason that each state has to occur entirely
within a sequential order. It is possible for a state to be looking
for multiple sets of behavioral conditions and to assign the next
state. For example, if you have a state that is waiting for a decision
indicated by a button press, the next state can be determined by
whether the subject made a correct or incorrect response. These
next two states, designating correct and incorrect answers, could
have reward or punishment functions.

For the trial to end, one must specify one or more end states.
These states are different in that they often do not require any
separate lines of code. These states are simply listed in the condi-
tions of the while loop, such as WHILE state ~=3. In our case,
we use two states, 3 and 4, to indicate whether a trial was incom-
plete or complete, respectively. Assignments to state 3 can be made
throughout the trial code when a subject fails to complete the task
needed to go to the next state.

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

Some contingencies are not defined as the requirements to enter
the next state, but instead defined as the requirement to exist in
the state itself. For example, in an eyetracking experiment, one
must often maintain fixation, defined by keeping the eyetracking
position within a defined window around a target. This leads to a
particular IF, ELSE statement that would include an assignment to
state 3. Some contingencies are used in conjunction. For example,
to maintain fixation for state 1, one must keep within a specified
window for a set of time.

Communication with Plexon

PLDAPS scripts communicate with Plexon via the Datapixx’s dig-
ital output cable. This cable has 16 digital channels, eight of which
are devoted to timestamp information; the other eight are devoted
to strobed words (this is configured in the Plexon system). Time-
stamps are sent to the Plexon MAP server to make redundant
event information that has a high degree of temporal accuracy
(the precision of which is defined by each system). Strobed words
are transmitted at the end of the trial to encode more complex
information about each trial. The precision of each strobed word
is limited by the 8-bits of information. However, multiple bits
can be used for each data-point, at the discretion of the experi-
menter. Timestamps and strobed words are implemented with the
FlipDataPixxBit and functions, respectively.

FlipDataPixxBit is a simple function inserted into the main
experiment script that marks where an event occurs, such as the
eye position moving within a target window. The only thing it does
is send a pulse along a specified channel from the Datapixx Box to
the Plexon, which marks the rising edge of this pulse.

For decision trials the channels have been marked according to
the scheme described in Table 1.

DataPixxStrobe.m gives a number between 1 and 256 by send-
ing it along in binary across the eight channels. This function is
being used to send trial information (currently: a unique identifier,
trial number, good trial, coherence, correct, in RFE, answer). This
is done at the end of the trial, which also conveniently marks the
trial’s end. Since each strobe can only output an integer 1-256, one
has to be deliberate when defining real numbers with more preci-
sion. Booleans or indices of a pre-defined array are much easier.
The current unique identifier is the output from MATLAB’s clock
function, which is convenient since month, day, hour, minute, sec-
ond are all less than 256. Both the Datapixx and Plexon strobe
much more data, up to 1000 words/s.

The communication protocol is intentionally designed to be
redundant, duplicating timestamp information in the Plexon PLX
file and the PDS file on the Mac stimulus machine. This is espe-
cially the case if spike information is being conveyed via event TTL
pulses from the Plexon, which are read as spikes by the Datapixx
and added to the PDS structure at the end of every trial. How-
ever, there may be reasons where this is not possible. Therefore,
to combine the spike timestamps to the PDS data afterward, a
script (combine) was used that integrates the Plexon PLX file and
the PDS file, using a unique identifier (a vector from “clock”) to
align the trials. PDS files include all trials from the start of the
experiment and PLX files will likely include a subset of these trials
(because it is common to have the subject perform the task while

isolating a neuron). The combine script can integrate in the PLX
and PDS files either by including or omitting the extra trials.

Hardware interfacing

A wide variety of hardware interface options are afforded by the
Datapixx box since it includes both digital and analog inputs that
can deal with a range of voltages and protocols. For example, both
an analog eye tracker and a joystick can be used by changing the
voltage levels on the A to D board. Also, a reward system for
our subject (a small squirt of water) was implemented with the
Datapixx box sending a TTL pulse to a valve solenoid.

RESULTS

PERFORMANCE TESTS

All three components (Plexon Datapixx, Psychtoolbox) have been
designed to maintain a high amount of temporal resolution and
accuracy. The Plexon system has been developed with specific
hardware to allow multiple neural signals at microsecond accu-
racy (Plexon, Dallas, TX, USA) The temporal performance of
Psychtoolbox been well-documented (Brainard, 1997; Pelli, 1997;
Kleiner et al., 2007), and many techniques have been developed to
maximize its performance (see Web References). In this section,
we will describe the temporal performance of our system and the
techniques we used to maximize PLDAPS’s capabilities.

Co-registration of events on the Mac and in Plexon

To test the co-registration of a PLX and PDS file, a sample
dataset was generated of the decision task previously described and
implemented in RunDecisionTrial. The parameter c.PassOn, was
switched to 1, which allows the experiment to “pass on” through
each state, simulating trials without having to provide input. Three
hundred fourteen trials were recorded with the Plexon MAP server
recording a single well-isolated neuron (as approximated by a
sample WAV file). Both a PLX and PDS structure was generated
(automatically by the combine script). In the combine script, the
spike timestamps are added to the PDS structure while the event
information is preserved. The differences in the event timestamps
had a mean of 0.13ms, a SD of 0.4 ms, and an absolute max of
1.1 ms.

Co-registration of timing of events and actual display on the monitor
The speed requirements of a visual stimulus generation program
are normally capped by the fact that most displays refresh at a
rate of 60—120 Hz. Psychtoolbox programming works by calling
functions that change draw object images and shapes in a buffer,
which changes the pixel information in video memory. To update
the screen, the “flip” function displays the video memory on the
screen on the next available vertical retrace. So, generating the
stimulus can often be performed on-the-fly, as long as the manip-
ulations to the video memory take place before the next retrace. If
this is not the case, pre-computing this information and storing it
in RAM or in video memory is usually an acceptable alternative.
Our prototypical experiment was a two-alternative forced
choice decision task with a random dot kinematogram (Huk and
Shadlen, 2005). Our visual stimulus was relatively simple, consist-
ing entirely of small dots for the subject, with the addition of a
three rectangles to display windows for the monitor. To slightly

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1|7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

increase the efficiency, all dots were generated using one call of the
Drawdots function. To avoid the need to examine the timing per-
formance of each experimental state individually, all items were
drawn continuously for all states, only changing colors (this also
greatly simplified the code).

As noted in the design section, a trial function cycled continu-
ously through a main WHILE loop. With our hardware set up (see
Materials and Methods), the cycle rate of this loop was 10kHz,
which was far faster than both the refresh rate of the of our screens
(60-75 Hz) and the sample rate requirements of our input (about
1 kHz). However, a screen refresh takes about 3-ms, depending on
the computer and monitor. Furthermore, the PTB3 screen FLIP
function (dependent on settings), once called, will wait until the
next available screen refresh, which prevents the computer for fur-
ther monitoring. To free the computer to sample at a higher rate,
a conditional if statement (time of last screen refresh > specified
interval) was inserted in the WHILE loop. To allow an adjustable
sample rate, a similar IF statement was included. Both of these
statements created a small amount of unavoidable variability in
the sample rate (see Figure 5). These two rates were adjusted to
avoid missed flips (and constitute the only "magic numbers" in the
PLDAPS toolbox).

A systems timing test was conducted on three monitors
(Figure 6) was conducted for two reasons: (a) length and vari-
ability of the screen refreshes and the sample rate variability for
each monitor, (b) the time lag between the results of the photodi-
ode and the screen. To do this, we recorded 500 sample trials with
three monitors (a 21” Dell CRT, 19” Dell flat panel, and an LG
55” flat panel, see Materials and Methods of for specifications),
while the Datapixx recorded an analog signal from a photodiode

16| screen refresh rate: 16.667ms |
14¢ 1
~~
£]
g
g 10r larger intervals due
= to screen "flip"
)
B]
(1]
é 6- —
=, |
2t _
i B e g IR R L Ood
900 750 800 850 900
samples

FIGURE 5 | Input data sample intervals. Sample intervals are about 7 ms
when the Psychtoolbox function flip puts the data in the video buffer on the
screen. To achieve a sample rate greater than 1kHz, interrefresh sample
rates are generally smaller than 1 ms.

at 200 kHz. This analog signal was thresholded at the midpoint of
its range and the timestamps. The results are shown in Table 2.
The configuration of PLDAPS necessitates the existence of three
independent clocks: that of the stimulus Macintosh, the Plexon
MAP system, and the Datapixx peripheral. The accurate synthesis
of neural and behavioral timestamps would be greatly impeded if
these clocks did not run at the same rate. To test this, the cumulative
timing differences were compared after continuous running with
the function RunDecisionTrial cycling through 500 trials, which
took approximately 1.2h. The MAP processor was the slowest
clock, with the stimulus Macintosh computer running 0.00056%
faster. For our purposes, this difference can be treated as negligi-
ble. However, the Datapixx peripheral’s clock ran 0.015% faster, a
difference that is much larger than between the other two clocks.
So, in the course of a typical 3—4 h experiment, the timing between
the two systems could be as much as 2-3 s. For this reason, special
care was taken to measure both neural and behavioral information
from a clock register at the start of each trial (for each respective
clock). In doing so, the timing differences between the Datapixx
and the MAP processor are minimized to a mean of 0.134 ms,
with a SD of 2 ms and an upper limit of 1 ms. Of course this vari-
ability is dependent upon each trial running an average of 7.75s
(SD = 3.1) with longer trials assumed to create more variability.

DISCUSSION

The PLDAPS design goals were formed from the struggles of
our lab to maintain a high-level of productivity with our cur-
rent electrophysiological hardware and software. The initial idea
of developing a MATLAB toolbox, instead of a stand-alone pro-
gram, came from the prospect of spending weeks developing a user
interface that would be obsolete when we would later decide upon
a new experimental paradigm. At the same time, it became clear
that many researchers in this area are well-versed in programming
in MATLAB, and with Psychtoolbox in particular. Furthermore, as
cognitive neuroscience expands, the number of different experi-
mental paradigms to pursue has grown, leading to the prospect of
either a dedicated programmer to code all experiments, or a flex-
ible framework to empower each lab member as an experimental
programmer while maintaining high levels of both usability and
temporal precision.

The primary challenge in building such a system is the connec-
tion between the neurophysiological equipment and the experi-
mental stimulus and control computer and software. In this case,
this amounted to needing something that would connect our
Plexon MAP to a Mac Pro running Psychtoolbox. Both the Plexon
system (as well as other modern neurophysiological recording sys-
tems) and Psychtoolbox are well-established and in common use in
many laboratories. The Datapixx box, a more recent introduction
to the market, serves as an important peripheral in their inte-
gration. By allowing precise timing of inputs and outputs that
were accessible by MATLAB and Psychtoolbox, it allowed devel-
opment of a system in which the Mac running Psychtoolbox is the
single master computer (controlling experimental state flow and
generating/presenting stimuli). The Plexon MAP then records key
experimental events (determined or detected by the Mac Pro) that
are temporally co-registered with the neurophysiological data. The
system can also pass neurophysiological data from the Plexon MAP

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1| 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

121

11F o . . ® .
T 1te
]
=
2 oot
=
= * i
® 0sf pre ﬂlp
S * post-flip
S o7t —— photodiode
2
8 06k
T
S
© 05
'
[}

04 TP Y Salas aode

PR Lt annin ug
03r
1 | | | | | | |
14 16 18 2 22 24 26 28
time (s)
FIGURE 6 | Photodiode test. A photodiode was placed in front of a variety of monitors while every tenth screen was flashed. Analog input data (voltage) is
displayed in blue as a function of time. Pre-flip and post-flip timestamps are shown in black and red, respectively.

Table 1 | DIO channels for Datapixx to Plexon communication.

Channel usage First pulse Second pulse Third pulse
1 Fixation point 1 On Cursor in Off

2 Fixation point 2 On Cursor in Off

3 Dots On Off -

4 Choice In target Reward given -

5 Targets On Off -

6 Beginning of trial - - -

7 Unused - - -

Table 2 | Measured time delays between video update signal and
actually screen redraw.

LG FP55” Dell FP 19” Dell CRT 21”
Mean flip-to-screen delay (ms) 52.4634 18.444 10.8201
Std flip-to-screen delay (ms) 0.0643 0.8384 0.0506
Std inter-flip interval (ms) 0.0001 0.0001 0.0001

The delay of the 55" LG monitor (our primary stimulus device) is notable, much
more than the other two screens, and will be compensated for in data analysis.

back to the Mac Pro (again, via the Datapixx box), allowing the
Mac the ability to “listen” to the spike train of a single neuron on-
the-fly. This allows for the development of adaptive experiments,
in which the next stimulus event (or the overall course of the trial
or experiment) can be affected by the ongoing activity measured
in the brain.

DISTINCTIONS BETWEEN PLDAPS AND OTHER SYSTEMS

The PLDAPS toolbox may be useful for many researchers, espe-
cially those who perform experiments that rely on adapting
the stimuli and experimental states contingent either on an

experimental subject’s behavior, or on ongoing neurophysiolog-
ical measures. Several other systems are available in this line of
work, and here we briefly describe the relation of PLDAPS to these
other valuable resources.

Historically, one of the most prevalent systems for awake,
behaving neurophysiology is the REX system (Hays et al., 1982).
Prior to developing PLDAPS, this was our lab’s primary system.
REX involves a PC running the QNX operating system, execut-
ing a set of integrated c-code that controls the experimental state
logic. The PC also relies on A/D and DIO cards to allow it to
record co-registered spike times, and to interrogate the eye posi-
tion on-the-fly. It then commands a “slave” Macintosh computer,
whose sole responsibility is stimulus presentation. The REX sys-
tem is remarkable in having excellent temporal precision thanks
to the “real-time” nature of the QNX operating system, as well as
the robustness of the underlying REX computer code. However,
in our experience, modifying experiments involved a lengthy ini-
tial learning process, and many steps. In the authors’” experience,
increasingly complex experiments were ultimately implemented
with a variety of “hacks” that were at best inelegant, and which
required great care in both documentation and use. This can
be a scientifically and pedagogically unpleasant (and untenable)

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1|9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

situation. REX remains a valuable system for many sorts of experi-
ments, and has supported a large number of groups and important
research findings. Viewing REX as many laboratories’ gold stan-
dard, we believe PLDAPS offers improved ease of use and flexibility
in developing experiments and exploiting new video technology,
at the relative expense of using time-tested hardware, a large set
of pre-existing computer code, and perhaps a small degree of
temporal precision.

Several other systems have been developed and used for vari-
ous forms of neurophysiology in primates and other animals (e.g.,
Cortex, LabLib, EXPO, Orion; see Web References). These are
important resources for the field, and PLDAPS fulfills a distinct
user need. Specifically, most of these programs require learning a
new set of both low-level and high-level commands for controlling
experiments and formatting data. The strength of these systems
is that they are mature, already have an established user base,
and have been refined to perform specific types of experiments
very well. However, this strength places limits on the general-
ity of these tools. For example, several were designed primarily
for the goals of researchers performing anesthetized neurophysio-
logical recordings, and now require adaptations and elaborations
to accommodate complex online behavior. PLDAPS, in contrast,
was fundamentally built around a desire to use the Psychophysics
Toolbox, which is inherently flexible and well-suited to behavioral
experiments. Thus, PLDAPS puts virtually all the coding responsi-
bility in the hands of each laboratory or experimenter. Depending
on the goals and skill set of specific laboratories, this is either an
advantage or a burden.

Finally, there are systems that were built with Psychtoolbox,
such as Monkeylogic (Asaad and Eskandar, 2008). In contrast to
our approach, Monkeylogic provides a large set of MATLAB scripts
and functions, and is primarily focused on the behavioral compo-
nents of the experiment. Thus, it provides a broad set of tools
for a variety of behavioral paradigms, but is challenged by sit-
uations where monitoring of events and changing of a stimulus
pattern has to be interleaved quickly (e.g., within 2-3 ms). It also
does not explicitly pass data back and forth with a system like the
Plexon MAP, requiring parallel and modular collection of behav-
ioral data and neurophysiological data, and thus requires critically
on post hoc alignment of the two types of data. PLDAPS is distinct
in providing a minimalist set of tools that are focused on sub-
millisecond event timing and deep integration of the behavioral
and neurophysiological events.

CAVEATS AND LIMITATIONS OF PLDAPS
Given the fast timing of neurophysiological signals relative to the
timing of video refreshes, a major concern in using any system
(PLDAPS included) is the potential for delays, mis-registration,
and temporal drift. In this paper we have attempted to clarify the
operating limits of our current implementation of the PLDAPS
system. In general, the speed of the CPU in a modern Macintosh
Pro is not a rate-limiting factor. The limiting factors come in to
play when considering how the Mac Pro communicates with the
Datapixx box (a USB 2.0 peripheral) and the Plexon MAP.

The major timing caveat is that, while pre-planned events
can be designed and recorded with excellent temporal accuracy

and precision (i.e., microsecond scale), “on-the-fly” events will
necessarily be detected and recorded on slower time scale (i.e.,
millisecond), which can certainly be faster than the conventional
time scale of monitor redraws. This distinction occurs because the
Datapixx box can receive and pre-load planned event signals into
a buffer, which can then be programmed to output the signals at
microsecond scale; in contrast, unplanned on-the-fly events must
instead be passed over the USB 2.0 connection (between the Mac
and the Datapixx box) and processed in MATLAB, which is of
course slower. However, we emphasize that in practice the Dat-
apixx box supports microsecond accuracy for many important
events, and can be used to detect and record on-the-fly events
with speeds sufficient to adjust the video display within a single
redraw. For many purposes, this is fast enough, but there may be
exceptional conditions for which this is a fundamental temporal
constraint.

Another timing issue involves clock drift over long time frames.
Although this is not a factor over the course of seconds (the usual
duration of trials in these experiments), we detected noticeable
drift between the Datapixx clock and those of the Plexon MAP
and the Mac Pro. This has two main implications. First, conven-
tional experiments using short trials should make sure to align the
Datapixx-time-stamped and Plexon-time-stamped events to the
start of each trial (as opposed to, say, the start of each experimen-
tal session). Second, unconventional experiments involving long,
continuous parallel recordings should contemplate correction for
relative temporal drift.

Another timing-related caveat we have emphasized throughout
this paper is that the PLDAPS toolbox is a minimal set of code.
It is meant to serve as a set of examples of how to run simple
experiments while integrating the three hardware components.
Development of new experiments is left to the user, and hence,
whether their particular code “runs fast” is their responsibility. It is
certainly possible that large amounts of on-the-fly computational
demands on the Mac can cause critical loops to be delayed relative
to intended event timings. We advise performing standard timing
checks (e.g., recording elapsed times between key events, checking
for missed video frames) when developing new experiments using
the PLDAPS tools.

POSSIBLE EXTENSIONS

A major benefit to building a system out of popular and
well-maintained components is the possibility for extensions of
PLDAPS’s functionality. Virtually any hardware input or output
device can be controlled by the Datapixx box and the Mac run-
ning MATLAB. Likewise, because the experiments themselves are
designed in MATLAB and Psychophysics Toolbox, future addi-
tions and capabilities will be inherited by PLDAPS. For example,
as Psychophysics Toolbox adds additional support for new video
cards with additional capabilities, PLDAPS users will immediately
be able to use these tools. Another intriguing possibility is the use
of MATLAB’s Parallel Computing Toolbox. This set of tools allows
users to perform computations on multiple CPUs (or GPUs) in
parallel. Given that current Mac Pros are multicore, these tools
may further extend the amount of online computation possible at
frame rate.

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1| 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Eastman and Huk

PLDAPS toolbox

CONCLUSION

This description of the PLDAPS toolbox is meant to be help-
ful to the neuropsychological community on multiple levels of
implementation. Many labs that perform single or multi-unit elec-
trophysiology already use the components of PLDAPS, and can
start using it as a finished system. Other labs or experimenters
with different needs may want to integrate certain components
into their own systems, or use principles described in PLDAPS for
their own designs. At the very least, it serves as “proof of concept” of
an approach to experimental software design that acknowledges
the specific level of programming abilities of the typical neuro-
science researcher; many are skilled enough to design their own
experiments, but only with the help of a toolbox that takes care of
tedious technical issues.

WEB REFERENCES
Cortex: http://www.cortex.salk.edu/documentation/VCortex11_
21/VCtxUser.htm

REFERENCES

Asaad, W. E, and Eskandar, E. N.
(2008). A flexible software tool for
temporally-precise behavioral con-
trol in Matlab. J. Neurosci. Methods
174, 245-258.

Brainard, D. H. (1997). The psy-
chophysics toolbox. Spat. Vis. 10,
437-442.

Hays, A. V,, Richmond, B. J.,, and
Optican, L. M. (1982). A UNIX-
based multiple process system
for real-time data acquisition and
control. WESCON Conf. Proc. 2,
1-10.

Huk, A. C., Shadlen,
M. N. (2005). Neural activity
in macaque parietal cortex reflects
temporal integration of visual
motion signals during perceptual
decision making. J. Neurosci. 25,
10420-10436.

Kleiner, M., Brainard, D., and Pelli, D.
(2007). What’s new in Psychtoolbox-
32 Perception 36 ECVP Abstract
Suppl.

Pelli, D. G. (1997). The VideoToolbox
software for visual psychophysics:
transforming numbers into movies.
Spatial Vision 10, 437-442.

and

EXPO: https://corevision.cns.nyu.edu/

Orion: http://leelab.yale.edu/Software.html

PLDAPS: http://hukdata.cps.utexas.edu/archive/PLDAPS.html

Liblab: http://maunsell. med.harvard.edu/software.htmlmggma

REX: http://www.nei.nih.gov/intramural/lsr.asp#software

PsychToolbox performance tuning: http://psychtoolbox.org/
wikka.php?wakka = FaqPerformanceTuningl

Plexon digital configuration: http://www.plexon.com/assets/
pdf/Digitallnput.pdf

ACKNOWLEDGMENTS

We would like to thank Peter April and Leor Katz for their help
in developing PLDAPS. We appreciate Thad Czuba’s assistance
with Figure 1. This work was supported by the following grants
form the US National Institutes of Health/National Eye Insti-
tute: RO1-EY017366 (US NIH) to Alexander C. Huk, and R01-
EY020592 to Alexander C. Huk, Lawrence Cormack, and Adam

Kohn.

Wagner, . (2006). Modeling Software
with Finite State Machines: A Practi-
cal Approach. Boca Raton: Auerbach
Publications.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 04 August 2011; accepted: 03
January 2012; published online: 31 Janu-
ary 2012.

Citation: Eastman KM and Huk
AC (2012) PLDAPS: a hardware
architecture and software toolbox for
neurophysiology requiring complex
visual stimuli and online behavioral
control. Front. Neuroinform. 6:1. doi:
10.3389/fninf.2012.00001

Copyright © 2012 Eastman and Huk.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution Non Commercial License,
which permits non-commercial use, dis-
tribution, and reproduction in other
forums, provided the original authors and
source are credited.

Frontiers in Neuroinformatics

www.frontiersin.org

January 2012 | Volume 6 | Article 1| 11

http://www.cortex.salk.edu/documentation/VCortex11_21/VCtxUser.htm
https://corevision.cns.nyu.edu/
http://leelab.yale.edu/Software.html
http://hukdata.cps.utexas.edu/archive/PLDAPS.html
http://maunsell.med.harvard.edu/software.htmlmggma
http://www.nei.nih.gov/intramural/lsr.asp#software
http://psychtoolbox.org/wikka.php?wakka\protect \kern +.1667em\relax $=$\protect \kern +.1667em\relax FaqPerformanceTuning1
http://www.plexon.com/assets/pdf/DigitalInput.pdf
http://dx.doi.org/10.3389/fninf.2012.00001
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	PLDAPS: a hardware architecture and software toolbox for neurophysiology requiring complex visual stimuli and online behavioral control
	Introduction
	Motivating Goals of PLDAPS
	Programming Flexibility
	Usability
	Temporal Precision

	PLDAPS features
	Toolbox Format
	Command-Line interface
	Multiple-display, multi-CLUT system

	Materials and methods
	Architecture and components
	Computer specifications
	The Datapixx box
	The Plexon MAP system
	Video display specifications
	Other input devices
	Experimental setup
	Experimental function architecture
	Communication with Plexon
	Hardware interfacing

	Results
	Performance tests
	Co-registration of events on the Mac and in Plexon
	Co-registration of timing of events and actual display on the monitor

	Discussion
	Distinctions between PLDAPS and other systems
	Caveats and limitations of PLDAPS
	Possible extensions

	Conclusion
	Web references
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

