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Morphometric analysis of neurons and brain tissue is relevant to the study of neuron
circuitry development during the first phases of brain growth or for probing the link
between microstructural morphology and degenerative diseases. As neural imaging
techniques become ever more sophisticated, so does the amount and complexity of data
generated. The NEuronMOrphological analysis tool NEMO was purposely developed to
handle and process large numbers of optical microscopy image files of neurons in culture
or slices in order to automatically run batch routines, store data and apply multivariate
classification and feature extraction using 3-way principal component analysis (PCA). Here
we describe the software’s main features, underlining the differences between NEMO and
other commercial and non-commercial image processing tools, and show an example of
how NEMO can be used to classify neurons from wild-type mice and from animal models
of autism.
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INTRODUCTION

It is well-known that even at the microstructural level, neu-
ronal morphology is important for higher level brain function
(White, 2007; Brown et al., 2008). For example, the analyses
of neural structure and neural organization over time is crucial
for the study of neuron circuitry development during the first
phases of brain growth or for probing the link between cell mor-
phology and degenerative diseases (Zhao et al., 2007). Classically
neuron morphology is investigated using stained and fixed disso-
ciated cultures or slices (Cajal, 1952; Golgi, 1989; Kapfthammer,
2004). Most investigators now use imaging techniques such as
confocal, 2-photon and super-resolution microscopy, and sev-
eral reports describe neural growth dynamics using fluorophores
such as tracker dyes or calcium sensitive dyes (Arai et al,
1999; Blinder et al., 2005; Volman et al., 2005). Genetically
encoded probes are also becoming commonplace, and are an
extremely useful tool for analyzing neural cell morphology,
although efforts are also dedicated toward cell signaling par-
ticularly at the synaptic level (Knopfel et al., 2006). Several
reports use techniques such as 2-photon or confocal microscopy
on organotypic brain slices, which enable short term (10 min)
recordings of calcium dynamics through the use of Ca’™ spe-
cific dyes or very high magnification static analysis of den-
dritic spine distribution (O’Brien and Unwin, 2006; Lillis et al.,
2008).

As the spatial resolution and acquisition frequency of imag-
ing techniques increases, so has our ability to generate huge
quantities of data on neuronal morphometry and dynamics.
However, it is quite often time consuming and difficult to batch
process image files and most of the digital image processing tech-
niques such as segmentation and feature extraction, which have
changed little over the past few decades, still require a large

degree of pre-processing and image manipulation. Furthermore,
the manual quantification of neuronal morphology is very
labor-intensive and is prone to observer bias. Not only lack
of consistency within an individual observer, but also variance
between different observers can reduce the level of reproducibility
(Schmitz et al., 2011).

In the last 20 years many open-source or commercial tools have
been implemented for automatically and consistently quantify-
ing neuronal morphology through image processing (see section
“Discussion”). However, it is still not possible to perform com-
plete morphological analyses of a collection of images using
a unique tool. More importantly, no software is designed to
conduct time-dependent quantification of neuron morphometry
during growth or differentiation, nor is it possible to perform
in-depth statistical analyses on a collection of related images.
Finally, as far as data analysis is concerned, most studies and
software based methods which describe neuron morphometrics
use very simple statistical tests such as the ¢- or f-tests, which
are often unsuitable for the study and classification of complex
multivariate data.

To overcome these limitations, we have designed a novel user-
friendly software, NEMO (acronym of “NEuron MOrphological
tool”) for batch processing of neuron images for dynamic mor-
phometric analysis. Time lapse sequences of neurons or brain
slices can be processed and analyzed sequentially with automatic
data storage in the form of plots and matrices containing mor-
phometric data. Subsequently the matrices can be analyzed using
3-way principal component analysis (PCA), which enables the
organization of multivariate datasets into groups, thus facilitating
the interpretation of complex and large groups of data.

In this paper, we describe the unique features of NEMO
and illustrate an example of how the software can be used
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to distinguish and classify neurons using multivariate anal-
ysis. In particular, the software was used for morphologi-
cal studies of Purkinje neurons in culture and for compari-
son of two different genotypes, L7GFP WT (wild-type) mice
and the L7GFP/EN2+4/— knock-out. Purkinje cells from the
LF7GFP strain express GFP (green fluorescent protein), while the
engrailed gene EN2 is associated with autism, and is known to
cause morphological alterations at the cerebellar level (Kuemerle
et al., 2007).

NEMO DEVELOPMENT AND IMPLEMENTATION

NEMO is an open-source software, which can be downloaded
from http://www.centropiaggio.unipi.it/software (Billeci et al.,
2011). The software was developed in Matlab® code (The
MathWorks-sTM, Inc, USA) and performs micro-structural and
quantitative analysis from 2D images of neurons and organotypic
brain slices. It has a user friendly graphical user interface (GUI)
environment with pull down menus for image pre-processing,
quantitative morphological and topological analysis, automatic
counting of neurons in an image, plotting of the features extracted
and statistical analysis by 3-way PCA.

Prior to performing a morphometric analysis of neurons in
culture, individual cells are skeletonized: the cell is reduced to a
binary image with a one pixel thick line. After the skeletonization
process, images of single neurons are analyzed with the morpho-
logical analysis tool. Alternatively images of organotypic brain
slices can be processed through the automatic counting and a
topological analysis tool for the extraction of relevant metrical
variables.

All the measurements extracted can be then analyzed by
the graphical and statistical tools implemented in the software.
The tools and functions available in NEMO are summarized in
Table 1.

NEMO: AN OUTLINE

LOADING AN IMAGE IN NEMO

In order to perform batch operations on images they are first
renamed with appropriate labels. NEMO uses the properties indi-
cated in the name to extract information about the neurons
represented in the image. Image names have to be structured in
the following way:

ImageType_CultureNumber_CellNumber_PhotographDay_CellAge
where:

« »

e ImageType: “p” for “photograph,” “b” for “binary” and “s
for “skeleton.” NEMO automatically saves binary images and
skeletons using these labels.

e CultureNumber: progressive number identifying the culture.

e CellNumber: within each culture, a progressive number identi-
fying a single neuron.

e PhotographDay: progressive number indicating the number of
days since the start of image acquisition.

e CellAge: progressive number indicating the age in days of the
neuron pertaining to CellNumber.

For example, b_01_01_02_03 refers to the binary image of the
first neuron belonging to the first culture, photographed since the

Table 1 | Tools and functions implemented in NEMO.

Tools Functions

LOADING IMAGES
Image processing Gaussian filter

Uniform background
Grayscale conversion
Thresholding
Morphological operations
Boundary detection
Region filling
Skeletonization

Intersections

Critical radius (v')

Maximum number of intersections (v)
Schoenen ramification index

Regression coefficient for log-log Sholl
method (v')

Morphological
analysis

Regression coefficient for semi-log Sholl
method (v')

Correlation coefficient for log-log Sholl method
Correlation coefficient for semi-log Sholl method
Determination ratio

Minimum length vectors

Angles between minimum length vectors
Minimum pathway (v')

Radial extension (v')

Cone angle (v')

Soma area (v')

Fractal dimension (v')

Fluorescent/non-fluorescent cells
Unique/separate plot

Neuron count

Topological analysis Analysis on slice

Plotting

Datamatrix creation
Plotting

Plot morphological
variables

3-way PCA Datamatrix creation

Multivariate analysis

In the morphological analysis section, (v') indicates the variables chosen for
3-way PCA analysis. For the sake of comparison features not available in
NeuroLucida are highlighted in bold.

second day of life in culture and which is at its third day of life in
culture. All the images from a single experiment are stored in a
folder for batch processing.

Once the image has been renamed it can be loaded into
NEMO.

IMAGE PRE-PROCESSING AND NEURON RECONSTRUCTION

Images can be processed using a semi-automatic procedure,
implemented in a Matlab editor, or though a GUI (Figure 1) that
allows more freedom in the choice of parameters. There is no
single best approach: it is necessary to find a trade-off between
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FIGURE 1 | GUI for image pre-processing.

customization and automation of the analysis and the choice
depends on the quality of the image. Alternatively images can
be processed using a variety of semi-automated software tools,
or by hand, and then imported into NEMO for multivariate
analysis.

While in the editor there is a unique program flux, which is
interrupted only when user has to insert some parameters, the
GUI is organized in subroutines, so the user can run the same
algorithms repeatedly, or can delete the result of the last oper-
ation. The techniques used for skeletonization are standard and
therefore not described in detail. Briefly the functions imple-
mented within this tool are:

e Filter: Gaussian filter, useful to minimize small variations
in color and to prevent the detection of non-existent and
unwanted contours;

e Uniform background: an algorithm that estimates the bright-
ness of the background, and then reduces it to a single intensity
value;

e Grayscale conversion: conversion of RGB image to grayscale
intensity image;

e Enhancing contrast: histogram stretching or histogram equal-
ization.

e Thresholding: two different thresholding algorithms have been
implemented. The gray level can be chosen by the user, or the
“Otsu method” scan be used to automatically find a threshold
level, T.

e Morphological operations: dilating, eroding, opening and
closing morphological operations as well as boundary detec-
tion and region filling;

o Object selection: the for labeling of connected objects;

o Skeletonization: reduces the shape of the neuron to a skeleton.
A thinning algorithm has been used. Although it is accurate in
dendrite reconstruction, it is not very precise in soma recogni-
tion. For this reason, the user needs to perform an additional
manual operation consisting in indicating the soma center and
the upper-left vertex of the soma with a mouse click.

Since neuron reconstruction is notoriously difficult, particularly
with low resolution images, to compare NEMO with Image]J, we
selected representative images from different sources to recon-
struct neuron skeletons.

NEURON COUNTING

This operation can be performed on images representing cul-
tures of neurons or slices. When loaded in this tool, images need
to be named and organized with the same criteria explained
above.

The basic idea of the algorithm is to obtain a binary image,
and then to count the white objects present in the image, which
represent the cells. Thus it is not necessary to reconstruct the cell
outline, and is better to have only somas in the image in order to
avoid the counting of several segments of the same cell separated
by thresholding. The algorithm works recursively: when the user
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selects an image in a specific folder, the algorithm automatically
counts the neurons represented in all the images in that folder.
So, number of cells in a slice or culture is rated for all the days in
which it is photographed. Plots representing the development of
cell counts over multiple images can be visualized. The user can
choose between two types of plots:

e Plot separate: the user needs to choose the array to be ana-
lyzed and the algorithm automatically reports a graph with cell
number as a function of days;

Plot unique: with multi-selection, the user can choose several
arrays to be analyzed. The algorithm automatically reports a
unique plot with cell number as a function of days for all the

selected arrays.

MORPHOLOGICAL ANALYSIS

Once the neuron skeleton is obtained, the user can run the mor-
phological analyses, which are implemented, in a specific GUI
(Figure 2). The GUI calculates a vast array of morphological
parameters and this feature is unique to NEMO as other soft-
ware packages only output a small subset of these (see section
“Discussion”).

The morphological analysis allows the contribution of metrical
features and their evolution over time to be studied quantitatively.
Using the GUI, the metrical features relevant to the cell’s structure
and morphology are extracted. The morphological variables were
chosen from those generally reported in the literature (Uylings

and van Pelt, 2002; Shefi et al., 2005) and divided into two groups,
local and global variables. The former are referred to the dendritic
tree, while the latter variables, such as radial extension, soma
area, cone angle, and fractal dimension, are related to the whole
cell structure. Following the Sholl method (Sholl, 1953), each
cell skeleton is circumscribed a coordinate system consisting of
a series of concentric circles centered on the soma. Local variables
were extracted by counting the number of intersections between
each circle and the cell’s dendrites. A list of variables assessed with
this tool is given in Table 1.

The tool works recursively: the user selects the image rep-
resenting the first photograph of a neuron, and the algorithm
automatically analyzes all the images in the folder, representing
the same neuron photographed in successive days of culture. The
variables measured with this tool are 177. Each morphological
parameter is automatically saved in a specific position in a three-
dimensional datamatrix, whose dimensions are 1 x 177 x No.
of days of culture.

The datamatrix is automatically named with a similar crite-
rion to that used for the images. Comparisons between NEMO
and NeuronMorpho/Image] in analyzing common neuron mor-
phological features and in Sholl analysis were conducted to test
NEMO’s performance.

TOPOLOGICAL ANALYSIS
This tool has been implemented for the analysis of the
topological organization of organotypic brain slices and allows
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FIGURE 2 | GUI for morphological analysis of a single neuron.
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the contribution of metrical features and their evolution to be
studied quantitatively.

Segments of organotypic brain slices must be photographed at
regular intervals, and named with the same criteria as described
in section “Loading an Image in NEMO.” After selecting a slice
to be analyzed, the metrical features relevant for the character-
ization of slice topology are directly extracted through the GUI
(Figure 3).

The variables chosen in this analysis are useful for quantify-
ing cell migration over time. After a pre-processing step in which
images of slices are converted to binary images, some quantitative
topological features are computed automatically:

e Mean Fluorescence Intensity: which is useful to quantify bleach-
ing or expression of fluorescent proteins;

e Distance: external distance between the two opposite layers of
cells within a segment;

e Length: two measurements related to the lengths of the two
layers of the segment;

e Average width: two measurements related to the mean width of
the two layers of the segment;

e Min Width: two measurements related to the minimum width
of the two layers of the segment;

e Max Width: two measurements related to the maximum width
of the two layers of the segment;

e Linear Fit Error: this gives a measure of the linearity of each
layer.

All these parameters are collected in a datamatrix, with the
same structure as described in section “Morphological Analysis,”
which is automatically created when the user runs the topological
analysis.

GLOBAL DATAMATRIX CONSTRUCTION
In order to compare all the samples and to find analogies between
the neurons analyzed, the morphological or topological param-
eters are assembled in a unique three-dimensional matrix struc-
ture, nominated “global datamatrix.” In this structure, data are
organized into cells, variables and time; where n is the number
of cells or slices, m the variables and ¢ the number of days over
which the images were obtained. Thus the final structure of the
datamatrixis n x m x t.

The user can select the datamatrices of different neurons
stored in the “Data Matrix” folder, and the global datamatrix is
automatically created.

MORPHOLOGICAL AND TOPOLOGICAL FEATURE PLOTS

After creating the three dimensional datamatrix, the user can plot
the data. There is a specific command in the pop-up menu for
plotting morphological or topological parameters stored in the
datamatrix. The user can select the type of plot (day by day plots

<) ToSli

Opeon

Slice

Originary image

Make binary

Start Analysis

Binary image

Topological variables

Fluorescence intesity

Distance 10
0051523
Lett Right
Length 131757 1279741
Mean width 352773 46138
Max width 64 %
Min width 4 4
Fit error 291535 320895

FIGURE 3 | GUI for topological analysis of organotypic brain slices.
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or time-dependent graphs) as well as the variables of interest. All
the plots are automatically saved in a user specified directory.

THREE-WAY PCA

A novel feature of NEMO is the statistical analysis of the data
extracted using the 3-way PCA, a multivariate technique. The
3-way PCA is a generalization of PCA, a popular technique that is
often used for the exploratory analysis of a set of variables. While
PCA analyzes data varying in two dimensions, 3-way PCA allows
the analysis of sets of variables, associated with 3-way data sets,
also called modes: variables, objects and conditions (in case of
neurons photographed in different days of culture the conditions
are the time intervals). This technique is aimed at transforming
data to summarize the associated information in a small num-
ber of novel variables or principal components, able to express
as much information as possible. Several models implement the
3-way PCA methodology (Kiers and van Mechelen, 2001). NEMO
uses the Tucker3 model, an iterative technique first implemented
by Leardi et al. (Leardi et al., 2000). In order to perform the
3-way PCA, the data need to be to re-organized. Considering

the morphological features, from the global data matrix, with
dimension n x m X t, t matrices with dimensions n x m are
extracted. Then, the matrices are vertically concatenated. The
result is a datamatrix with structure (n x f) x m. Formally, itis a
two-dimensional matrix, but contains the entire dataset of infor-
mation. This datamatrix is automatically saved in a user-specified
folder.

In order to have a more efficient interpretation of the 3-way
PCA, only the most significant morphological variables indicated
in Table 1 are selected (Billeci et al., 2009).

After selecting the datamatrix to be analyzed, an input box is
displayed, where the user can indicate the option to pre-process
the data through a scaling to remove standardization offsets. The
number of conditions (i.e., days of cell observation) and number
of iterations also need to be indicated.

MATERIALS AND METHODS

CULTURE PREPARATION AND MICROSCOPY

Here we briefly describe a study to illustrate an application of
NEMO. The software was used for the morphological studies

Table 2 | Comparison of features extracted from image, Sholl and fractal analysis between Purkinje neurons from L7GFP WT and

L7GFP/EN2+/— mice.

Variable Neurons from L7GFP WT

Comments

Neurons from L7GFP EN2+/—

Plot of the number of
intersections vs. r

Gaussian

Maximum at r small and smaller
at r large

Dendrites localized in the center in WT
and near the soma in EN2+/—

Plot of log-log semi-log method

Log-log is a better approximation

Log-log is a better approximation

Value of A <1

<1

Plot of minimum length vector
value

A lot of high peaks and higher

Very small peaks

The principal axis is less tortuous and
smaller in EN2+/—

Plot of angles between minimum
length vector

A lot of high peaks

Very small peaks

Confirms that the principal axis is less
tortuous in EN2+/—

Fractal dimension

1.65+0.07

1.45+0.12*%

The fractality is lower in cells of EN2+/—

*p < 0.05 with respect to WT neurons.

Table 3 | Comparison of the evolution in time of mean features extracted from image, Sholl and fractal analysis between Purkinje neurons
from L7GFP WT and L7GFP EN2+/— mice.

Variable

PCs from L7GFP WT

PCs from L7GFP EN2+/—

Comments

Maximum number of intersections

Higher value, peak at day 15

Lower value, peak at day 10

Less arborized dendrites in EN2+-/—

Maximum radial extension

Higher value, peak at day 15
(104.6 £22.6 um)

Lower value, peak at day 10
(58.4 &+ 17.9 um)*

Cells of EN2+/— grow less and die
earlier

Maximum principal axis length

Higher value, peak at day 15
(102.4 £24.3 um)

Lower value, peak at day 10
(49.3 £ 15.7 pm)*

Cells of EN2+/— grow less and die
earlier

Cone angle

Same

Same

Maximum soma size

Decreases in time
(525.98 + 127.1 um?)

Constant, smaller
(476.29 + 201.5 um?)

Cells of EN2+/— are smaller and less
directional

Fractal dimension

Constant (1.55 + 0.01)

Constant (1.43 4 0.05)*

Cells of EN2+/— are less fractal

*p < 0.05 with respect to WT neurons.
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Raw Image

Nemo

Brightfield

Fluorescent

Slice

Confocal

FIGURE 4 | Reconstruction of an isolated mice Purkinje neuron
skeletons using NEMO and ImagedJ. Brightfield: CD1
neonate 1 day after birth (P1); Fluorescent:
Organotypic slice: L7GFP P7-10 neonate;

mouse
L7GFP neonate P1;
Confocal: Purkinje neuron

Overlay

from mouse cerebellum injected with Lucifer Yellow (Martone et al,
2002). Scale bar 10um. Comparative morphometric and Sholl
parameters are provided in the “Appendix.” Image sources are cited
in  Acknowledgments.

of Purkinje neurons in culture and for comparison of two dif-
ferent genotypes. Purkinje cells expressing GFP were extracted
from L7GFP WT mice and L7GFP/EN2+/—. The homeobox
transcription factor, ENGRAILED 2 (EN2) is significantly asso-
ciated with autism (Benayed et al., 2005) and has a role in
both the embryonic and postnatal development of the mouse
cerebellum (Millen et al., 1994). EN24-/— transgenic mice, het-
erozygote for EN2, have been developed and they display a
phenotype reminiscent of the cerebellar anatomical abnormali-
ties reported in autism. In L7GFP mice the expression of GFP in

Purkinje is specifically driven by the Pcp-2 promoter (Zhang et al.,
2001).

The culture preparation is described in Billeci et al. (2009).
Two cultures for each of the two samples were used and fixed at
different time points (8, 10, 14, and 15 days for WT; 10 and 15
days for EN24-/—). A total of 7 neurons from WT mice cultures
and 5 neurons from EN2+/— autism model were analyzed. The
cells were observed and photographed using a fluorescent micro-
scope (Olympus, Italy) with a x20 objective interfaced with a
digital camera (Alkeria, Pisa).
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NEURON ANALYSIS WITH NEMO

All the images of Purkinje cells were first pre-processed in NEMO
in order to obtain a skeleton of the neurons. Then the morpho-
logical analysis tool was applied to extract the morphological
features of interest. The variables were extracted for all the cells
at the different time points and visualized and compared using
the graphical tool. Finally the mean values of all the cells analyzed
for the two different types of mice at each time point were consid-
ered. All the lateral dimensions are represented in terms of pixels,
and so all the values in the figures are expressed in this unit. At the
magnification used (%20), one pixel corresponds to 0.182 pm.

STATISTICAL ANALYSIS

Before applying the 3-way PCA on the datamatrix, a matrix suit-
able for the multivariate technique was constructed. The structure
was (12 x t) x 8, where the total number of cells analyzed is
12 (we used samples from both the cultures), the morphological
variables selected for the 3-way PCA (Table 1) were eight and the
conditions were the different days of culture, . In order to com-
pare the two cultures only the days of culture in common were
selected: day 10 and 15. After realizing the datamatrix, the 3-way
PCA tool was used to perform the statistical analysis of variables.

RESULTS

MORPHOLOGICAL ANALYSIS

The analysis of the morphological features extracted in NEMO
enabled the identification of similarities and differences between
the two types of cultures. Table 2 summarizes the results of the
analyses at single time points.

The analysis of intersections showed that the trend of inter-
sections vs. radius is Gaussian only in WT mice, with a peak
corresponding to intermediate values of the radius. In EN2+/—
the peak of intersections is shifted toward lower values of the
radius (see Figures A1A, A1B in “Appendix”). The plot of log-log
and semi-log methods revealed that both in WT and EN2+-/—
the log-log relationship better approximates the values of inter-
sections. This result was confirmed by the value of A which is less
than 1 for most of the cells, although the difference between the
number of cells for which A is less than 1 and greater than 1 in
the case of EN2+/— is less significant.

The analysis of the mean vector lengths on the principal
axis and of angles between these vectors revealed that plots of
EN2+4-/— cells have very smaller peaks with respect to WT cells.

The values of fractal dimension for all the cells of the two cul-
tures were between 1.4 and 1.7, (see Figure A1C in “Appendix”)
however, the mean fractal dimension of cells from EN24/— is
lower than the mean value of cells from WT mice (1.45 vs. 1.55,
Table 2).

When the time dependent behavior of the two cultures was
analyzed, we observed different trends, the most significant of
which are summarized in Table 3. Interestingly the EN24-/—
cells are consistently smaller, less arborized and die earlier than
WT cells.

COMPARATIVE ANALYSIS
We also compared the fidelity of the skeletonization process
using both NEMO and Image] and the morphological and Sholl

parameters output by NEMO and NeuronMorpho with Image]J
on four representative images of Purkinje neurons from dif-
ferent sources [respectively a bright field image, a fluorescence
micrograph, an organotypic slice and a confocal image (Martone
et al.,, 2002)]. The process was faster with NEMO due to the
semi-automated tracing of neurite pathways (Figure 4). Although
there were evident differences in the skeletons, particularly in the
slice and confocal images, the morphological parameters mea-
sured in NEMO are similar to those extracted by NeuronMorpho,
with no significant or systematic differences between the two
(typically 3%, see “Appendix”). The Sholl parameters measured
using NEMO and Image]’s Advanced Sholl Analysis parameters
plug-in were also similar and are provided in the “Appendix.”
The results underline the well-known difficulty in neuron recon-
struction, particularly with low resolution images, but suggest
that quantification of discrete parameters may not be entirely
reconstruction dependent.

3-WAY PCA ANALYSIS

The 3-way PCA tool delivers three plots: one for objects (cells),
one for variables (morphological features) and one for condi-
tions (days). In Figure 5 the most relevant graph for our analysis,
that is the plot of objects, is shown. Two clusters, corresponding
to the neurons from the two different cultures analyzed can be
identified.

In order to properly interpret 3-way plots, it is essential to
attribute appropriate identities to the axes. An analysis of the
plots suggests that the x-axis represents the directionality of the
cell, and y-axis the complexity of arborization, as represented in
Figure 5. On the basis of the interpretation given to the axes, it
can be concluded that neurons extracted from EN2+/— mice
(green cluster) show less complexity in dendritic arborization and
less cell directionality than neurons from WT mice (blue cluster).
This result is in agreement with the conclusion obtained from the
morphological analysis, as well as on studies of autistic subjects
(Fatemi et al., 2002).
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FIGURE 5 | Plot of objects obtained with 3-way PCA. Green cluster:
neurons extracted from EN2+/— mice, blue cluster: neurons extracted
from WT mice. “+" indicates the axis origin.
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DISCUSSION

Morphometric analysis is relevant to the study of lifespan alter-
ations in the neuritic field of neurons or neuronal morphological
correlates of diseases, as well as the morphological implications of
neurons under experimental conditions or the structure—function
relationships in dendritic trees (White, 2007; Zhao et al., 2007;
Brown et al., 2008). In order to analyse microscopic alterations
over time in cell cultures or in brain tissue slices, it is impor-
tant to have accurate, reliable, and reproducible measurements,
which are not prone to human bias. Given that current imaging
methods are able to provide high-resolution data in both space
and time, in the last 20 years several commercial and open-source
tools for morphological analysis and extraction of quantitative
information on cell structure from microscopy images have been
developed. Table 4 lists the features of the principal software
available for microstructural and morphological analysis. From
the table it is clear that not all the software are capable of a
complete and exhaustive analysis: in fact, some tools are only
dedicated to image pre-processing, or able to extract only few
morphological parameters. Furthermore, many routine opera-
tions require significant manual intervention and interpretation,
such as the tracing of each branch of the neurons with a pen-
cil tool or mouse. In fact, most software do not implement
automated or semi-automated image processing for parameter
extraction. Most of the available software tools focus on the anal-
ysis of single parameters and many routine operations require
significant manual intervention and interpretation. For example,
in Neurolucida (Micro-BrightField, Williston, VT) (Glaser and
Glaser, 1990), a commercial software for morphometric analy-
sis of neurons used successfully by several investigators (Gianola
and Rossi, 2001), the user must trace each neuron branch with a
pencil tool or mouse. Moreover some of the tools are not open
source, so that it is impossible to customize them for one’s own
purpose. Finally, some software require a commercial license and
may be out of reach to scientists in developing and emerging
countries.

NEMO is an open source software provided with all the tools
that can be useful for the analysis of neuron morphology. It con-
sists of a set of computation algorithms written in Matlab and
implemented in a GUI framework, in which it is easy to access
the data and have a global view of the results. With respect to
the other software listed in Table 4, its unique features are the
automation of the method of data extraction from time lapse
sequences of images and the use of the 3-way PCA for data anal-
ysis and classification. With the other tools, images need to be
opened one at a time, traced, and then data are collected and
saved separately. When dealing with multiple images of the same
cell tracked over time, the procedure takes a considerable amount
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Table A2 | Results of Sholl analysis between Purkinje neurons from
L7GFP WT and L7GFP EN2+/— mice at day 10 of culture.

Radius (Pixel)

Number of intersections (mean +/— s.d)

L7GFP WT L7GFP EN2+/—

50 5.50+3.00 5.00+3.00
100 6.256+5.9 6.00+5.3

200 4.75+£3.37 8.25+4.12
300 5.75+5.00 2.254+1.87
400 5.00+3.25 3.5+1.6

500 7.25+5.12 2.75+1.25
600 3.75+2.6 1.756+0.8

700 3.75+2.6 —

800 1.75+1.25 —

900 0.5+0.5 —

A B

Mean value of
number of intersections

FIGURE A1 | Histogram of the mean values of number of intersections of all the Purkinje neurons from (A) WT mice vs. radii at 10 days,
(B) EN2+/— mice vs. radii at 10 days. (C) Value of fractal dimension for WT Purkinje neurons (green, asterisks) and EN2+/— neurons at 10 days (red,

triangles).
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