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INTRODUCTION

Many different independently published neuroanatomical parcellation schemes (brain
maps, nomenclatures, or atlases) can exist for a particular species, although one scheme
(a standard scheme) is typically chosen for mapping neuroanatomical data in a particular
study. This is problematic for building connection matrices (connectomes) because the
terms used to name structures in different parcellation schemes differ widely and
interrelationships are seldom defined. Therefore, data sets cannot be compared across
studies that have been mapped on different neuroanatomical atlases without a reliable
translation method. Because resliceable 3D brain models for relating systematically and
topographically different parcellation schemes are still in the first phases of development, it
is necessary to rely on qualitative comparisons between regions and tracts that are either
inserted directly by neuroanatomists or trained annotators, or are extracted or inferred by
collators from the available literature. To address these challenges, we developed a publicly
available neuroinformatics system, the Brain Architecture Knowledge Management
System (BAMS; http://brancusi.usc.edu/bkms). The structure and functionality of BAMS
is briefly reviewed here, as an exemplar for constructing interrelated connectomes at
different levels of the mammalian central nervous system organization. Next, the latest
version of BAMS rat macroconnectome is presented because it is significantly more
populated with the number of inserted connectivity reports exceeding a benchmark value
(50,000), and because it is based on a different classification scheme. Finally, we discuss
a general methodology and strategy for producing global connection matrices, starting
with rigorous mapping of data, then inserting and annotating it, and ending with online
generation of large-scale connection matrices.

Keywords: connectome, neuroinformatics, data mining, data collation and annotation, neuroanatomy, mapping,
BAMS

(expressivity), associated with connectivity reports in a database.

The “connectome” concept was introduced by Sporns and
his colleagues (Sporns et al., 2005). Initially it referred to
the global matrix of macroconnections (i.e., axonal connec-
tions between gray matter regions seen as black box nodes;
for its complete definition see BAMS Foundational Model
of Connectivity Thesaurus, http://brancusil.usc.edu/thesaurus/
definition/connectome/; Swanson and Bota, 2010) for the human
brain. The concept has since been refined and today has at least
three specific meanings that are applied to the nervous system
as a whole, not just the brain (Swanson and Bota, 2010; Akil
et al., 2011). Besides the macroconnectome between gray matter
regions, which includes functional magnetic resonance imag-
ing (fMRI) and diffusion tensor imaging (DTI) results, there
is the global mesoconnectome, which is a matrix of all axonal
connections between all neuron types; and there is the global
microconnectome, which is a matrix of all axonal connections
between all individual neurons in a particular animal or person
(Swanson and Bota, 2010).

The level of abstraction of a connectome is variable, and it
depends on the number of experimental variables and metadata

The most abstract levels are those used to construct macro-
connection wiring diagrams and square matrices of gray matter
regions that show qualitative connection strengths in different
visual formats (Stephan et al., 2000b; Bota and Swanson, 2007a;
Bohland et al., 2009; Swanson and Bota, 2010). However, they can
be enhanced with other information like the spatial characteris-
tics of injection and labeling sites, axon branching patterns, and
routes taken by the axons through associated white matter tracts
(Swanson and Bota, 2010).

One other factor is critical. Connection matrix construction
requires the use of a single, internally consistent nomenclature for
gray matter regions (macroconnectome), neuron types (meso-
connectome), and individual neurons (microconnectome). Thus,
it is necessary to define relationships within and between the
sets of gray matter regions and neuron types defined in different
neuroanatomical and neuron nomenclatures, respectively, and
individual neurons. The ultimate global connectome would thus
consist of an integrated macroconnectome, mesoconnectome,
and microconnectome based on an integrated nomenclature for
all of them (see Figure 1 in Bota and Swanson, 2007b).

Frontiers in Neuroinformatics

www.frontiersin.org

February 2012 | Volume 6 | Article 2 | 1


http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00002/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=343&d=1&sname=MihailBota&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=9310&d=0&sname=Hong_WeiDong&name=all people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=999&d=1&sname=LarrySwanson&name=Science
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bota et al.

Rat and mouse connectomes

Cerebrum Cerebellum

Cerebrospinal Trunk

FIGURE 1 | First version of the rat CNS macroconnectome, defined in
the Swanson-1998 nomenclature and constructed from data in BAMS
[Bota and Swanson (2007a); Bohland et al. (2009)]. The color code used to
produce both macroconnectome versions is as follows: gray—absent
information; black—evidence that connection is absent; green—evidence

that connection exists, without any explicit qualitative strength;

red—very strong connection; pink—strong connection;
yellow-to-red—medium-to-strong connection; yellow—medium or moderate
connection; blue—weak or sparse connection; light blue—very weak (sparse)
connection; or axons-of-passage. See Text for details.

The Brain Architecture Knowledge Management System
(BAMS; http://brancusi.usc.edu/bkms; http://brancusil.usc.edu)
was designed to handle neuroanatomical information across mul-
tiple levels of vertebrate nervous system organization. It includes
five interrelated Modules that store and process data about:
(1) molecules expressed in different gray matter regions or neu-
rons, (2) neuron types and classes, (3) gray matter regions,
(4) relations between gray matter regions defined in different

parcellation schemes, and (5) about connections between gray
matter regions or neuron types defined in different nomencla-
tures and species. BAMS also includes inference engines relating
gray matter regions defined in different parcellation schemes—
neuron populations defined by different authors. Its backend
database and inference engines currently allow construction
of macroconnectomes from manually and semi-automatically
inserted data, with several levels of abstraction—from simple gray
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matter region wiring diagrams and 2D connectomes in differ-
ent graphical formats to more detailed tabular representations of
connections, augmented with spatial details that include injection
and labeling sites, specific zones within regions (layers and other
features), and white matter tract information (Bota et al., 2003,
2005; Bota and Swanson, 2007b).

We consider here three BAMS Modules, Connections,
Relations, and Cells from the perspective of macroconnectome
construction and relationships with mesoconnectomes, as well as
the BAMS inference engine for online translation of connection
reports across different nomenclatures (Bota and Swanson,
2010). The Connections and Relations Modules have been used to
construct user-defined connectivity matrices and diagrams (Bota
et al., 2003), as well as rat macroconnectomes since the work
reported in Bota and Swanson (2007a). In this paper we present
the newest version of the rat BAMS macroconnectome, which
was created by using the inference engine for translation of con-
nections reports. We also discuss the steps that have to be taken
to ensure correct translation of connection reports collated from
the literature. Finally, we discuss the most important challenges
related to connectome construction within BAMS and argue for
a collaborative and coordinated effort of the neuroinformatics
community.

BAMS—MESOCONNECTOME

To reiterate: a global mesoconnectome is defined as the complete
set of axonal connections between all neuron types in the ner-
vous system of a particular species (Swanson and Bota, 2010).
Depending on which methods and classification criteria are cho-
sen, different authors may name the same or overlapping neuron
sets (types or classes) differently. Therefore, one prerequisite for
constructing mesoconnectomes is the construction of a single,
internally consistent classification system for neuron types in a
particular species. A second prerequisite is a systematic account
of relationships between classification schemes used by different
authors (Bota and Swanson, 2007b).

The Cell Module of BAMS was designed specifically to han-
dle neuron sets (types) reports collated from the literature, as
well as criteria for hierarchical classification specified by differ-
ent authors. Each “is_a” relationship that relates a class to its
instances is associated with a complex representation of criteria
and subcriteria that are used in the literature.

BAMS also includes an inference engine that relates neuron
types and classes defined in different neuron nomenclatures (Bota
and Swanson, 2007b). The relations that are established across
neuron populations defined or described by different authors
are both qualitatively spatial (i.e., topological; Egenhofer and
Franzosa, 1991), and in terms of common structural attributes.
For example, two neuron sets (classes, or types) are consid-
ered identical whenever they share a common space and they
have the same attributes as stated by authors, or inferred by
collators.

To simplify the “knowledge maps” that can be extracted from
the inserted relationships (Bota and Swanson, 2007b), we use
a set of semantic relations that take into account the general
spatial relations that can be defined between two neuron pop-

» o«

ulations, and their compared attributes: “synonym,” “includes,”

“partial correspondence,” and “different.” The details of reducing
the qualitative spatial relations to a set of semantic relations, and
examples of how a “knowledge map” can be constructed from
the information inserted in BAMS, are discussed in Bota and
Swanson (2007b). Because the sources of axonal inputs and the
targets of axonal outputs for a specific neuron type or class are
explicitly recorded in BAMS as classification attributes, they can
be inferred using the relationships between neuron populations
that include hodological criteria (i.e., the set of inputs and tar-
gets) in their definitions or descriptions. An inference engine that
uses information about axonal inputs and targets for automatic
classification of neurons was already implemented in BAMS. This
engine automatically establishes the level of a specific neuron
population within BAMS’ classification scheme as well as the hier-
archy of criteria, solely based on the inputs and targets, and their
nature (gray matter regions or white matter tracts). Examples of
such inferences are shown and discussed in detail in Bota and
Swanson (2007b).

Finally, the backend structures of the Cell and Connections
Modules are interrelated such that one or more connection
reports about gray matter regions can be associated with the
axonal connections of one or more neuron types (Bota et al,
2005). To summarize, axonal connections between neuron types
or between neuron types and gray matter regions are encoded in
BAMS in two different ways: first as components of macrocon-
nections, and second as criteria for definition of neuron types and
classes.

BAMS—MACROCONNECTOME

The BAMS Connections Module allows insertion of data
and metadata at the level of macroconnections. The Entity-
Relationship (ER) structure of this Module allows insertion of
more than 40 qualitative, semi-quantitative, and quantitative
attributes associated with a neuroanatomical connection report,
as collated from the literature (Bota et al., 2005). The large num-
ber of attributes associated with any connection report (i.e., high
expressivity) of the BAMS Connections Module allows recon-
struction of connection patterns between distinct gray matter
regions, including connection patterns between sets of neuron
types identified in different gray matter regions.

It also allows association of macroconnection (as well as meso-
connection) reports with major white matter tracts. Thus, the
Module can be used to reconstruct tracts in terms of contribu-
tions from one or more gray matter regions (or neuron types as
described above; for details and examples see Bota et al., 2005).
This BAMS feature becomes increasingly important in the context
of global efforts intended to create 2D and 3D connectome maps
(Hjornevik et al., 2007; Hawrylycz et al., 2011). Each connectivity
report can be associated in BAMS with Atlas Levels (the serially
numbered 2D maps in a brain atlas) and stereotaxic coordinates
where the stain was reported. Finally, each major white matter
tract of a given mammalian species can be associated with a set
of neuroanatomical connections, and thus can be reconstructed
in terms of the input and output regions. These three features
of the BAMS Connections module allow it to be used as a back-
end data provider for reconstruction of CNS roadmaps by future
visualization tools.
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The high expressivity of the backend structure of BAMS’s
Connections module is necessary but not sufficient for the com-
plete and correct insertion of connectivity data, and in the end
for creating a macroconnectome using connections mapped on
neuroanatomical nomenclatures (atlases) other than the stan-
dard nomenclature. The construction of any macroconnectome
depends on the choice of a standard nomenclature, and it is always
ideal to map new data directly onto the standard nomenclature.
It also depends on the completeness and correctness of inserted
data by the collators or experts.

Connectivity reports mapped on different parcellation
schemes either have to be remapped by collators and curators, or
the system can translate topologically the injection and labeled
sites. The first option, manual remapping, does not preserve the
integrity of original reports, and must be performed whenever
a new nomenclature (e.g., atlas) is encountered. To preserve the
original integrity of connectivity reports as collated from the
associated references, remapping must become as independent as
possible from the nomenclature in use. And to avoid unnecessary
duplication of reports (e.g., one in the original nomenclature
and the second mapped and inserted by the human expert), we
employed a second option, automatic translation of connectivity
data across nomenclatures.

Since standard, high-resolution, resliceable 3D computer
graphics frames of reference for the rat brain and nervous system
are still in the first phases of construction and testing (Hjornevik
et al., 2007; Hawrylycz et al., 2011), connectome construction
has to rely on a qualitative translation engine across different
parcellation schemes. For this, we have constructed a special
Module in BAMS, Relations, that allows encoding of qualitative
spatial relations between nervous system parts defined in different
neuroanatomical nomenclatures (e.g., atlases) in specific species.
This Module also includes a large set of metadata associated
with the actual process of mapping nervous system parts, per-
formed or inserted by collators (Bota and Swanson, 2010). After
the qualitative spatial relations between gray matter regions of
two neuroanatomical nomenclatures defined in the same species
have been inserted in BAMS, connections reports associated with
either of the nomenclatures can be translated to the related
one. This translation is the result of the Connections Translations
inference engine implemented in BAMS. Full description of this
engine and examples of translations are provided in Bota and
Swanson.

Besides the problem of choosing a nomenclature for mapping
the results of pathway tracing experiments to help establish con-
nections (projections), the second challenge is the process of data
entry itself. Any connectivity database can be populated from data
collated from the literature, or it can be directly inserted by neu-
roanatomists, or both. The database design of the Connections
module and its associated interfaces allow both ways of data inser-
tion (Bota et al., 2005). BAMS is used by neuroanatomists to
insert their experimental data, and manipulate in different ways
the connectivity information. However, the connectivity data
inserted in BAMS is mainly collated from the published literature.
The collation procedure is manual and each report inserted in the
system is supported by a textual annotation from the associated
reference, or by collator’s interpretations.

Finally, the BAMS Connections module is associated with
a set of publicly accessible interfaces that allow construction
of user-customized connections matrices. The web interface of
BAMS’s Connections module also includes inference engines that
construct networks of gray matter regions, defined in specific
neuroanatomical nomenclatures (Bota et al., 2003, 2005).

THE RAT MACROCONNECTOME

The first version of the rat macroconnectome was constructed
from ipsilateral connectivity reports inserted in BAMS (Bota and
Swanson, 2007a; Bohland et al., 2009) and used the Swanson-
1998 (Swanson, 1998) nomenclature and classification hierarchy.
It covered 9.4% of the entire matrix, which has 486 x 486 cells—
with each cell representing a gray matter region at the bottom of
the region classification hierarchy. The number of cells that are
filled with any other color than gray (no data) is 22,178 (Figure 1).

Because the number of connection reports inserted in BAMS
exceeded an internal benchmark value (50,000), we reconstructed
the rat BAMS macroconnectome using the Swanson-2004 par-
cellation scheme (Swanson, 2004). The connection reports used
in this new macroconnectome were originally mapped onto dif-
ferent nomenclatures recorded in BAMS; for example, Swanson
(1998), Fulwiler and Saper (1984), and Moga et al. (1989). The
translation of connections into the Swanson-2004 nomenclature
was semi-automatic, first using the Connections Translations infer-
ence engine described above, and then using results validation
by human agents when the relationships between Swanson-2004
nomenclature and the original nomenclature yielded equivocal
results.

The increase in reports collated in BAMS’s Connections mod-
ule from the previous connectome version (Bota and Swanson,
2007a; Bohland et al., 2009) is 28.20%, from about 39,000 reports
to the present value of 52,458. The present version of the rat
BAMS connectome (Figure 2) is a matrix of 503 x 503 cells with
11.2% coverage (i.e., cells filled with any color but gray—no
data). One percent coverage of the connectome matrix shown in
Figure 2 corresponds to about five completely filled columns or
rows. This connectivity data increase was collated and curated
from 15 newly inserted research papers collated from 2009. In
addition, the results of pathway tracing experiments from more
than 20 references were re-mapped, completed, or corrected.

There are two notable differences between the Swanson-1998
and Swanson-2004 connectomes shown in Figures1 and 2,
respectively. First, the Swanson-2004 macroconnection matrix is
slightly larger than the Swanson-1998 macroconnection matrix,
mostly because several gray matter regions were remapped and
more finely parceled in Swanson-2004, especially the lateral
hypothalamic area (LHA). However, the number of bed nuclei
of the stria terminalis (BST) regions is reduced, three of them
defined in Swanson-1998 nomenclature (BSTad, BSTav, BSTdI)
being grouped in a single gray matter region, BSTam, in the
Swanson-2004 parcellation scheme (Swanson, 2004).

The second and more important difference is the internal orga-
nization of the Swanson-1998 and Swanson-2004 nomenclatures.
The main criterion for internal organization of the Swanson-
2004 rat nomenclature is functional network organization (see
Table B in Swanson, 2003, 2004), whereas that of Swanson-1998
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FIGURE 2 | Second version of the rat CNS macroconnectome,
defined in the Swanson-2004 nomenclature and constructed
from data in BAMS. The color code is identical to that used in the
first version. The number of filled cells in this new rat connectome is
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27,796, which represents more than 25% increase in connection
data used to construct the matrix, from the 22,178 labeled cells
(Figure1; Bota and Swanson, 2007a) in the first version of the rat
connectome.

is based more on strict topographical relationships. As a result,
connections of the same gray matter regions will be displayed
in different columns and rows of the matrix, and under dif-
ferent higher-order subdivisions of the rat nervous system. The
advantages of using the rat Swanson-2004 nomenclature over
Swanson-1998 is thus three fold: (1) several gray matter regions
are refined, (2) the nomenclature is constructed on more crite-
ria, and (3) the nomenclature is applied consistently across the

rat CNS. Hence, the internal consistency of the newest Swanson
nomenclature is strengthened. Finally, the new hierarchical orga-
nization of Swanson-2004 nomenclature better integrates the
structure-function relationships of rat CNS gray matter regions.
Because coverage in the newest version of the rat BAMS con-
nectome reached a landmark value and the gray matter regions
that send or receive at least one connection are not concentrated
in a single CNS subdivision, we analyzed the results shown in
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Figure 2. The number of connections shown to be absent (black
squares) is 22,064, about 80% (79.38%) of the total. The num-
ber of regions with data about a connection to at least one other
gray matter region is 317, which means that 62% of the regions in
the BAMS rat connectome are associated with at least one output
connection. Regions with highest numbers of inputs are in the
cerebral cortex (prelimbic and infralimbic areas), cerebral nuclei
(several BST nuclei), and hypothalamus (LHA regions).

The highest output connection ratio (i.e., the ratio, matrix
cells in a column with data indicating an output: total number
of cells in a column) shown by any gray matter region in Figure 2
is 34%, and the highest ratio for a cerebral cortical area is 18%.
In a second, more stringent and informative, step of this prelim-
inary CNS-wide analysis we took into account only those gray
matter regions with a complete set of ipsilateral outputs regis-
tered in BAMS (shown as entire filled columns in Figure 2). We
thus determined the output connection ratio for 44 gray matter
regions that include select parts of the cerebral cortex (includ-
ing the subiculum), amygdalar region, lateral septal nucleus, and
hypothalamus—and all parts of the BST. The output connection
ratios for this subset of 44 gray matter regions range from 2%
(for lateral septal nucleus subdivisions) to 34% (for LHA regions).
In other words, the number of ipsilateral terminal field targets
for this subset of gray matter regions ranges from 8 to 150. The
average output connection ratio for this subset is 10%, which
means that on average each member of the subset has about 40-50
ipsilateral gray matter region targets, out of a total of about 500
possible targets.

The average output connection ratio for the entire set of rat
CNS gray matter regions may be significantly less than 10%, how-
ever, because the analyzed subset is heavily biased toward gray
matter regions with very complex output patterns.

A similar situation was found for data about input connec-
tion ratios of the gray matter regions shown in Figure2. Some
406 (81.2%) gray matter regions from the total of 503 have data
about the reception of at least one axonal input. From data avail-
able in BAMS so far, regions that receive the most axonal inputs
are mostly located in the cerebral nuclei and hypothalamus.

The connectivity data used for constructing the second BAMS
rat macroconnectome is available to the neuroscience com-
munity in interactive graphical format in the newest version
of BAMS: http://brancusil.usc.edu/connections. Users can con-
struct it online and export the data in XML or JSON formats,
or as a flat image. A second XML version of the macroconnec-
tome that includes the BAMS unique ID’s of brain regions is
provided in the classic version of BAMS: http://brancusi.usc.edu/
bkms/brain/choose-connection.php. This additional XML ver-
sion is useful for third party systems that would use the numerical
ID’s to bring additional gray matter region data and metadata
from BAMS. Thus, the new rat macroconnectome, or parts of it,
can be linked to, replicated, analyzed, or enhanced by members of
the neuroscience community.

DISCUSSION

Connectome construction at all scales (micro-, meso-, or macro-)
is important for analyzing and understanding global nervous
system wiring diagrams, which in turn may help generate new

hypotheses and design the experiments to test them. The most
abstract and simplest form of a neuroinformatics-driven con-
nectome is a 2D matrix that shows the presence or absence
of connections between gray matter regions (a macroconnec-
tome). Obviously, such connectomes can be refined by adding
more information about spatial attributes like the route taken by
a connection through various white matter tracts, and specific
zones (differentiations) within a particular gray matter region. In
the following we discuss two of the most important challenges
we addressed in macroconnectome construction within BAMS:
nomenclatures and data collation or annotation.

NOMENCLATURES

The construction of macroconnectomes, even in their simplest
and most abstract form, needs to follow a set of rules. First, any
macroconnectome must be associated minimally with an inter-
nally consistent nomenclature of gray matter regions that can
be either based on published parcellation schemes, or can be
constructed de novo by an expert or group of experts. For macro-
connectomes, internal consistency of the chosen nomenclature is
the necessary prerequisite ensuring that the gray matter regions
used for matrix construction are distinct and do not overlap. In
addition, nomenclature must cover the entire part of the ner-
vous system under consideration and should be species specific.
The nomenclatures proposed for nervous system parts in different
mammalian species by different authors may or not be hierarchi-
cally organized. Any nomenclature that is also hierarchically orga-
nized according to specific sets of structural or functional criteria
allows construction of connectomes that are more informative
than those arranged simply alphabetically. Thus, the arrangement
and size of any connectome in the graphical format of a 2D matrix
depends on the nomenclature and internal classification schemes
used.

Second, a macroconnectome based on data collated from the
literature is the abstract form of results from many pathway trac-
ing experiments mapped using a variety of non-identical methods
and nomenclatures. The translation of connections mapped on
parcellation schemes different from the connectome’s standard
nomenclature may be performed automatically, but the results
must be verified and validated by human experts. Results pro-
duced by inference engines may be incomplete, or even contra-
dictory, and human experts are necessary for checking them and
resolving discrepancies.

DATA COLLATION

There are at least three aspects of connectivity data collation
that influence the construction and usefulness of connectomes:
level of detail, completeness, and correctness of inserted data.
The level of detail associated with inserted data depends on
the complexity of the computer-readable representation, and on
how the results are presented in the literature. The simplest
form of a connectivity report is “region X connects to Y;” with
no other details. Connectomes based on such information pro-
vide only a superficial view of CNS connectivity patterns in
the species of interest, and they will be not as informative as
those constructed from reports that include, for example, qual-
itative assessments and/or quantitative data about connections.
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Thus, the richer the connection reports, the more informative
the connectomes.

The high degree of abstraction in macroconnectomes that are
organized in the format of a 2D matrix allows the construction
of relatively simple wiring diagrams. More realistic and function-
ally relevant wiring diagrams need more structural and functional
attributes associated with individual connections. This can be
approached by relating each cell of a connectome matrix with
the relevant data and metadata, as collated from the literature
or inserted by experts. However, the detail level in connectivity
reports collated from the literature is constrained by the mode
of data presentation within them. Because a standard for pre-
senting pathway tracing results in published references is not
yet available, published connectivity data are organized in dif-
ferent ways by different authors. Usually, an original research
article includes images of representative experimental material
and more or less detailed descriptions of neuroanatomical con-
nections. Thus, without the original results of the published
pathway tracing experiments, the collation of connectivity data
is best accomplished when displayed on a series of Atlas Level
maps or images. Whenever possible, we collate the connectivity
data from each Atlas Level presented in a published reference, and
combine this information with the textual description provided
by authors. This approach is necessary for qualitatively captur-
ing the topographical details of terminal fields, and the axonal
pathways and their routes. It is also useful for any neuroinfor-
matic system that aims to reconstruct macroconnections in visual
format (Tallis et al., 2011).

Regardless of the general procedure used to populate a
database with pathway tracing information—either collation of
the published literature or direct insertion by neuroanatomists—
the process is manual and thus time consuming. Ideally, the
process of connectivity data insertion should be performed in
parallel with the mapping and annotation of pathway tracing
experiments performed by neuroanatomists. However, this is not
yet possible in an organized and large-scale way, so that collation
and curation of the published literature is currently one of the
most widely used methods for populating knowledge manage-
ment systems. Examples of such systems include NeuroScholar
(Burns, 2001), CoCoMac (Stephan et al., 2000b), BAMS (Bota
et al., 2005; Bota and Swanson, 2010), and Temporal Lobe
database (van Strien et al., 2009). The comprehensive collation
and curation of connectivity data from published literature is also
important from an historical perspective, for establishing novelty
(by priority analysis) of current research results, and for future
comparisons.

While the macroconnectomes of selected gray matter regions
or subsytems in few mammalian species may be complete or
nearly complete, it is difficult to assess the present degree of cover-
age for the complete macroconnectome of any particular species.
We report here a coverage of about 11% for the rat CNS macro-
connectome in matrix format. However, the expressiveness (in
terms of attributes and associated metadata) of a neuroinformat-
ics system is proportional to the time spent on curation and data
entry. Minimally, all connectivity reports inserted in a neuroinfor-
matics system should include information about species, standard
nomenclature, methods used, and details about injection and

labeled sites. Pathway tracing experiments rely on many differ-
ent methods, each with unique advantages and limitations (Bota
et al., 2003), so the results of pathway tracing experiments using
different methods can be different, or even contradictory. As
a result, information about pathway tracing methods used and
about injection and labeled sites, respectively, is necessary for
future evaluation of connectivity data reliability (Bota and Arbib,
2004). Further details, such as the Atlas Levels and spatial coor-
dinates of injection and labeling sites, become very important in
the context of 3D reconstructions of experimental results.

Because the prerequisites of connectome construction (path-
way tracing data collation and relating gray matter regions across
different parcellations) are very time consuming, the order of
connectivity matrix filling in species of interest becomes impor-
tant both for practical and collaborative reasons. Thus, the
sequential release of updated, more complete macroconnectome
versions for a species of interest allows the neuroscience com-
munity to perform statistical analyses on the released data, and
to integrate it with already existent information. Moreover, each
release can be seen as a benchmark toward completion of a very
large-scale task. Because this task can only be done stepwise, the
advantage of choosing a hierarchically organized nomenclature is
obvious: it can be subdivided and reorganized as needed.

Such large-scale efforts can be accomplished only through
collaboration. Completion of the rat macroconnectome both
in a timely manner and with high quality data is a task that
can only be done collaboratively by multiple neuroanatomy
and neuroinformatics groups. Several neuroinformatics and neu-
roanatomy groups can work in parallel toward completion of
major structural or functional divisions of the nervous system
macroconnectome in a particular species. For example, each
group can complete the macroconnectome for one major sub-
division of a common, hierarchically organized, nomenclature.
Collaboration and coordinated efforts of different groups (Bota
and Swanson, 2007a; Akil et al., 2011) are already underway
for neuroscience data integration at different levels of the ver-
tebrate and invertebrate nervous systems. Associated with this,
BAMS infrastructure already allows creation of collaborative
mouse, rat, or macaque macroconnectomes with several sys-
tems, including the UCLA Mouse Connectome Project (http://
www.mouseconnectome.org/), Rodent Brain Workbench (http://
www.rbwb.org/; Zakiewicz et al., 2011), Temporal Lobe database
(http://www.temporal-lobe.com; van Strien et al., 2009; Sugar
et al., 2011), CoCoMac (http://cocomac.org), and the Brain
Architecture Project (http://brainarchitecture.org/).

For example, the backend structure of BAMS is compatible
with the recorded data and metadata associated with connec-
tion and neuron type reports, respectively, in two very important
publicly available neuroinformatics applications—CoCoMac and
CoCoDat—that were designed, developed, and populated by Rolf
Kotter and his colleagues (Stephan et al., 2000b; Kotter, 2004;
Dyhrfjeld-Johnsen et al., 2005). However, whereas the BAMS-
implemented algorithm for qualitatively relating gray matter
regions defined in different nomenclatures (for same species) uses
the complete set of eight topological relations (Egenhofer and
Franzosa, 1991; Sharma, 1986) that can be defined for a pair of
convex regions, and is thus purely topological (Bota and Arbib,
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2004; Bota et al., 2005), the Objective Relational Transformation
(ORT) algorithm implemented in CoCoMac uses only five topo-
logical relations and a logical inference engine (Stephan et al,,
2000a). Extensive discussion and comparison of both approaches
is provided in Bota and Arbib (2004). Both BAMS and CoCoMac
are integrated in the Neuroscience Information Framework and

provide extensive information about gray matter regions and
connectivity to the neuroscience community (NIF; http://www.
neuinfo.org; Akil et al., 2011). A comprehensive comparison of
BAMS with the major publicly accessible neuroinformatics sys-
tems developed by other groups was presented in Bota and
Swanson, 2007a.
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FIGURE 3 | Results of a coinjection pathway tracer analysis [Hahn and
Swanson (2010)] of two nearby regions of the rat lateral hypothalamic
area, the LHAjp, and LHAs, plotted on the connectome matrix for
Swanson-2004 (see Figure 2). The two columns represent anterograde
tracer (PHAL) data from injection sites in the LHAjp and LHAs (the leftmost
and rightmost columns, respectively), whereas the two rows represent

retrograde tracer (CTb) data from the same two injection sites (in different
animals, in this case, though results were plotted on the same series of
reference atlas level plates in the original publication). A large-scale,
systematic series of coinjection sites throughout the central nervous system
would gradually fill in the entire matrix. Attempts to do this in the mouse
have begun in the last two years.
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The backend database structure of BAMS, along with its inter-
faces and the data collated so far, allow us in principle and practice
to construct macroconnectomes for the entire nervous system of
any species (including mouse, rat, monkey, and human), using
the results of pathway tracing experiments based on different
methods and mapped onto different nomenclatures in the same
species. The translation of connections across nomenclatures in a
species is semi-automatic, and is verified by collators and experts.
Using this approach, we constructed a new version of the rat
macroconnectome that is the most complete connectome avail-
able to date for any vertebrate, as far as we know. This second
version of the rat macroconnectome contains significantly more
data than the first version, and it is based on a complete and
internally consistent rat nomenclature and classification scheme
for gray matter regions that facilitates network analysis. As dis-
cussed in the section above, the amount of connectivity data
already inserted in BAMS allowed us to perform preliminary sta-
tistical analysis over the rat macroconnectome, and hypothesize
that the average number of targets of any rat gray matter region is
a maximum of 50 out of about 500.

Future work will augment the present matrix-form macrocon-
nectome representation with spatial attributes including pathway
tracer injection site and sites of connection labeling resulting
from the injection. Using these attributes, we will re-implement
the inference engine for evaluating connectivity data reliability
(Bota and Arbib, 2004) and we will provide users with a set
of tools to construct macroconnectomes that evaluate connec-
tions in different ways. In addition, we intend to complete the
rat macroconnectome as best as possible from the existing litera-
ture and start constructing macroconnectomes for other species,
in particular the mouse, monkey, and human. Work on the mouse
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