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Rapidly evolving neuroimaging techniques are producing unprecedented quantities of
digital data at the same time that many research studies are evolving into global,
multi-disciplinary collaborations between geographically distributed scientists. While
networked computers have made it almost trivial to transmit data across long distances,
collecting and analyzing this data requires extensive metadata if the data is to be maximally
shared. Though it is typically straightforward to encode text and numerical values into
files and send content between different locations, it is often difficult to attach context
and implicit assumptions to the content. As the number of and geographic separation
between data contributors grows to national and global scales, the heterogeneity of
the collected metadata increases and conformance to a single standardization becomes
implausible. Neuroimaging data repositories must then not only accumulate data but
must also consolidate disparate metadata into an integrated view. In this article, using
specific examples from our experiences, we demonstrate how standardization alone
cannot achieve full integration of neuroimaging data from multiple heterogeneous sources
and why a fundamental change in the architecture of neuroimaging data repositories is
needed instead.
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INTRODUCTION
The role of neuroimaging in biomedical research is increas-
ingly important as new modalities targeting different aspects
of disease progression are developed and the utility of imag-
ing as a biomarker is more widely recognized (Ryan and Fox,
2009; Brooks and Pavase, 2011). The number of magnetic res-
onance imaging (MRI) scanners installed in the United States
increased more than 230% between 1995 and 2004 with similar
increases in other countries (National Center for Health Statistics,
2007) contributing to an increase in biomedical research stud-
ies that are incorporating neuroimaging. This trend, combined
with advances in networking and computing technologies, has
converged toward an environment in which global, multi-
disciplinary collaborations between geographically distributed
scientists are not only possible, but are becoming common
(Mazziotta et al., 2001; Toga, 2002; Butcher, 2007; Toga and
Crawford, 2010). As multi-site, collaborative efforts proliferate,
neuroimaging repositories offer a way to pool data from multiple
institutions to provide larger sample sizes and shared resources.
In an ideal environment, this data would be uniform, consistent,
and easy to use. However, neuroimaging data often come in many
flavors and in spite of harmonization efforts of controlled stud-
ies, are acquired from different scanners in different modalities,
and are heterogeneous in data format representations and meta-
data content (Wong and Huang, 1996). The separation between
collecting and analyzing data require good data management
practices and extensive and standardized metadata (Atkins et al.,
2003; Gray et al., 2005), otherwise data may be misinterpreted,
difficult to use, or completely unusable.

Shared data repositories offer many benefits, often beyond
those envisioned by those who collected or created the data
(National Science Board, 2005). However, the inherent complex-
ity of biological data—diversity of data sources, data types, and
data processing (Goble and Stevens, 2008) and difficulties in
communicating relevant metadata (Teeters et al., 2008)—remains
a challenge. The source, content, structure, and context of the
collected data must be recorded and are essential to both comput-
erized and human utilization. Without metadata, data is useless
(Gray et al., 2005). However, metadata that are inconsistent,
poorly defined or ambiguous do not support data reusability.
Metadata standardization in the form of shared controlled vocab-
ularies (taxonomies, ontologies) is key to supporting common
semantics and data sharing. Significant progress in developing
shared controlled vocabularies has been made, however, stan-
dards develop slowly, are often perceived to be at odds with
investigation and require full adoption in order to be practical
(Goble and Stevens, 2008).

Neuroimaging data commonly originates in an isolated clinical
setting, and is therefore subject to local constraints and insti-
tutional practices (Wiederhold, 2003; Fletcher and Wyss, 2009).
For example, limitations of medical image scanners can result in
metadata with sparse descriptions, which is particularly problem-
atic with experimental acquisitions and new research protocols.
The majority of the metadata is entirely determined by the manu-
facturers of the scanners, who choose the conventions to conform
to and the terminology to use. Since the central function of neu-
roimaging data repositories is to aggregate data from multiple
institutions and provide a schema to its users for posing queries,
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the data must be combined into one integrated view (Halevy
et al., 2006). In effect, neuroimaging data repositories are media-
tors between multiple heterogeneous data contributors and those
who search its contents and extract information (Wiederhold,
1997; Halevy et al., 2006). Ideally, the metadata from each new
data source could be automatically mapped into the integrated
schema of the data repository, but this “data mapping problem”
has long been recognized as a complex and unreachable goal
with current technology (Fletcher and Wyss, 2009). As such, there
are at present difficulties in not only collecting and integrating
neuroimaging data from multiple contributors, but also in con-
verting between the different formats of the image files exchanged
between clinicians and research scientists.

Viewed in this context, it is interesting that most recent efforts
to resolve these issues have focused upon the creation and adop-
tion of standards (Langlotz, 2006; Bug et al., 2008; Poldrack et al.,
2011; Gadde et al., 2012; Turner and Laird, 2012) without a corre-
sponding focus on the development of data mapping tools. This
is likely because the focus has been on what information is being
stored, as opposed to how it is being stored and exchanged. But
as research studies expand their scope to include more varieties
of heterogeneous data, the problems associated with data integra-
tion are becoming more obtrusive than problems stemming from
lack of a lexicon. An inspection of a main resource of neuroimag-
ing tools (http://www.nitrc.org) suggests that the neuroimaging
community has not yet appreciated this trend; of the nearly 500
registered tools and resources available we were only able to find
one for mapping metadata (Neu et al., 2005).

In this article, we demonstrate why standardization alone can-
not solve data integration problems using our experiences in the
Laboratory of Neuro Imaging Image and Data Archive (LONI
IDA). Our goal is to show why standardization is insufficient
through the use of detailed examples that use the information
currently being mediated by neuroimaging data repositories. We
also hope to give readers who are not familiar with the tech-
nical aspects of neuroimaging metadata management a better
understanding of why these problems exist. We start by review-
ing the composition of neuroimaging files, what metadata is, and
why it is needed. Then we highlight some of the obscure com-
plexities of neuroimaging file formats in order to show how the
abundance of standards has made file format conversion and the
removal of patient-identifying information a formidable effort.
Next we recount a situation where standardization could not
keep pace with an experimental research protocol, resulting in
metadata values that were either missing or incorrect. Finally,
we point out where the current dominant standard, DICOM, is
not addressing basic and essential grouping and labeling needs of
neuroimaging data repositories and conclude that data mapping
is essential when integrating neuroimaging data from multiple
heterogeneous sources on a global scale.

REVIEW OF IMAGE METADATA AND NEUROIMAGING
FILE FORMATS
Neuroimaging data have particular requirements and constraints
that are necessary to retain usability and interoperability. Digital
image data without descriptive metadata is meaningless. This
becomes readily apparent when considering how images are

written to files on disk. Since every file consists of a line of consec-
utive bytes, a two-dimensional image must first be transformed
into a linear array of image pixels before it can be stored. The
method by which this occurs can be understood by visualizing
the pixels as beads on a strand of thread. The thread starts at the
first pixel in the upper-left hand corner of the image and passes
through the pixels on the top image row. It loops back to the
first pixel of the next row repeatedly until it reaches the last pixel
of the last row. Tightly pulling the thread moves all the pixels
into one straight line and the pixel values are written to the file
in the thread order (Figure 1). Because the width and height of
the image are lost in this process, additional information must be
added to the image file in order to reconstruct and display the
image. This additional information can also include other image
properties such as the size of each pixel and the number of color
components. If more than one image is written, the total number
of images must be present. This additional information is called
image metadata.

In addition, there is another type of image metadata sepa-
rate from the properties of the images. This metadata describes
the subject who is scanned and the acquisition of the images;
for example, the name of the subject, the manufacturer of the
imaging device, the date and time the images were acquired,
the substance injected into the subject. Having this information
stored with the images is crucial for a wide range of automated
processes as well as for allowing humans to understand the con-
text and origin of the images. Digital images are not all produced
in the same way, however, they do all contain both image (pixel)
data and descriptive metadata.

At present, there are many ways to store neuroimaging images
and image metadata in files. A file format defines how the image
metadata and pixels are stored in a file. The DICOM file format
is the most dominant of these because it is the one used by most
medical image scanners. Digital Imaging and Communications in
Medicine (DICOM) represents a cooperative effort conceived in
1983 by a joint committee of the American College of Radiology
and the National Electrical Manufacturers Association (NEMA)
and has as a central goal the development of a standard that would

FIGURE 1 | Unraveling the pixels of an image. A two-dimensional image
consists of pixels that must be rearranged into a one-dimensional line
before the pixel values can be stored in a file.
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make digital medical imaging independent of the manufacturer
and thus facilitate interoperability between information sys-
tems. Since its first publication in 1985, the DICOM standard
has continually evolved in parallel with developments in new
scanner technologies, and though most scanner manufactur-
ers have adopted the DICOM standard [Digital Imaging and
Communications in Medicine (DICOM), 2008], differences in
how scanner manufacturers apply the standard exist. However,
many nuclear medicine scanners still produce image files in other
file formats such as Interfile, developed by Keston, Kingston
Upon Hull, UK and ECAT developed by CTI, Knoxville, TN.
In the IDA, we support the archiving of ANALYZE 7.51, DICOM,
ECAT 2, GE 3, HRRT Interfile (Cradduck et al., 1989), MGH 4,
MINC5, NIFTI6, and NRRD7 files.

Most medical imaging file formats put the image metadata
at the beginning of the file (sometimes called the “image file
header”), although there are some file formats (ANALYZE 7.5,
Interfile, NIFTI, NRRD) that support writing the image meta-
data to one file and the images to another file. In the latter case,
the two file names must share the same prefix and use the suf-
fixes defined by the file format (e.g., “abc.hdr” and “abc.img”).
Some file formats store the image metadata as human-readable
text (HRRT Interfile, NRRD) while the others use a binary for-
mat. The dictionary of image metadata terms defined by DICOM
contains several thousand terms and definitions while other file
formats contain a few hundred elements (ECAT) or even less than
a hundred (ANALYZE 7.5, NIFTI).

Medical imaging file formats can generally be classified into
two groups. Rigid file formats (ANALYZE 7.5, ECAT, GE, MGH,
NIFTI) define an unchangeable list of image metadata values

1http://eeg.sourceforge.net/ANALYZE75.pdf
2http://www.medical.siemens.com
3http://www.gehealthcare.com
4http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/MghFormat
5http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
6http://nifti.nimh.nih.gov
7http://teem.sourceforge.net/nrrd/index.html

(Figure 2) that must be present in the file. The location of each
value defines its meaning. Even if the value for an image metadata
element is not available, a value must be chosen. This situation
often results in the production of files with empty text and/or
zero values, which create problems for automated processing rou-
tines. Computer programmers tend to prefer rigid file formats
because they are easy to implement without the use of sup-
plemental libraries. They evolved primarily as a simple way to
store images between image processing steps. Their main limi-
tation is that they cannot be extended to add image metadata
fields that are not defined by the file format. When such a need
occurs, unused or vaguely defined fields are often repurposed
to hold the addition information. These cases require special
modifications and exceptions when archiving and processing
the files.

Tagged file formats (DICOM, Interfile, MINC, NRRD) define
a flexible set of image metadata tags (names or codes) mapped
to their values (Figure 2). Unlike rigid file formats, it is optional
whether or not a tag is present in a file. So only relevant tags are
stored with the images in the files. DICOM has a comprehensive
dictionary of tags referenced by a group and element number;
for example, the DICOM tags (0010,0020) and (0010,1010) are
the Patient ID and Patient’s Age elements of the patient identi-
fication group (0010), respectively. When the group number is
even (e.g., 0010), the tag is a public tag and has a formal defi-
nition in the DICOM data dictionary. When the group number
is odd, the tag is a private tag. Scanner manufacturers use pri-
vate tags when they choose to define image metadata outside
the DICOM data dictionary. The definitions of private tags are
obtained either directly from the scanner manufacturer or by
guessing their purpose through examining file samples.

TOO MANY STANDARDS
Just as there are many different neuroimaging file formats, there
are also many conventions that differ between them. Information
about how the image data is stored and how the subject was
positioned relative to the scanner is defined in various ways,
which makes converting between file formats difficult. Additional

FIGURE 2 | Image files contain both image metadata and pixel values (shown as gray squares). A rigid file format defines locations in the file for the
image metadata values (128, 128, “John”). A tagged file format stores image metadata as name/value pairs (e.g., “name” associated with “John”).
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input is needed to convert from a sparse rigid file format (e.g.,
NIFTI) to a tagged file format (e.g., DICOM) because the lat-
ter file format can hold 2–3 times as much image metadata as
the former file format. The names and the locations of the image
metadata elements are different in each file format, which makes
removal of patient-identifying information tedious and ungener-
alizable. Errors in understanding the different standards used by
neuroimaging file formats can lead to the creation of improper
image files, mislabeled anatomical regions, and loss of patient
confidentiality.

Inherent to most image file formats are complex and highly
combinatorial schemes for storing multiple images (together
comprising an image volume, see Figure 3) in a file. As previ-
ously mentioned, the pixels of all the images are written to the
file in a single line; that is, all three dimensions of the image vol-
ume are reduced to one dimension. But this can be accomplished
in many ways. Any order of the dimensions can be used (e.g.,
height/width/length or length/width/height) and each dimension
can be written either forwards or backwards. Given there are three
dimensions and two directions of traversal, there are 48 differ-
ent ways to write the images to a file and all combinations are
supported by neuroimaging file formats.

In order to preserve orientation, file formats define a coordi-
nate system (x, y, z) with respect to the scanner (see Figure 4) and
then define how the images and patient are oriented with respect
to the coordinate system. DICOM uses direction cosines (cosines
of the angles between each image vector and the coordinate axes).
NIFTI offers three choices: an implicit fixed orientation, quater-
nions, and the option of using quaternions and direction cosines
in combination. MINC assigns the labels “xspace,” “yspace,” and
“zspace” to each dimension of the image volume and maps a set
of direction cosines to each label (be warned that if the step size in
a direction is negative then the direction is flipped). Table 1 lists
how nine common neuroimaging file formats define the image
orientation and also how each file format assigns the subject’s ori-
entation to the coordinate system. There are two conventions used
by most file formats, one from radiology and one from neurol-
ogy. Radiologists perform examinations while facing the patient
and so point the x axis from the subject’s right to left, the y axis
from the subject’s front to back, and the z axis from the subject’s

FIGURE 3 | Creation of an image volume. As two-dimensional image
slices are acquired by a scanner, they are stacked together to form an
image volume.

feet to head (Figure 5). Neurologists prefer to orient themselves
with their subjects and so point the x axis from the subject’s
left to right, the y axis from the subject’s back to front, and the
z axis from the subject’s feet to head (Figure 5). DICOM uses
the radiological convention whereas NIFTI uses the neurological
convention.

Unfortunately, ANALYZE 7.5 does not store information
about the subject’s orientation. This leads to confusion when one
uses multiple image viewers due to the high symmetry (left ver-
sus right) of the human head. Figure 6 shows how three different
image viewers (BrainSuite, FSLView, 3D Slicer) display the same
ANALYZE 7.5 file. Although each viewer is designed to show ori-
entation markers (R, L, A, P, etc.) on top of the images, none are
displayed because that information is unavailable. As the images

FIGURE 4 | Subject orientation. A coordinate system (X, Y, Z ) is defined
when a subject is scanned. The subject’s orientation is recorded relative to
the coordinate system (e.g., +X = left, −X = right, +Y = Posterior, etc.).

Table 1 | Comparison of how image and subject orientation

information is captured in different neuroimaging file formats.

File format Image orientation Subject orientation

ANALYZE 7.5 Implicit ?

DICOM Direction Cosines Radiological

ECAT Implicit X: Right to Left, Y: Front to
back, Z: Head to Feet

GE Coordinates of image
corners

Neurological

HRRT
interfile

Implicit X: Right to Left, Y: Front to
back, Z: Head to Feet

MGH Direction Cosines Neurological

MINC Direction Cosines + Flip
Direction If Step Size < 0

Neurological

NIFTI Implicit Quaternions +
Direction Cosines

Neurological

NRRD Direction Cosines ∗ Voxel
Spacing

Any
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are inconsistently displayed between viewers, only through fidu-
cial comparisons can one determine exactly how each viewer is
orienting the subject.

The diversity of neuroimaging file formats and differences in
how image metadata (including subject identifiers) are stored by
each file format require that any approach to remove patient-
identifying information (de-identification) involve a thorough
understanding of file formats and their image metadata. There
is no single standard for ensuring data are de-identified in a
manner that meets regulations (Kulynych, 2002), however, soft-
ware tools for manipulating image metadata exist with varying
degrees of flexibility (Neu et al., 2005). Replacing the subject
name and ID in files is relatively straightforward because most file
formats define a specific location for those elements. However,

FIGURE 5 | Two coordinate systems for determining subject

orientation. The neurological coordinate system defines the positive X, Y,
and Z axes along the subject’s right, anterior, and superior, respectively. The
radiological coordinate system defines the positive X, Y, and Z axes along
the subject’s left, posterior, and superior, respectively.

other metadata elements can contain free-form text that is not
suitable for sharing, and rules for removing or replacing these
need to be defined. The DICOM standard defines a number
of different value representations (VR) that specify the type of
metadata that may be stored in each tag. These are codes that
restrict the allowed values; for example, codes that specify inte-
gers, dates, and people’s names. We have found that many of the
string value tags are subject to interpretation and it cannot be
guaranteed that names or other subject-identifying information
won’t be present. In our experience, a good general policy is to
remove or replace all but a few specified string tags while preserv-
ing all the numeric and code tags in order to safeguard subject
privacy and allow the image files to be shared to the widest extent
possible.

File format conversion involves mapping the image metadata
from one file format into another, and the removal of patient-
identifying information from a file is essentially a mapping that
removes or replaces the image metadata in the file. The exis-
tence of standards for storing neuroimaging data is not sufficient
enough to support these operations without data mapping.

LACK OF STANDARDIZATION
It is often the case with standardization that changes take a long
time to be adopted by the community and longer still to be
incorporated. When studies use a new or experimental radiophar-
maceutical, the scanners may not include the compound in the list
of choices available via the console or the technician may not enter
the information correctly or completely. If either of these occurs,
then the metadata stored in the image files will either contain
incorrect or missing information describing the radiopharma-
ceutical agent. For example, results of the first study utilizing
Pittsburg Compound-B (PIB), a PET imaging tracer used to show
amyloid deposits, were published in 2004 (Klunk et al., 2004) and
the compound was adopted by a number of studies including
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner
et al., 2010) which began collecting PIB scans in 2007. Of the PIB
scans archived in the IDA from 2007 to present, less that 50% of
the DICOM files contain metadata identifying the PIB compound
in the radiopharmaceutical tag (0018,0031).

FIGURE 6 | Three image viewers display the same ANALYZE 7.5 file: (A) BrainSuite, (B) FSLView, (C) 3D Slicer. Without image markers it is difficult to
deduce the subject’s right from the subject’s left and easy to get the two reversed when moving between viewers.
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The DICOM standard supports the use of controlled termi-
nologies as a means of standardizing metadata. This may be
done by incorporating coded values in a Code Sequence Attribute
which is comprised of a triplet of items for each element: (1) the
Coding Scheme Designator which identifies the coding scheme
from which the term is obtained; (2) the Code Value which is
the code as designated within that scheme, and; (3) the Code
Meaning which is the human-understandable meaning of the
code. DICOM has defined an internal Controlled Terminology
in part 3.16 of the DICOM standard, and defines 36 additional
coding schemes for use in DICOM. In addition, the DICOM
standard allows the use of any coding scheme that has an entry
in the Health Level Seven (HL7) Registry of Coding Schemes
(National Electrical Manufacturer’s Association, 2011). The pres-
ence of standardized terms in imaging files could add much to
the richness of the metadata and support improved methods for
querying, grouping, and interpreting data. In our experience,
however, very few image files contain Code Sequence Attribute
sequences, and we’ve found few software tools that are designed
to make use of them. When files do contain Code Sequence
Attribute sequences, we have often found them to be incon-
sistent. The ADNI study began using AV-45 compound (Avid
Radiopharmaceuticals, Philadelphia) in early 2010. AV-45 targets

Table 2 | Standard terms for Fluorine radioisotope subtypes from the

SNOMED CT terminology.

Code value Code meaning

C-111A2 Fluorethyltyrosin Fˆ18ˆ

C-111A5 Fluorobenzothiazole Fˆ18ˆ

C-2052B Fluoromethane Fˆ18ˆ

C-111A3 Fluoromisonidazole Fˆ18ˆ

C-111A4 Fluorouracil Fˆ18ˆ

C-111A1 ˆ18ˆFluorine

C-B1031 Fluorodeoxyglucose Fˆ18ˆ

the same amyloid plaques as PIB, however, the carrier is fluorine,
the same carrier used in regular FDG scans. The Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED CT) ter-
minology is the preferred coding scheme within DICOM for
pharmaceutical/biologic products and for anatomy and clinical
terms. In SNOMED-CT, Fluorine is defined as a radioactive iso-
tope having seven subtypes. The Code Values and Code Meanings
of these radioisotope subtypes, as defined within SNOMED CT,
are shown in Table 2.

It was expected that all scanners utilizing the same controlled
terminology would use the same codes to represent the same
compounds and the defined meaning of those terms would be
consistent. In our experience, the application of these terms is nei-
ther consistent nor accurate, even within scanner manufacturer.
Table 3 shows actual values taken from DICOM files in which
radiopharmaceutical information was encoded using the Code
Sequence Attribute and referencing the SNOMED terminologies.
The files were obtained from six different sites participating in
the ADNI study and following the same PET scanning proto-
col. The protocol includes one scan of the patient injected with
Fˆ18ˆ Fluorodeoxyglucose (18F-FDG) and a second scan with the
patient injected with Fˆ18ˆ Florebetapir (18F-AV45), both iso-
topes of Fluorine. Each scan occurs at separate scanning sessions
but on the same scanner.

In each case, the same Code Value is used for both the AV-
45 and FDG scans. It should be noted that there is no entry in
SNOMED CT for Fˆ18 Florebetapir (AV-45), likely the expla-
nation for why the same Code Value for is used for different
radioisotope subtypes. However, it does not explain the use of
different Code Meanings for the same Code Value and serves to
emphasize the gaps that exist between developing, supporting,
and adopting standardized terminologies. Although each of the
DICOM files listed in Table 3 incorporates terms from standard-
ized terminologies, the terms as used are insufficient to determine
the radioisotope used. The existence of standardized terminolo-
gies alone cannot solve standardization problems. Full adoption
and appropriate use are necessary.

Table 3 | Comparison of coding and terms utilized across scanners and sites producing DICOM files.

Scanner (Site) Scan type Radiopharmaceutical information sequence

Radionuclide code sequence (0054, 0300)

Radiopharmaceutical Code value Coding scheme designator Code meaning

Siemens (1) FDG C-111A1 SNM3 Fˆ18ˆ[ˆ18ˆFluorine]

Siemens (1) AV-45 C-111A1 SNM3 Fˆ18ˆ[ˆ18ˆFluorine]

Siemens (2) FDG C-111A1 SNM3 Fˆ18ˆ[ˆ18ˆFluorine]

Siemens (2) AV-45 C-111A1 SNM3 Fˆ18ˆ[ˆ18ˆFluorine]

Philips (3) FDG Fluorodeoxyglucose Fˆ18ˆ C-111A1 SNM3 ˆ18ˆFluorine

Philips (3) AV-45 Fluorodeoxyglucose Fˆ18ˆ C-111A1 SNM3 ˆ18ˆFluorine

Philips (4) FDG Fluorodeoxyglucose Fˆ18ˆ C-111A1 SNM3 Fˆ18ˆ[ˆ18ˆFluorine]

Philips (4) AV-45 Fluorodeoxyglucose Fˆ18ˆ C-111A1 SNM3 Fˆ18ˆ[ˆ18ˆFluorine]

GE (5) FDG FDG—fluorodeoxyglucose Y-X1743 99SDM FDG—fluorodeoxyglucose

GE (5) AV-45 FDG—fluorodeoxyglucose Y-X1743 99SDM FDG—fluorodeoxyglucose

GE (6) FDG FDG—fluorodeoxyglucose C-B1031 SNM3 FDG—fluorodeoxyglucose

GE (6) AV-45 FDG—fluorodeoxyglucose C-B1031 SNM3 FDG—fluorodeoxyglucose
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FIGURE 7 | Rules used to determine the radiopharmaceutical agent. Various image metadata fields from the DICOM, ECAT, and HRRT Interfile file formats
are used to infer the name of the radiopharmaceutical agent (11C-PIB, 18F-FDG, 18F-AV45).

In order to identify these scans as one of “FDG,” “PIB” or
“AV45,” we constructed the data maps illustrated in Figure 7.
The radiopharmaceutical agent for three different file formats is
inferred from acquisition properties such as the number of frames
in each scan, text searches on descriptions and codes, and range
restrictions on the total length of each scan. Our general approach
to solving this problem involves maintaining a cache of small
image metadata samples from each set of files in the archive. The
maps used to identify image types and classify image groups are
constructed by inspecting and testing the data in the cache. If,
after the maps have been established, files with image metadata
that run contrary to the rules are received, previous assumptions
must be revisited and new maps established using the new image
metadata. This may involve reworking the current maps or adding
new image metadata fields to the cache until new maps can be
created. Because image metadata is different across different file
formats, we have one cache for each of the file formats we archive.
For the DICOM file format, this most often involves exploring
vendor-specific private tags whose full definition is unknown but
whose tag values give clues as to their meanings. Private tags
tend to be more reliable than public text tags (such as study and
series descriptions) because the private tag values are less vari-
able across different institutions. However, in some instances it
may be necessary to construct maps based upon both private
and public tags and/or even use the location of the scanner as a
last resort.

THE DICOM STANDARD
Repositories of neuroimaging data are often created for research
purposes. In order to make comparisons and test hypotheses
between different cohorts, it is often necessary to search through
all of the collected metadata. However, the information obtained
during image acquisition and the way it is organized at the

image scanner is not necessarily optimal for research purposes.
Search criteria that extend beyond the set of terms present in
neuroimaging files are often needed for efficient and productive
searching, grouping, and analysis. Currently most neuroimaging
data is acquired and stored using the DICOM standard, but we
have found it to be inadequate to group and label our data in a
manner that facilitates searching.

Grouping images together is a non-trivial matter, and in the
DICOM standard there is little information about exactly how
to do this. In its “DICOM model of the real-world” (National
Electrical Manufacturers Association, 2011), patients have stud-
ies performed during their visits, and each study contains one or
more series. However, although each series contains one or more
images, documents, or measurements, no specification is given
as to how the components should be grouped together by series.
At best a series is defined (National Electrical Manufacturers
Association, 2011) as a set of “composite instances” that (1)
must be of the same modality, (2) must be spatially or tempo-
rally related to one another, (3) must be created by the same
equipment, and (4) must have the same series information. In
the IDA we create a series identifier by mapping together the
subject, study, series date, and series description of each image.
This was motivated by how investigators expect to search and
receive search results. We’ve also added an additional sub-series
level in which DICOM images are grouped together using the
echo time (structural MRI), series UID (0020,000E), coordinate
axes, and image size which are all mapped into a grouping iden-
tifier. This definition divides a PD and T2 scan into separate
sub-series.

Although many journals contain articles with multiple refer-
ences to imaging modalities such as “fMRI,” “MRA”, and “DTI,”
NEMA recognizes none of these as true modalities. In fact, in each
of these cases the DICOM modality tag (0008,0060) has the value
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“MR”. At least one expert in the field (Clunie, 2011) acknowl-
edges that MRA, fMRI, and DTI are best considered “sub-types”
of a single MR modality. The contradiction between the labels
researchers use to classify MR data and the DICOM image meta-
data describing the MR data has required us to construct maps
to divide MR DICOM files into these sub-types. Unfortunately,
these maps are non-trivial and cumbersome because of the need
to heavily rely on the private tags used by each scanner manufac-
turer. For example, despite the existence of public DICOM tags
for diffusion [e.g., diffusion b-value (0018,9087) and diffusion
directionality (0018,9075)], we have found in practice these tags
are most often missing from DTI image metadata. Instead, for GE
DTI images, we rely upon the GE private tags (0019,10E0) for the
number of diffusion directions and tag (0021,105A) for the diffu-
sion direction. Philips DTI images were found to have the diffu-
sion direction in their private tag (2001,1004) and Siemens DTI
images required us to reverse engineer the encoded value of their
private tag (0029,1020) and use the element “lDiffWeightings” to
detect DTI image metadata and the element “lDiffDirections” for
the number of diffusion directions.

CONCLUSION
Wiederhold (Wiederhold, 2003) gives many reasons why global
consistency is impossible; those applicable to the establishment
of a single neuroimaging standard are: (1) problems occur when
interacting between domains (clinical, research) that fundamen-
tally have different objectives, (2) since research is less regulated
and more dynamic than clinical practice, terminologies are nec-
essarily different, and (3) committees from diverse groups that
establish terminological consistency tend to define compromises
rather than precise definitions. These observations are consistent
with what we have found in practice.

Multiple neuroimaging file formats were defined primarily
because of the different needs of those using the image data. The
DICOM file format originated to support a clinical environment,
crafted by scanner manufacturers who wanted to provide detailed
descriptions of the image acquisitions in a consistent and flexi-
ble way. The popularity among researchers of the ANALYZE 7.5
file format (and its derivative, the NIFTI file format) was due to
the simplicity of the format definition (easy to implement) and
the convenience of storing multiple images in one or two files.
Since the methodologies and goals of radiologists and researchers
are different, the subject’s orientation was defined in DICOM
using the radiological convention and in NIFTI using the neu-
rological convention. The need to add more metadata to the
rigid file formats and the aim to reconcile all of the various file
formats into one motivated the creation of other neuroimaging
file formats, but their continued coexistence with their predeces-
sors is a testament to the impracticality of establishing a single
standard.

The dynamics of scientific research and advances in image
scanner technology will continue to produce image metadata that
vary over time. New variations of existing image metadata are
required by experimental acquisitions and new research proto-
cols, and in some cases new image acquisition methods (e.g., DTI)
will produce entirely new sets of descriptive metadata and new

nomenclature for neuroimaging file formats (e.g., new DICOM
tags). So any collection of neuroimaging data that is added to over
time will contain dynamic image metadata, some of which may be
necessary to interpret and organize the data. When changes occur
in newly collected data, the repository needs to internally reor-
ganize in order to correctly identify and classify the new data, as
well as provide the requisite new search capability. For cases where
needed information is completely unavailable (i.e., not explic-
itly represented in the image metadata), ad hoc rules based upon
what is available must be constructed and maintained accordingly
over time. The dynamic nature of research makes standardization
impractical.

Standards represent consensus and consensus requires negoti-
ation over time between interested parties who voluntarily adopt
them (ISO, 2011). The DICOM standard evolved as a com-
promise between scanner manufacturers who were using their
own proprietary file formats and wanted to establish consistency
amongst themselves. However, this standardization process has
been slowly developing. The fact that each manufacturer still uses
private DICOM tags to store essential information (and Siemens
continues to use its own proprietary encoding in at least two pri-
vate DICOM tags) demonstrates the degree to which complete
standardization has been achieved. The difficulties encountered
in determining the “sub-types” of the MR modality exemplify
how slowly the standardization is proceeding. It should be noted
that these problems are not unique to the DICOM standard; the
NIFTI file format was defined through the consensus of the most
influential neuroimaging processing software developers at the
time. The motivation behind the NIFTI effort was to create a
backwards-compatible file format to ANALYZE 7.5 with some
desired new features (addition of a coordinate system and new
image data types). But backwards-compatibility meant retaining
some of the obsolete metadata elements of ANALYZE 7.5, thus
limiting the pace of standardization.

Can further metadata standardization solve the class of prob-
lems we have described in this article, or will the intrinsic nature
of neuroimaging research perpetually add more problems than
can be resolved with standardization at any given time? These
issues may not be problematic in cases where a small group of
investigators are working closely together on the same study, but
when sharing moves outside the lab and across the globe they
become readily apparent. Where standardization fails, data map-
ping is required. Therefore, neuroimaging data repositories must
implement adaptive metadata management tools if they are to
effectively collect, manage, and distribute data on a national and
global scale.
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