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Dendritic morphology constrains brain activity, as it determines first which neuronal
circuits are possible and second which dendritic computations can be performed over
a neuron’s inputs. It is known that a range of chemical cues can influence the final shape
of dendrites during development. Here, we investigate the extent to which self-referential
influences, cues generated by the neuron itself, might influence morphology. To this end,
we developed a phenomenological model and algorithm to generate virtual morphologies,
which are then compared to experimentally reconstructed morphologies. In the model,
branching probability follows a Galton–Watson process, while the geometry is determined
by “homotypic forces” exerting influence on the direction of random growth in a
constrained space. We model three such homotypic forces, namely an inertial force
based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as
directional biases in the growth algorithm. With computer simulations we explored how
each bias shapes neuronal morphologies. We show that based on these principles, we can
generate realistic morphologies of several distinct neuronal types. We discuss the extent
to which homotypic forces might influence real dendritic morphologies, and speculate
about the influence of other environmental cues on neuronal shape and circuitry.
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1. INTRODUCTION
Dendrites are beautiful arbors sprouting from the cell bodies
of neurons. The shape of dendrites is of great importance to
the nervous system for two interrelated reasons. First, a neu-
ron’s dendrites receive inputs from other neurons. Since dendritic
morphologies define which spatial domain can be reached, they
govern the connectivity of the local circuit. Second, neuronal
computation takes place along the entire dendritic path between
the site of the input and the site of action potential genera-
tion in the axon (Koch and Segev, 2000; London and Häusser,
2005; Torben-Nielsen and Stiefel, 2010). Dendrites exist in a wide
range of sizes and shapes and their morphologies have historically
been used to classify neuronal types (Hillman, 1979; Migliore and
Shepherd, 2005). Moreover, dendritic trees of one neuron type
can display a large variation (Soltesz, 2005), and in some cases
variations in the morphology of the dendritic tree is indicative of
particular neurological disorders (Irwin et al., 2000; Kaufmann
and Moser, 2000). Consequently, the morphology of dendrites
has been, and remains, at the core of many studies.

To assign neuronal morphologies and their traits to distinct
neuronal types, invariant descriptors are required. To this end,
distributions of properties are measured directly from digitally
reconstructed neurons (for instance, the distribution of segment
lengths). Parameterizations of these distributions (Ascoli and
Krichmar, 2000; Samsonovich and Ascoli, 2005; Koene et al.,
2009) or the distributions themselves (Lindsay et al., 2007;

Torben-Nielsen et al., 2008) then provide these invariant descrip-
tors of morphology. However, despite considerable success, these
approaches cannot account for all experimentally observed vari-
ations in the data. Indeed, it is often impossible to construct
an exhaustive statistical model because the experimental data
does not contain sufficient samples, or is simply not coherent
(Torben-Nielsen et al., 2008).

An interpretation thereof is that a single dendritic morphol-
ogy is the result of interactions with the environment in which
it grew. These interactions are de facto not in the reconstructed
data, which is a snapshot of one of their possible outcomes.
Experimental evidence backs this interpretation as it has been
shown that dendrites are shaped by chemical cues in the environ-
ment (Scott and Luo, 2001; Grueber and Sagasti, 2010; Jan and
Jan, 2010), and a specific class of these environmental interactions
are termed homotypic or self-referential, that is, originating from
the neuron itself.

At least three self-referential forces derived from these cues
are experimentally and theoretically described, namely self-
avoidance (Grueber et al., 2005; Marks and Burke, 2007b;
Grueber and Sagasti, 2010; Jan and Jan, 2010), soma-oriented
tropism (Samsonovich and Ascoli, 2003; Marks and Burke,
2007a), and mechanical stiffness, which provides a bias to the
growth cone to favor straight motion (Condron and Zinn, 1997;
Koene et al., 2009). In this work, we propose a novel method,
extending the work of Samsonovich and Ascoli (2003) and
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Marks and Burke (2007b), to model these self-referential inter-
actions that shape neuronal morphologies. The method algo-
rithmically generates dendrograms based on a Galton–Watson
process and simultaneously adds geometry that is locally deter-
mined solely by the three aforementioned directional biases.
We show that based on these simple principles, virtual mor-
phologies with high resemblance to neurons can be generated.
Hence, we demonstrate in silico that self-referential cues are
sufficient to shape dendritic morphologies realistically given
an otherwise random growth process and are thereby capable
of generating multiple isometric variants of a single recon-
structed instance. Because self-referential cues can account
for these properties, we propose their descriptions might be
useful as an integral part of overall neuronal morphological
descriptions.

2. METHODS
2.1. MORPHOGENETIC ALGORITHM
We present an integrated morphogenetic algorithm (Figure 1),
in which a neuron’s dendrogram and geometry are generated
simultaneously, such that the dendrogram derives from a mod-
ified Galton–Watson process, while the local geometry is dic-
tated solely by the sum of self-referential growth directional
biases. Neurons and their branches are further subject to cer-
tain termination conditions. In addition, we include a random

component of the morphogenetic process, a 3-dimensional (3-D)
Gaussian distribution, from which all directions of growth are
sampled.

A simulation begins with a specific configuration of model
parameters (Table 1; we include an exemplary configuration file
for each simulation in the Supplementary Materials). The main
parameters of the algorithm describe the strength, spatial gradi-
ent, and extent of the local growth biases, and the branching and
extension processes. A second subset of parameters describes the
termination conditions for both growth of individual branches
and growth of the neuron as a whole. A final subset includes aux-
iliary parameters for initial conditions (e.g., soma surface area,
number of stems, etc.). While termination and initial conditions
are typically derived directly from experimental observations,
parameters governing growth biases were chosen by hand to pro-
duce morphologies that match other secondary measures such
as space coverage and fractal dimension, as well as qualitative
observations from experimental reconstructions. While both ter-
mination and initial conditions had a potent effect on global
properties of the generated cells’ morphologies (size, total fiber
length, etc.), they were less able than local homotypic growth
biases to alter those cellular morphological traits that often define
distinct types. These traits are further demonstrated by artificial
morphologies generated when holding termination and initial
condition constant (Figures 2, 3).

Create soma at origin

Bifurcate?Bifurcate?

YES

NO

Create n neurite stems with
angles <minInitialStemAngle

Apply forces to new front(s):
• Inertial
• Soma-oriented tropism
• Self-avoidance

Create daughter branches

Grow Segment(s)

Output neuron swc file END
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Extension Of Non-terminated Dendrite Ends
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Application of Forces

Compute Forward Direction
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Compute Soma Direction
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Sample New Direction

Read parameter file START B
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FIGURE 1 | Schematic of the morphogenetic algorithm. The
phenomenological algorithm relies on a Galton–Watson process to
create a topology while the geometry results from applied forces from

the environment. (A) Main algorithm to generate dendritic
morphologies. (B) Procedures to sample angles biased by self-referential
forces.
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Table 1 | Parameters of the morphogenetic algorithm and their explanation.

MAIN PARAMETERS

self_avoidance_force Maximum strength of self-avoidance bias: 0 indicates no self-avoidance, positive/negative (unbounded) values
introduce a bias

self_avoidance_decay Self-avoidance force decays as a function of distance to this power

soma_tropic_force Maximum strength of soma-tropic bias: 0 indicates no soma-tropic bias, positive/negative (unbounded) values
introduce a bias

soma_tropic_decay Soma-tropic force decays as a function of distance to this power

inertial_force Maximum strength of forward growth bias due to stiffness: 0 indicates no bias, positive (unbounded) values introduce
a bias

branch_probability Global probability of bifurcation over one unit length of front. (Probability of branching at a front is equal to the
probability of branching at least once over total front length; see section 2.3)

front_extension Parameter for varying the length of a front’s segments: 0 indicates “fixed” and otherwise “surface area dependent.”
With positive surface area dependence, front segments becomes longer as their radius decreases; with negative,
shorter

TERMINATION CONDITION PARAMETERS

bounding_shape Parameterized surfaces at which growing branches terminate

intersection_proximity Minimum distance between an active front and any other segment

max_fiber_length Maximum total fiber length in the neuron, at which all branches terminate

max_bifurcations Maximum number of bifurcations in the neuron, at which all branches terminate

min_radius Minimum segment radius, at which a branch terminates

AUXILIARY PARAMETERS

nbr_stems Number of soma branches

start_radius Starting radius of each dendrite

taper_rate Decay constant of segment radius over sequential fronts

ralls_ratio Ratio of the sum of initial branch segment radii to their terminal parent branch segment radius

angle_limit Lower an upper limit on the bifurcation and stem angles. Limits on bifurcation angle is rarely used but insures biological
plausibility. Minimum of the uniform distribution of angles between inertial force vectors resulting from a bifurcation

flatness Scaling factor for the z-dimension of 3-D Gaussian distributions from which growth directions are sampled: 0
generates a 2-D neuron, 1 generates a neuron with unconstrained 3-D morphology. (For flatness <0.5, bifurcation
angles are sampled in the xy plane.)

2.2. ALGORITHM STEPS
After parsing the parameter text file, the C++ program that
implements our algorithm first instantiates the soma with
the specified surface area. The required neurite stems (soma
branches) are created by iteratively sampling a random direc-
tion from the soma, calculating the angle to all other stems,
and adaptively decreasing the minimum angle until an appro-
priate set of angles, and number of stems, is achieved. The algo-
rithm then proceeds by repeatedly considering non-terminated
branches (“fronts”) and extending each by either continuing or
branching. Newly created branches are pushed onto the list of
non-terminated branches (fronts). When continuing, the branch
grows in a direction determined by adding a vector representing
each directional bias to a sample from the 3-D Gaussian distribu-
tion, thus modeling the sum of the three homotypic forces.

When branching, two daughter branches are subjected to
these biases, calculated separately for each. The algorithm revisits
all non-terminated branches repeatedly until a neuron termina-
tion condition is reached. Termination conditions for branches
include, in order of importance: (1) minimum segment diameter
reached, (2) close proximity to another branch (measured sur-
face to surface), and (3) collision with a fixed neuron boundary.

Termination conditions for all neuron growth included, in order
of importance: (1) all neuron branches terminated individu-
ally, (2) maximum total fiber length reached, and (3) maximum
number of bifurcations reached. Finally, the morphology data is
ordered and outputted according to the “swc” format (Cannon
et al., 1998).

2.3. IMPLEMENTATION DETAILS
2.3.1. The random process and force modeling
The influence of each of the three homotypic forces is modeled as
an offset to the mean of a 3-D Gaussian distribution from which
a direction of growth is sampled (Figure 1). For each dimension,
the algorithm draws a sample from a Gaussian distribution mul-
tiplied by a constant standard deviation parameter for the neuron
and summed with a variable offset for that dimension determined
by the sum of local growth biases, where each unbiased sample, s,
is calculated using Marsaglia’s polar method (Marsaglia and Bray,
1964) as follows:

s = σv1

√
−2 ln(v2

1 + v2
2)

v2
1 + v2

2

, (1)
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where σ is the standard deviation and {v1, v2} ∈ U(−1, 1)|0 <

v2
1 + v2

2 < 1, where U(a, b) is the uniform distribution over the
interval [a, b].

This process introduces stochasticity into our generative
model of neuron morphology (Figure 2A). For certain mor-
phologies (e.g., alpha motor neurons vs. Purkinje cells), the
randomness of growth direction was increased by increasing the
standard deviation of the neuron’s 3-D Gaussian distribution.
Furthermore, because of this stochasticity, a single parameter set
could be used to generate a very large population of unique mor-
phologies by varying each instance’s random seed. (The resulting
neurons have similar morphological traits and measures but are
not identical.)

For each new segment added by continuing or branching at
a front, a Gaussian distribution is centered on the front origin
(see Equation 1). Next, a vector for the inertial force is calculated
as a continuation of the previous segment, or as the direction of
the randomly generated bifurcation angle. The magnitude of this
vector is scaled by a user-specified bias-specific parameter, and
the mean of the Gaussian displaced accordingly. A vector for the
soma-tropic force is calculated similarly, representing the direc-
tion from the soma to the front origin, and additionally scaled
by a user-specified function of this distance. Finally, a vector
sum of the directions from all existing neuron segments to the
front origin, with each direction vector scaled by a second user-
specified function of distance, is calculated. With this vector sum,
the mean of the Gaussian is displaced a third time. The center of
the Gaussian may then be far from its initial mean.

Since only the direction is sampled from this Gaussian, the
greater the displacement of the mean, the more likely the actual
direction vector will be in the direction of the sum of the three
forces, though this is never guaranteed since the Gaussian is of
infinite extent. Finally, a segment is added in the sampled direc-
tion, and its length assigned according to the user-specified rate
of growth. By adjusting these three forces, we show that the
stochastic process may be biased to generate a variety of neuron
morphologies (Figure 2B).

2.3.2. Rate of growth and effects on morphology
Both continuing and branching at the end of a branch are condi-
tioned by the rate of growth, which may be specified as a constant
rate (in units of segment length per front, resulting in a pure
Galton–Watson process), a rate which depends on the variable
(tapered) radius (in units of segment surface area per front), or
some intermediate rate. For variable growth rates, the Galton–
Watson process is modified, such that branching occurs after a
segment of growth according to the branching probability, con-
ditioned by the segment’s length. In this way, a single bifurcation
point occurs at the end of each segment if the probability of at
least one bifurcation point over that length exceeds a randomly
generated number on the unit interval. Experimentally, it has
been shown that in particular neuron types, the branching proba-
bility is non-uniform across the dendritic tree (Burke et al., 1992;
Nowakowski et al., 1992). We found that certain non-uniform
branching probabilities can be better approximated by our mod-
ified Galton–Watson process when we specify a non-uniform

A B

COMPLETELY
RANDOM

1.0
10.0

100.0
Inertial

Soma-tropic

Self
Avoidance

FIGURE 2 | Homotypic forces can shape dendritic morphologies. All
illustrations are 2-D projections of 3-D structures. (A) Branched structure
resulting from a Galton–Watson branching process without homotypic
forces resembles a random diffusion process. (B) Dendritic-zlike structures

emerge when different homotypic growth biases are added to define the
geometry. The influence of different levels of inertial, soma-tropic, and
self-avoidance are shown. Structures are bounded by a cube with side
dimensions of 50 μm.
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FIGURE 3 | Dendritic morphological traits associated homotypic forces.

2-D dendritic morphologies generated with different settings for the
homotypic growth biases. The modeled strength of one force is varied while
the other two forces are fixed to a low strength. Top row: Dendrites with
distinct levels of inertial forces. Middle row: Dendrites with distinct levels of
soma-tropic forces. Bottom row: Dendrites with distinct levels of

self-avoidance forces. Morphologies generated with strong inertial forces
show sparse dendrites, while dense arbors require strong soma-tropic or
self-avoidance forces. Inertial forces and self-avoidance grow larger
structures in the same surface (space). Self-avoidance covers the surface
(space) most densely. Structures are bounded by a rectangle with
dimensions 150 × 100 μm.

growth rate. In addition, because segments are straight, we found
that certain neurons whose tortuosity decreases or increases with
distance from the soma can also be approximated by specifying
a non-uniform growth rate under constant influence from our
three forces applied to segments of increasing length.

2.3.3. 3-D vs. 2-D growth
Certain neuron types, such as retinal ganglion cells, starburst
amacrine cells, and Purkinje cells, exhibit morphologies which
are flat, covering a surface rather than filling a space. Our sam-
pling procedure was initially developed for 3-D growth, but
because growth depends entirely on sampling a 3-D Gaussian
distribution, we were able to modify the procedure in a straight-
forward way in order to restrict growth to two dimensions by
modifying the Gaussian distribution. More specifically, the sam-
pling procedure was adjusted to include a user-specified scaling
parameter applied to the standard deviation of the distribu-
tion’s z-dimension. In this way, the direction of growth could be
constrained in this dimension, or eliminated altogether (with a
scaling factor of zero). In addition, we modified the procedure for
determining the direction of inertial force vectors after branch-
ing, such that for scaling factors ≤0.5, bifurcation angles were
restricted to the xy plane.

2.3.4. Morphometric analysis
We analyzed the resulting morphologies’ morphometric prop-
erties. In keeping with the aims of this work, we were most

concerned with type-specific traits, such as the dimension of
a morphology, the total length, the average path length to the
terminal tips, and, space-filling proxies such as the fractal dimen-
sion and the contraction of branches. The fractal dimension is
computed on a branch-by-branch basis by the Hausdorff fractal
dimension (as described in Marks and Burke, 2007a): (〈E〉)D = t,
with 〈E〉 being the average increase in Euclidean distance per
segment length and D the actual fractal dimension. A straight
line always has the same Euclidean excursion from the soma per
unit of path length and will result in D = 1, while a completely
random walk will cover the surface (in 2-D) and have D = 2.
Contraction is a similar metric indicating the ratio between the
Euclidean distance and path length to a given terminal tip. The
total number of branch points and terminal tips are also analyzed.
For direct visual comparison of the topology we use dendrograms,
and measured the asymmetry, A, of the tree of degree n, by sum-
ming over all previous branch points, i, each of which creates two
subtrees with terminal segment counts r and s, according to van
Pelt et al. (2001),

A = 1

n − 1

n−1∑
i=1

Ap(ri, si) (2)

where AP(r, s) ≡ |r − s|/ (r + s − 2) for {r, s} �= {1, 1}, and 0
otherwise. Finally, a Sholl-like analysis was performed to inves-
tigate the distribution (conditioned on branch order or path
length) of selected morphometric properties (Sholl, 1953).
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2.3.5. Parallel implementation and availability
The compiled algorithm is very fast, with each neuron morphol-
ogy presented here generated in <2 s using a 2.33 GHz micro-
processor. For neural tissue simulation, in which thousands to
millions of neurons may be generated in a single defined tissue
volume (Kozloski, 2011), we anticipated that serial neuron mor-
phogenesis will be too costly, and have therefore mapped our
algorithm onto the parallel architecture of IBM’s Blue Gene/P,
such that each core of this massively parallel machine indepen-
dently generates a unique set of neuron morphologies. By varying
the random seed used to initialize this process on each machine
core, we can produce a large space-filling tissue represented by
a large number of swc files written in parallel to the machine’s
file system. These can then be read into a neural tissue simu-
lator (Kozloski and Wagner, 2011) for subsequent physiological
modeling. The final software is experimental. IBM would like
to create an active user community for its neural tissue sim-
ulation tools. Readers are therefore encouraged to contact the
corresponding author if interested in using the tool or in the
source code.

3. RESULTS
3.1. MORPHOLOGICAL TRAITS CAUSED BY HOMOTYPIC FORCES
The influence of self-referential forces are manifested at both
bifurcation points and continuing dendritic sections. As a refer-
ence, we generated a morphology in which no homotypic forces
were present (Figure 2A). The resulting morphology resembles
no neuron and instead represents a diffusion process (Brownian
motion) modified by particle division and elimination according
to our rules for branching and termination. We then added the
three different self-referential forces at various levels of strength.
The resulting morphologies are shown in Figure 2B. We observe
that the introduction of homotypic forces unclutters the ran-
dom morphology and brings structure to the shape. Moreover,
the morphologies subjected to the homotypic forces resemble
dendritic morphologies.

Next, we systematically investigated the morphological traits
associated with a particular force. For the sake of clarity, we
present neurons generated solely with 2-D growth, since the
resulting dendritic trees are easier to inspect visually. Figure 3
summarizes these results. The strength parameter of each applied
force is varied from 1 to 50 (arbitrary units; Table 1). For each
force combination we generated 25 separate morphologies from
different seeds to gather population statistics (although only one
is depicted; Figure 3).

At the lowest level studied for each bias, we applied all three at
strength 1 to impose structure (see Figure 2A). Therefore, mor-
phologies in the first column of Figure 3 are similar as they all use
the same force parameters (but different seeds). As a population
these “baseline” structures have a total length of 2970 µm ± 800
and 230 ± 60 bifurcation points. The fractal dimension based
on the Hausdorff metric is not always defined (Cannon et al.,
1999), but the closely related contraction ratio was measured at
0.79 ± 0.05.

Next, we investigated the effect of increasing one of the three
self-referential forces. First, in setting a higher inertial force
parameter of 5 (top row in Figure 3), the total length initially

increases to 4352 μm ± 800 and 327 ± 63 branch points. At
the highest parameter setting of 50, the size decreased again
to slightly above the base line measurement (i.e., measurement
when all force parameters set to 1). Then, we investigated the
influence of the soma-tropic force and an entirely different mor-
phology appears. With the highest soma-tropic force parameter
used, the total length increases to 6388 μm ± 2299 and the mor-
phology consists of 488 ± 176 branch points. The contraction
increases to 1, which means that the dendrites follow a straight
path directly away from the soma. Given the drastic increase in
length when modeling the soma-tropic force rather than the iner-
tial force, we can say that neurons subjected to this force form
denser dendrites. Finally, when investigating the influence of the
self-avoidance force, we see that the dendrites only become even
denser. More specifically, with the highest tested self-avoidance
parameter, the morphologies have a total length of 11, 293 μm ±
1181 and 808 ± 144 branch points. The contraction at this level
is 0.94 ± 0.2.

We thus observe that strong soma-tropism and strong self-
avoidance results in larger structures that can potentially receive
synaptic contacts from many more neurons. Moreover, with
strong self-avoidance, the surface (space) is almost completely
covered. This better coverage and larger structure directly results
from self-avoidance among branches, which therefore grow and
branch in parallel. The inertial bias alone also covers the surface
(space) well, but less densely as the total length is considerably less
when compared to the soma-tropic and self-avoidance examples.
By means of this analysis, we conclude that sparse coverage of a
space can be achieved by inertial forces, while dense coverage can
be created by strong self-avoidance and strong soma-tropism.

3.2. DENDRITIC MORPHOLOGIES ARE SHAPED BY HOMOTYPIC
FORCES

We established a relation between our modeled homotypic forces
and the resulting morphologies of dendritic arbors. Do these
traits also exist in real neuronal morphologies? We invert the
question by generating dendritic morphologies exclusively based
on homotypic growth biases. If the resulting morphologies
resemble true morphologies, we can conclude that homotypic
forces are sufficient to shape dendrites (though they may not do
so exclusively). We generated three types of virtual neurons based
on (and subsequently compared to) alpha motor neurons (cat),
dentate gyrus granule cells (mouse), and Purkinje cells (mouse).
We took experimentally reconstructed morphologies from the
NeuroMorpho.org repository (Ascoli, 2006); the motor neurons
were from Alvarez et al. (1998), the granule cells from Vuksic et al.
(2008), and Purkinje cells from Martone et al. (2003). We chose
motor neurons and granule cells are they are often the subject
of algorithmic generation (Samsonovich and Ascoli, 2003; Marks
and Burke, 2007b; Torben-Nielsen et al., 2008) and Purkinje cells
because they have a peculiar and highly specific morphology. We
adopted a strategy in which we tuned one parameter configu-
ration to generate a virtual neuron that matches an exemplar
reconstructed morphology. Then, due to the stochastic nature of
the algorithm, we generated an arbitrary number of unique mor-
phologies from this one configuration file using different random
seeds.
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First, we investigated whether the motor neuron morphology
could be dissected into influences of self-referential forces. To
achieve a proper fit, we found a very strong soma-tropic growth
bias that falls off rapidly with distance, together with a moderate
self-avoidance bias (0.08–0.35) and a slightly stronger inertial bias
(0.36–0.91) was sufficient. Figure 4A shows three reconstructed
(top row) and three generated, virtual morphologies (bottom
row). By visual inspection, the virtual morphologies appear plau-
sible. To visualize the topology, we also constructed dendrograms
of one reconstructed and one virtual motor neuron in Figure 4B.
More quantitatively, we plotted the branch order distribution,

the distribution of the path lengths (from each terminal tip to
the soma), and the Sholl-intersections for one reconstructed and
one virtual neuron (Figure 4C). While the distribution of the
path lengths and the Sholl-intersections are similar, a clear dif-
ference can be observed between the branch order distribution
of the virtual and reconstructed neurons. The mismatch in the
order is a direct consequence of the simplified branching mech-
anism: we use a slightly modified Galton–Watson process that
does not mimic the details of the true branch point distribution.
Similarity between the Sholl-intersections and the distribution of
path lengths indicates an overall similar pattern of outgrowth: the

A

B

C

mn1
gen

FIGURE 4 | Alpha motor neurons and their virtual counterparts.

(A) Reconstructed alpha motor neurons (from Alvarez et al., 1998) on the top
row and generated virtual neurons on the bottom row. (B) Dendrogram of
one reconstructed and one generated motor neuron on the left and right,

respectively. (C) Comparison between reconstructed and generated motor
neurons based on their measured distribution of the branching order, path
lengths to terminal tips, and Sholl-intersections. Scale bars in (A) indicate
250 μm.
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same space is occupied and the density of the dendritic trees are
similar. The fractal dimension [on a branch to branch basis, as
measured by the Hausdorff fractal dimension (Marks and Burke,
2007a)] is 1.09 ± 0.02 and 1.08 ± 0.02 for the reconstructed
and generated motor neuron in Figure 4A (first column). The
related contraction (i.e., Euclidean distance over path length) is
0.73 μm ± 0.08 and 0.77 μm ± 0.07 for reconstructed and gen-
erated morphologies, respectively. Together, fractal dimension
and contraction are a good proxy for the space-filling proper-
ties of neurons. Therefore, we can observe that the generated
morphologies fill the space to the same degree as the real motor
neurons. Additionally, the bounding space is also set to match
the space occupied by the exemplar reconstructed neurons and
therefore the overall dimension of the generated morphologies
matches well. The path length to the terminal tips is similar
between experimentally reconstructed (792 μm ± 196) and gen-
erated morphologies (836 μm ± 214). Thus the geometry of the
generated motor neurons matches the geometry of the exemplar
reconstructed cells. Because of the good approximation of the
overall geometry we can conclude that homotypic forces alone
are sufficient to account for motor neuron geometry.

Secondly, we set out to generate virtual granule cells. We tuned
one parameter configuration that matched with GranuleCell-Nr3
from Vuksic et al. (2008). By generating morphologies from the

same parameter set but with a different random seed, we could
generate a set of unique morphologies matching well with the
population of 20 exemplar cells. In comparison to alpha motor
neurons, granule cells required a strong soma-tropic growth
bias with a more gradual fall-off, a considerably stronger self-
avoidance bias (4.5), and a comparable inertial bias (0.45). Strong
self avoidance has also been demonstrated experimentally among
Purkinje cell branches (Fujishima et al., 2012). In addition, the
flatness parameter was reduced from 1.0 (fully 3-D) to 0.03
(strongly restricted to 2-D), since we observed that granule cells
morphologies were partially flattened. A summary of the results
is illustrated in Figure 5. The visual resemblance between the
exemplar morphology and the generated morphologies is high.
The number of terminal tips (14 ± 4) and bifurcation points
(13 ± 4) is similar to the example cell (terminal tips 13 ± 3 and
bifurcation points 12 ± 3). The total length of the generated
granule cells, 1024 μm ± 373 (vs. 2068 μm ± 241), is slightly less
for the generated morphology, while path length (205 μm ± 32)
(vs. 225 μm ± 22) is comparable. The fractal dimension is much
lower than for the motor neurons and amounts to 1 ± 0.02
for the generated cells and 1.01 ± 0.01 for the exemplar cells.
From Figure 5 we can see that the distribution of the branching
order and the Sholl-intersections are similar between the exem-
plar and generated cells. The path length, on average, is also

A B

C
granule
gen

granule
gen

granule
gen

FIGURE 5 | Dentate gyrus granule cells and their virtual counterparts.

(A) Exemplar morphology from Vuksic et al. (2008) with its dendrogram.
(B) Three morphologies generated from one parameter configuration each

with its associated dendrogram. (C) Comparison between properties of one
exemplar granule cell (from A) and one generated morphology (first from B).
Scale bar in (A) and (B) indicate 100 μm.
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similar but shows far less variance in the generated cells compared
to the exemplar. However, based on the overall similarities, the
shared dimensions, and the similarity in the space-filling prop-
erty, we can conclude that granule cell morphology is sufficiently
explained in terms of homotypic forces.

Lastly, we generated a set of Purkinje cells based on one exem-
plar cell, namely e4cb2a2 from Martone et al. (2003) (Figure 6).
Purkinje cell morphology is characterized by a large trunk from
which smaller branches sprout. Also, the dendritic arbor densely
covers the plane it occupies, thus requiring that smaller branches
often grow toward the soma. We adjusted the parameter settings
to match a generated morphology to that of e4cb2a2, then gener-
ated a set of different cells from these parameters using different
random seeds. Specifically, we included a parameter that rendered
branch diameters following a bifurcation unequal (while main-
taining their specified Rall’s ratio), and the algorithm maintained
this asymmetry for much of the arbor. To achieve appropriate
branch orders and good coverage, we also set the front exten-
sion parameter to a negative value, causing segment lengths to
vary inversely with radius and thus branching frequency and tor-
tuosity to slightly increase as the arbor expanded. In comparison
to alpha motor neurons and granule cells, Purkinje cells required
a 10–100 times greater branching probability, a moderate soma-
tropic growth bias with a gradual fall-off, and both the strongest
self-avoidance bias (5.4) and weakest inertial bias (0.32) among
the three types. In addition, the flatness parameter was 0.0

(fully 2-D), since we observed that Purkinje cell morphologies
were either fully within a plane, or occupied two distinct planes
(a curious phenomenon our algorithm could not accommodate).

A quick visual inspection shows great correspondence between
the exemplar morphology (Figure 6A) and the generated neu-
rons (Figure 6B). The dendrograms are complex and difficult
to compare, but the primary feature of a main trunk and a
higher number of bifurcations combined with a high centrifu-
gal order are observed. We then compared the complete set
of four exemplar neurons available from the same lab through
NeuroMorpho.org. The overall topology of the generated neurons
compare well to the generated ones [373 ± 84 vs. 354 ± 11 termi-
nal tips and partition asymmetry, Equation (2), of 0.44 ± 0.02
vs. 0.53 ± 0.01]. The geometry is also comparable in total length
(generated 4377 ± 918 vs. exemplar 5227 ± 544) and in path
length (generated 108 ± 10 vs. 126 ± 14), albeit, the generated
neurons being slightly smaller. This difference in size is in part due
to the fact that the selected exemplar cell was the smallest of the
set with a total length of 4461 µm. We find that the spatial embed-
ding of the generated neurons as measured by the fractal dimen-
sion (generated 1.14 ± 0.05 vs. 1.09 ± 0.03) and the contraction
(generated 0.74 ± 0.04 vs. 0.68 ± 0.02) also matches well with
the exemplar cells. Curiously, the fractal dimension of the exem-
plar cells is lower than the generated cells indicating straighter
branches in the exemplar cells while the contraction indicates
exactly the opposite (stronger contraction for the exemplar cells).

FIGURE 6 | Cerebellar Purkinje cells and their virtual counterparts.

(A) Exemplar morphology from Martone et al. (2003) with its dendrogram.
(B) Three morphologies generated from one parameter configuration each

with its associated dendrogram. (C) Comparison between properties of one
exemplar Purkinje cell (from A) and one generated morphology (first from B).
Scale bars in (A) and (B) indicate 100 μm.
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FIGURE 7 | Parameters differing across cell types. (A) Force parameters
plotted on logarithmic scale y-axis for the three cell types: alpha motor
neurons (©), granule cells (�), and Purkinje cells (	). All parameters plotted
and superimposed on box plots, with median indicated by a horizontal line,
the box’s edges indicating the 25th and 75th percentiles, the whiskers
extending to all points not considered outliers, and outliers (>1.5 × the box
height beyond the box edge) marked by a dot. (B) Spatial gradient
parameters for the three cell types plotted on a linear scale y-axis.
(C) Additional relevant parameters for the three cell types plotted on a
linear scale y-axis.

A summary of these data is also given in Figure 6C, where the
match can also be visually evaluated.

4. DISCUSSION
In this work we investigated the influence of homotypic forces on
the morphology of dendrites. We followed a generative synthetic
approach, in which artificial dendritic morphologies were solely
determined by homotypic influences. By approximating three
homotypic forces (inertial, soma-tropic, and self-avoidance) in a
phenomenological growth model we could generate morpholo-
gies that have strong resemblance with real dendritic morpholo-
gies. We conclude that these homotypic forces are sufficient to
explain dendritic morphology, though they may not do so exclu-
sively. Consequently, we also argue that an estimate of these
three homotypic forces should be used in future descriptions of
dendritic morphology.

Despite a considerable amount of experimental evidence for
external cues influencing dendritic morphology, there is little the-
oretical work on this topic. Moreover, in algorithmic approaches
to generate whole morphologies, external influences are gener-
ally not considered. Recent noteworthy exceptions come from
Samsonovich and Ascoli (2005), Luczak (2006), and Marks and
Burke (2007a,b) to which we compare our work. Samsonovich
and Ascoli set to dissect the main direction of growth in hip-
pocampal pyramidal cell dendrites. They found that the main
component was a soma-oriented tropism, and not a general
gradient shared with other cells. Marks and Burke came to a
similar conclusion and reported that, in motor neurons, the
direction of the dendrites is both determined by the direc-
tion of the parent (i.e., what we call “inertial force”) and a
soma-repulsive cue. Moreover, Marks and Burke also hinted at
the influence of self-avoidance during the development of den-
drites. An important distinction between first, the algorithms of
Samsonvich and Ascoli and second, that of Marks and Burke,
is that each starts with a dendrogram and only then adds a
geometry. We generate both a topology (i.e., a dendrogram)
and the spatial embedding (i.e., a geometry) at once, such that
certain branching events resulted in one branch failing due to
termination, while the other continues. Luczak used an algo-
rithm based on diffusion limited aggregation that implicitly
mimics precisely certain external cues (external gradients and
self-avoidance). The results of Luczak indicate that a bounding
box and competition over resources can account for dendritic-
specific features that resemble self-referential and environmental
interactions.

What is the relevance of the presented work? We can assess the
relevance of the two pillars of our work, the branching rule based
on a Galton–Watson process and homotypic forces defining the
geometry. First, a Galton–Watson process is the simplest process
to generate binary trees and relies on a constant branching proba-
bility independent of any other parameters in the algorithm. The
simplicity of this process gives rise to discrepancies between true
morphologies and the morphologies generated by our algorithm,
namely the maximum branch order and distribution of bifurca-
tions. With a pure Galton–Watson process, we would employ a
constant branching probability (and hence a constant segment
length independent of other variables and uniform across the
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whole tree). Several studies have indicated that the branching
probability is not uniform, and can be dependent on the dis-
tance from a previous branch point (Nowakowski et al., 1992) or
from the soma (Burke et al., 1992). Departing from our original
intent, our algorithm may be modified in the future to generate
highly realistic morphologies by substituting the Galton–Watson
process with a more data-driven branching rule, or even a branch-
ing growth model as developed in van Pelt et al. (2001). The
modified Galton–Watson process we used here did provide some
ability to control a non-uniform branching probability, which we
exploited to approximate more closely the properties of our real
target neurons, such as their distributions of path lengths.

Second, homotypic forces were modeled to guide the geomet-
rical extent of the artificial dendrite morphologies, and varied
greatly in comparison to other parameters across the different
cell types we generated (Figure 7). Despite being a phenomeno-
logical model, the homotypic forces are biologically inspired.
Stiffness resulting from an inertial force is documented (Condron
and Zinn, 1997) and biases forward motion. Soma-tropic force
has been exclusively described in a theoretical setting based on
a transient gradient of pH induced by a cell’s spiking activity
(Samsonovich and Ascoli, 2005). Self-avoidance is also well doc-
umented based on observations of homotypic repulsion after
actual contact (Jan and Jan, 2010; Fujishima et al., 2012) as well
as from a distance (Lefebvre et al., 2012). In our model, repul-
sion follows a gradient such that actual contact between branches
is not required. In addition, Shimono et al. (2010) and Sugimura
et al. (2007) created detailed mechanistic models of growth at the
molecular level, which also confirmed that self-repulsive effects
are important in generating dendritic morphology. In contrast,
the present study showed that simple models of self-referential
forces can create realistic and diverse neuronal morphologies
and did not attempt to capture the proximal physiological or
molecular causes of these growth processes in a generative algo-
rithm. Thus, the phenomenological incorporation of inertial,
soma-tropic, and self-avoidance forces into our morphogenetic
algorithm are grounded in the literature.

Of course there are also extrinsic actors (as opposed to self-
referential or intrinsic forces) involved in shaping dendrites (Scott
and Luo, 2001; Jan and Jan, 2010). These external influences
can have a wide variety of sources. Neurons develop in a sub-
strate populated by both other neurons and other structures such
as blood vessels, capillaries and glia cells. Especially for opti-
mal space coverage and tiling, interactions between cells seem
required, and avoidance of other structures is evident. Moreover,
neurons grow in a bounded space where the white matter, the pia,
and even laminar structures can be seen as external influences on
neurons. At a phenomenological level, these extrinsic actors can
be described as forces in a (limited) spatial domain (as in Feng
et al., 2005). Because we model the forces acting on the direction
of growth as a sampling bias, we can easily extent the model to
include other external forces in a similar fashion.

Our work demonstrates that self-referential forces are suf-
ficient to explain the main morphological traits of adult den-
drites. Experimental techniques, including genetic manipulation
(Lefebvre et al., 2012), provide a means to access mechanistic
causes of self-referential biases. As these techniques evolve, they
may provide a means to test the predictions represented by our

choice of parameters for those generated morphologies presented
here, or for others derived from our algorithm. Our focus was
not on generating the most realistic virtual neurons possible from
a set of experimentally reconstructed morphologies. For exam-
ple, as already discussed, our modified Galton–Watson branching
process gives rise to a less realistic, nearly uniform branching fre-
quency throughout the dendritic tree. In a similar vein, other
specific features of dendritic morphology (e.g., segment length
and branch angles) are not necessarily uniform across the tree
(Burke et al., 1992; Nowakowski et al., 1992; Torben-Nielsen et al.,
2008; Langhammer et al., 2010), and instead vary as a function
of some topological measures of the tree (such as path length,
branch order, etc.). Therefore, a potential extensions to this work,
aimed at the generation of realistic morphologies, could include
other parameters (such as those describing homotypic forces and
their influence) that vary over the dendrite in this way.

Recently it was also reported that external guidance cues are
not required for synaptic patterning and contact formation (Hill
et al., 2012). While the finding is surprising, it does not speak
to the need for intrinsic or extrinsic cues during development
of the morphology itself. Moreover, it is reasonable to think that
evolution caused a particular trait in a population, giving rise to
a statistically relevant number of appositions between dendrites
and axons, to become the basis for regular cell-to-cell wiring and
communication in neural tissues within a species. This result also
implies that neurons can, in principle, be generated indepen-
dently from each other, as long as they share population statistics
with a measured population of real neurons. In our study we
managed to dissect morphological traits of dendrites stemming
from the interaction and influence of three self-referential forces.
In combination with adequate branching rules, our algorithm
provides a parsimonious description to generate vast numbers of
virtual neurons. Moreover, we speculate that morphologies from
many distinct classes exhibit morphological traits that result from
self-referential interactions biasing an otherwise random process.
Tuning the small set of parameters underlying our algorithm is
more straightforward than tuning an exhaustive set of detailed,
local parameters (such as the distribution of branching angles,
which in turn might be conditioned on various other dendritic
parameters such a diameter and distance from the soma). Thus,
our insights into the growth of single neurons could be used to
generate large populations of neurons and synapses for large-scale
computer simulations of neural tissue.
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