frontiers n

NEUROINFORMATICS

METHODS ARTICLE
published: 22 May 2013
doi: 10.3389/fninf.2013.00008

=

The neural decoding toolbox

Ethan M. Meyers*

Department of Brain and Cognitive Sciences, McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA

Edited by:
Daniel Gardner, Weill Cornell
Medical College, USA

Reviewed by:

Lars Schwabe, University of
Rostock, Germany

Szymon Leski, Nencki Institute of
Experimental Biology, Poland
Gabriel Kreiman, Children’s Hospital,
USA

*Correspondence:

Ethan M. Meyers, Department of
Brain and Cognitive Sciences,
McGovern Institute, Massachusetts
Institute of Technology, Building
46-5155, 77 Mass Ave., Cambridge,
MA 02139, USA.

e-mail: emeyers@mit.edu

Population decoding is a powerful way to analyze neural data, however, currently only
a small percentage of systems neuroscience researchers use this method. In order to
increase the use of population decoding, we have created the Neural Decoding Toolbox
(NDT) which is a Matlab package that makes it easy to apply population decoding analyses
to neural activity. The design of the toolbox revolves around four abstract object classes
which enables users to interchange particular modules in order to try different analyses
while keeping the rest of the processing stream intact. The toolbox is capable of analyzing
data from many different types of recording modalities, and we give examples of how it
can be used to decode basic visual information from neural spiking activity and how it
can be used to examine how invariant the activity of a neural population is to stimulus
transformations. Overall this toolbox will make it much easier for neuroscientists to
apply population decoding analyses to their data, which should help increase the pace
of discovery in neuroscience.

Keywords: neural decoding, readout, multivariate pattern analysis, Matlab, data analysis, machine learning

INTRODUCTION

Population decoding is a data analysis method in which a com-
puter algorithm, called a “pattern classifier,” uses multivariate
patterns of activity to make predictions about which experimen-
tal conditions were present on particular trials (Bialek et al.,
1991; Oram et al., 1998; Dayan and Abbott, 2001; Sanger, 2003;
Brown et al., 2004; Quian Quiroga and Panzeri, 2009; Meyers and
Kreiman, 2012). For example, a classifier could use the pattern
of firing rates across a population of neurons to make predictions
about which stimulus was shown on each trial. By examining how
accurately the classifier can predict which experimental condi-
tions are present, one can assess how much information about
the experimental variables is in a given brain region, which is use-
ful for understanding the brain region’s function (Quian Quiroga
and Panzeri, 2009). Additionally, one can use population decod-
ing to examine more complex questions about how neural activity
codes information across time and whether information is con-
tained in abstract/invariant format (Hung et al., 2005; Meyers
et al., 2008, 2012; Crowe et al., 2010). Because it is difficult to
address these more complex questions using the most common
data analysis methods, increasing the use of population decoding
methods should lead to deeper insights and should help speed up
the pace of discovery in neuroscience.

Currently population decoding is widely used in brain-
computer interfaces (Schwartz et al., 2001; Donoghue, 2002;
Nicolelis, 2003) and to analyze fMRI data (Detre et al., 2006;
Haynes and Rees, 2006; O’Toole et al., 2007; Mur et al., 2009;
Pereira et al., 2009; Tong and Pratte, 2012), however, it is still
infrequently used when analyzing electrophysiology data from
most neural system. One likely reason that population decoding
methods are not widely used is due to the fact that running a
decoding analysis requires a fair amount of knowledge of machine
learning and computer programming. In order to make it eas-
ier for neuroscientists to apply population decoding analyzes

Frontiers in Neuroinformatics

www.frontiersin.org

to their data, we have created the Neural Decoding Toolbox
(NDT). The toolbox is implemented in Matlab, a language that
is widely used by neuroscientists, and is designed around a set
of abstract object classes that allow one to extend its function-
ality. The toolbox can be applied to data from many different
types of recording modalities (e.g., neural spiking data, local field
potentials, magneto/electro-encephalographic signals, etc.), and
the only requirement is that an experiment has been run in which
the same experimental trials were repeated a few times and that
data is available from multiple recording sites'. Using the objects
provided by the toolbox, one can easily compare neural repre-
sentations across time and across stimulus transformations which
allows one to gain deeper insights into how information is coded
in neural activity. Below we describe the population decoding
process in more detail, outline the structure of the toolbox, and
we give some examples of how it can be used to explore questions
related to neural representations.

BASICS OF PATTERN CLASSIFICATION

As described briefly above, a pattern classifier is an algorithm
that takes multivariate data points, and attempts to predict what
experimental condition was present when each data point was
recorded (Vapnik, 1999; Poggio and Smale, 2003). In order for

IThe number of times that each condition needs to be presented (and the
number of sites that need to be recorded) depend on the type of data being
analyzed. For neural spiking activity, we have found we can get meaning-
ful results with a little as three repeated trials of each condition, and with
recordings from as few as 40 neurons, although to get more reliable results
we recommend at least eight repetitions of each experimental condition, and
at least 100 recorded neurons.

2The toolbox does not require that the data from the multiple sites was
recorded simultaneously, which makes it particularly well suited for ana-
lyzing electrophysiology data given that most electrophysiology experiments
currently only record from a small number of neurons at a time.

May 2013 | Volume 7 | Article 8 | 1

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00008/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=EthanMeyers&UID=64060
mailto:emeyers@mit.edu
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

the classifier to be able to make these predictions, a two-step
process is typically used (Duda et al., 2001). In the first “train-
ing step,” the classifier is given a subset of the data called the
“training set,” which contains examples of patterns of activity
from a number of trials, and a set of labels that list the exper-
imental condition that was present on each of these trials. The
classifier algorithm then “learns” a relationship between these
patterns of neural activity and the experimental conditions such
that the classifier can make predictions about which experimen-
tal condition is present given a new pattern of neural activity.
In the second “test” step, the ability of the classifier to make
correct predictions is assessed. This is done by having the clas-
sifier make predictions about experimental conditions using data
that was not included in the training set, and then assessing how
accurate these predictions are by comparing them to the actual
experimental conditions that were present when the experiment
was originally run. To gain robust estimates of the classification
accuracy, a cross-validation procedure is often used in which a
dataset is divided into k different splits, and the classifier is trained
using data from k — 1 of these splits, and tested on data from the
remaining split; this procedure is repeated k times using a differ-
ent test split each time, which generates k different estimates of
the classification accuracy, and the final classification accuracy is
the average of these results.

THE DESIGN OF THE NEURAL DECODING TOOLBOX

In order to implement the classification procedure in a flexible
way, the NDT is designed around four abstract object classes that
each have a particular role in the decoding procedure. The four
object types are:

(1) Datasources. These objects generate training and test splits
of data. Datasource objects must have a method get_data
that returns the training and test splits of data and labels.

(2) Feature-preprocessors. These objects learn preprocessing
parameters from the training data, and apply preprocessing
to the training and test data (prior to the data being sent
to the classifier). Feature-preprocessor objects must have a
set_properties_with_training data method
that takes training data and labels, sets the preprocessing
parameters based on the training data, and returns the
preprocessed training data. These objects must also have
a preprocess_test_data method that takes the
test data and applies processing to it, and a method
get_current_info_to_save which allows the
user to save extra information about the preprocessing
parametersS.

(3) Classifiers. These objects build a classification function from
the training data, and make predictions on the test data.
Classifier objects must have a train method that takes
the training data and labels and learns parameters from
them, and a test method, that takes test data and makes
predictions about which classes the data points belongs to.

(4) Cross-validators. These objects run a cross-validation loop
which involves retrieving data from the datasource, applying

31f there is no useful preprocessing information that should be saved, then this
method should just return an empty matrix.

Frontiers in Neuroinformatics

www.frontiersin.org

preprocessing to the data, training and testing a classifier, and
calculating measures of decoding accuracy. Cross-validator
objects must have a method run_cv_decoding which
returns decoding measures from running a cross-validation
procedure using specified preprocessors, a classifier and a
datasource object.

Figurel illustrates how the datasource, feature-
preprocessors, and classifier interact within cross-validator’s
run_cv_decoding method, and Figure A1 gives pseudo-code
outlining their interactions.

By defining clear interfaces for these four abstract object classes
one can flexibly exchange particular parts of the decoding proce-
dure in order to try different analyses and to extend the toolbox’s
functionality. For example, one can easily try different pattern
classification algorithms by creating classifier objects that have
train and test methods. By running separate analyses using
different classifiers one can then assess whether the decoding
results are dependent on the particular classifier that is used
(Heller et al., 1995; Zhang et al., 1998; Meyers and Kreiman,
2012). The first release of the NDT (version 1.0) comes with two
different datasource objects, three feature-preprocessors, three
classifiers, one cross-validator, and a number of helper tools (i.e.,
useful additional functions and objects) that allow one to easily
plot results and format the data (see Figure 2). In the future, the
toolbox might be expanded to include additional objects.

DATA FORMATS
In order to use the NDT, we have defined two data for-
mats, called raster-format, and binned-format. For most exper-
iments, researchers should start by putting data into raster-
format (Figure3). Data that is in raster-format contains
three variables: raster data, raster_ labels, and
raster_site_info, and data from each site is saved in a
separate file that contains these variables (by site we mean data
from one functional unit of interest such as one neuron’s spiking
activity, one LFP channel, one EEG channel, etc.). The variable
raster_data is a matrix where each row corresponds to data
from one trial, and each column corresponds to data from one
time point. The variable raster_labels is a structure where
each field contains a cell array that has the labels that indi-
cate which experimental conditions were present on each trial
(thus each cell array in raster_labels has as many entries
as there are rows in the raster_data matrix)* Finally, the
raster_site_info structure contains any additional infor-
mation about the sites that one wants to store. For example,
one could include information about the date that each site was
recorded, what brain region a site came from, etc. This informa-
tion could be used in the decoding procedure to include only sites
that meet particular criteria.

To be able to run a decoding analysis using the NDT, one must
convert data into binned-format, which is typically done using the
function create_binned data_from raster_data.

4The variable raster_ labels is defined as a structure to allow one to
decode multiple types of information from the same data; see ’Examples of
using the NDT” below.

May 2013 | Volume 7 | Article 8 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

binned_data

For each resample run

binned_labels.specific_labels

~ |

number_CV_splits
Datasource.get_data

:

training and test data and labels from all

For each cross-validation split

S
~~

training data
one split

3 l

Feature_preprocessors.
set_properties_with_training_data

J

training labels
one split

cross-validation splits

;

test data
one split

.«

Feature_preprocessors.
preprocess_test_data

|

training data test data
preprocesssed preprocesssed
5 ! 6 |
Classifier.train —_— Classifier.test
predicted test labels
labels one split
|- _ |
o~

End
End

FIGURE 1 | An outline of how the datasource (DS),
feature-preprocessors (FP), and classifier (CL) interact within the
standard resample CV object’s run_cv_decoding method. Prior
to calling the cross-validator's run_decoding method, a datasource object
must be created that takes binned_data, specific binned_labels, and
the number of cross-valdations splits as inputs (step 1); (a classifier and
feature preprocessor objects must also be created and passed to the CV
object). The standard_resample_CV's run_cv_decoding method
contains two major loops, the first loop calls the datasource's get_data
method to generate all the training and test cross-validation data splits
(step 2), while the second loop runs through each cross-validation split and
assesses the decoding accuracy based on the data in each split (steps
3-6) as follows: First the training data and labels are passed to the feature
preprocessor objects (step 3) which preprocesses the training data and
learns the parameters necessary to preprocess the test data. The test

Compare to get decoding accuracy

data is then preprocessed using these learned parameters (step 4). The
preprocessed training data along with the labels are passed to the
classifier object which learns the relationship between the training data
and the labels (step 5). The test data is then passed to the trained
classifier, which makes predictions about what experimental conditions
were present using this data (step 6). The predictions of the classifier are
compared to the actual experimental conditions that were present to
determine whether there is a reliable relationship between the data and
particular experimental conditions (step 7). The whole process is repeated
a number of times (outer loop at step 2) using different data splits in order
to get a robust estimate of the decoding accuracy. In order to create the
full temporal-cross-training matrix, two additional loops are run inside the
inner loop that are involved in training and testing the classifier at all
possible time periods (these loops are not shown in this figure). Figure A1
gives pseudo-code describing this process.

Frontiers in Neuroinformatics

www.frontiersin.org

May 2013 | Volume 7 | Article 8 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers The neural decoding toolbox

Datasources

1. basic DS: Implements the basic functions of a datasource, and also has some additionally
functionality such as the ability to use create pseudo-populations or use
simultaneously recorded data.

2. generalization DS: Allows a user to train a classifier on one set of labels and then test the
classifier on a different (related) set of labels (i.e,. to perform a generalization analysis).
This functionality is useful for testing whether a neural population is invariant to
particular transformations.

Feature-preprocessors

1. zscore normalize FP: Z-score normalizes each feature's activity (over all trials), so that
features with higher levels of activity do not dominate the decoding procedure.

2. select pvalue significant features FP: Reduces the dimensionality of the data by only
selecting features that are significantly modulated by the labels, as determined by an
ANOVA.

3. select or exclude top k features FP: Reduces the dimensionality of the data by either
using only the k most selective features, or by excluding the k most selective features
based on an ANOVA.

Classifiers

1. max_correlation coefficient CL: A classifier that creates a mean vector for every class that is
the average of the training data for each class, and makes predictions by choosing the
class that has the maximum correlation coefficient between a test point and each mean-
class vector.

2. poisson_naive bayes CL: A Poisson naive Bayes classifier. Note: this classifier requires that
the binned-data is loaded as spike counts rather than firing rates.

3. libsvm CL: A support vector machine classifier that uses the LIBSVM software. Note that the
LIBSVM software (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) must be installed in order
to use this classifier).

Cross-validators

1. standard resample CV: This object implements the main functionality of a cross-validator as
shown in figure 1. The results returned by this cross-validator include zero-one loss
results, mutual information, confusion matrices, and also several other measures of
decoding accuracy when a classifier that returns decision values is used.

Tools

1. create binned data from raster data: A function that converts data in raster-format to
data in binned-format.

2. find sites with k label repetitions: A function that finds all sites that have at least k
repetitions of each label. This is useful when determining how many cross-validation
splits to use.

3. plot standard results object: An object that allows one to easily plot the results returned by
the standard resample CV.run cv_decoding method.

4. plot standard results TCT object: A object that allows one to examine whether information is
contained in a static or dynamic code based on results returned by the
standard resample CV.run cv_decoding method.

5.log code object: An object that logs the code that has been run so one can recreate
the results from particular analyses.

6.pvalue object: An object that helps one determine when the decoding accuracies are higher
than those expected by chance.

FIGURE 2 | A list of the datasource, classifier, feature-preprocessor, cross-validator objects and helper tools that come with version 1.0 of the NDT.

Frontiers in Neuroinformatics www.frontiersin.org May 2013 | Volume 7 | Article 8 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

A raster_data
»\'\((\e\ »\‘\«\e’)’ »(\«\e’b »\'\((\e 3 »"\((\ec) »\'\((\eb

Trial 1 0 0 1 0 0 0
Trial 2 0 0 0 1 0 0
Trial 3 0 1 0 0 0 1
Trial 4 0 0 1 0 0 0
Trial 5 0 0 0 0 0 0

C

raster_site_info

.session_ID =12
recording_channel =1
.brain_area_name= ‘1T’

FIGURE 3 | An illustration showing the three raster-format variables.
(A) raster_data is a [numberof-trials x numberof-time-points] matrix
that contains the data from the neural recordings. Here we illustrate
spiking data where a one indicates that an action potential occurred
at a particular point in time, but this matrix could contain real values
such as EEG voltage recordings. (B) raster_labels is a structure
where each field in the structure contains a [numberof-trials x 1] cell
array of strings that indicates which experimental condition occurred
on each trial. Here we have two types of labels: .stimulus_ID
which indicates which image was shown on a particular trial, and
.stimulus_position which indicates where the stimulus was

B raster_labels

.stimulus_ID .stimulus_position
‘flower’ ‘middle’
‘face’ ‘upper’
veoueh' ‘upper’
eetieh’ ‘middle’
‘hand’ ‘lower’

D raster_data from one example site

50

100 A

150 1

200 A

Trials

250 -
300 -

350 A

400 A

100 200 300 400 500 600 700 800 900
Time (ms)

1000

shown on the screen. (C) raster_site_info contains any additional
useful information about the recorded site. Here we include which
recording session the data comes from, which channel was used for
the recoding, and the brain area where the recording was made. (D)
An example of the raster_data from one site from the
Zhang-Desimone seven object dataset created using the function
imagesc (~raster_data); colormap gray. Spikes are indicated by
black marks. Files in rasterformat need to be converted into
binned-format before they can be used for decoding, which is
typically done using the tool create_binned_data_from_
raster_data.

Data that is in binned-format is similar to raster-format, in that
in contains three variables, which are named binned_data,
binned_labels, and binned_site_info. The variables
binned_data and binned_labels are cell arrays where
each entry in the cell array contains information from one of
the raster-format sites, and binned_site_info contains
aggregated site information from all the raster_site_info
variables. The one difference is that binned_data generally
contains information at a lower temporal resolution compared
to raster_data (i.e., the matrix in each cell array entry that
correspond to data from one site generally has few columns),
which allows data from all the sites to be stored in a single cell
array. More information about these formats and about the

Frontiers in Neuroinformatics

www.frontiersin.org

objects that come with the NDT can be found on the website
www.readout.info’.

EXAMPLES OF USING THE NDT

To illustrate some of the functionality of the NDT, we will use sin-
gle unit recordings from macaque inferior temporal cortex (IT)
that were collected by Ying Zhang in Robert Desimone’s lab at
MIT. The data come from an experiment in which a monkey
viewed a fixation point for 500 ms and then viewed a visual image

Note that the extension of the domain of the website is “info” (so a “com”,
“org” or any other extension should not be included when entering this URL
in a web browser).

May 2013 | Volume 7 | Article 8| 5

www.readout.info
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

for 500 ms. On each trial, one of seven different images was shown
(car, couch, face, kiwi, flower, guitar, and hand), and each image
was presented at one of three possible locations (upper, middle,
lower)®. These 21 different stimulus conditions were repeated at
least 19 times (Zhang et al., 2011). In each recording session,
data from 4 to 11 neurons were simultaneously recorded; thus
to do an analyses over a larger population of neurons requires
the creation of pseudo-populations (i.e., populations of neurons
that were recorded separately but treated as if they were recorded
simultaneously).

For the purpose of these examples, will assume that the
data from each neuron is in raster-format, and that these
raster-format files are stored in the directory ZD_7object_
raster_data/. We will also assume that information about
which object was shown on each trial is in a structure
called raster_labels.stimulus_ID, information about
the position of where the stimulus was shown is in a
structure called raster_labels.stimulus_position,
and that there is an additional variable raster_labels.
combined_ID_position that contains the combined stimu-
lus and position information (e.g., “car_upper”). The data used in
these examples can be downloaded from www.readout.info and
there are also more detailed tutorials on the website.

DECODING BASIC STIMULUS INFORMATION

For our first example analysis, we will decode which of the
seven objects was shown, ignoring the position of where the
object was presented. To do this we start by converting data
from raster-format into binned-format using the function
create_binned data_from raster_data. The first
argument of this function is the name of the directory where the
raster-format files are stored, the second argument is a prefix
for the saved binned-format file name, the third argument is
the bin size over which the data should be averaged, and the
fourth argument is the sampling interval over which to calculate
these averages. In this example we will create binned data that
contains the average firing rates in 150 ms bins that are sampled
at 50 ms intervals, and we will save the results in a file called
Binned_7object_data_150ms_bins_50ms_sampled.
mat. To do this we run the command:

1 binned_file_name = create_binned_data_
from_raster_data(’'ZD_7object_raster_

data/’, ’'Binned_7object_data’, 150, 50);

Next we create a basic_DS datasource, which is a datasource
that has the ability to create pseudo-populations. The first argu-
ment to basic_DS is the name of the file that has the data in
binned-format, the second argument is the name of the specific
binned_labels that should be used for the decoding, and the
third argument gives the number of cross-validation splits that
should be used. When creating this datasource, we will specify

The experiment also contained 3 object trials and the monkey’s attention
was manipulated, however for the purpose of illustrating the usefulness of the
toolbox, we are only using data from single object trials.

Frontiers in Neuroinformatics

www.frontiersin.org

that 20 cross-validation data splits should be used which corre-
sponds to the training the classifier on 19 splits and testing the
classifier on the remaining split. We will also create a maximum-
correlation-coefficient classifier that will be trained and tested on
the data generated by the datasource, and a cell array that con-
tains a feature-preprocessor object that will z-score normalize the
data so that neurons with higher firing rates will not have a larger
influence on the classification procedure’. These steps can be done
using the commands:

2 ds = basic_DS(binned_file_name,
‘stimulus_ID’, 20);

3 ¢l = max_correlation_coefficient_CL;

4 fps{l} = zscore_normalize_ FP;

The final step in the decoding procedure is to create a cross-
validator object, and run the decoding procedure using this
object. We will use the standard _resample_CV object,
which creates robust results by running the decoding procedure
multiple times with different data in the training and test splits,
and then averaging the decoding accuracies from these different
“resample runs” together® (see Figure 1). This can be done using
the commands:

5 cv = standard_resample CV(ds, cl, fps);
6 DECODING_RESULTS = cv.run_cv_decoding;
7 save(’basic_results’, 'DECODING_RESULTS’)

Once the decoding procedure has been run, we can plot the
results using the plot_standard_results_object. We
can also add a line at 500 ms indicating the time when the
stimulus was shown.

8 plot_obj = plot_standard_results_object
({'basic_results'});

9 plot_obj.significant_event_times =

10 plot_obj.plot_results;

500;

The results from this analysis are shown in Figure4A. As
can be seen, the decoding accuracy is at chance prior to the
onset of the stimulus (since the monkey is not psychic), how-
ever, shortly after the stimulus is shown, we are able to decode
which object was presented with a peak classification accuracy of
around 90%. Different types of results such as normalized rank
results, or mutual information can also be plotted by changing
the plot_obj.result_type_to_plot field, and there are
a number of other properties that can also be modified to change
the appearance of the figure.

We can also examine whether information is coded by a
dynamic population code (i.e., do different patterns of neural
activity code the same information at different latencies in the

7 A preprocessing pipeline can be built by creating multiple feature preproces-
sors and by placing them in a cell array in the desired order.

8The parameter cv.num_resample_runs determines how resampling
runs to use (the default value is 50).

May 2013 | Volume 7 | Article 8| 6

www.readout.info
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

A B
Q0r
> 80
O 80+ a
© ©
S
= «n S H7°
V) E (U]
<L):) 60| — g 60
C o c
O 5ot g o) 50
o) +— =
© Lol c C | 140
O gl (@)
= © €=
v 30t) 30
a = 2
i) ©
W) OR>
o o O
T ——
0 100 200 300 400 500 600 700 800 900 125 225 325 425 525 625 725 825 925
Time (ms) Test time (ms)
C
Train Upper Train Middle Train Lower
> 100
@)
©
S
T)
[®)
()
< 60
c
RS,
o 4
@)
i=
v 20
%)
)
O
Upper Middle Lower Upper Middle Lower Upper Middle Lower
Test position Test position Test position
FIGURE 4 | Examples of results that can be obtained using the Neural seen in other studies (Meyers et al., 2008, 2012; Crowe et al., 2010;
Decoding Toolbox. (A) Basic classification accuracy results from decoding ~ Carlson et al., 2011; Isik et al., 2012). (C) Results showing that IT
which object was present using the Zhang-Desimone seven object populations are highly invariant to changes in the position of the stimulus.
dataset. As can be seen, prior to the onset of the stimulus (black vertical Each subplot shows the results from training the classifier using data from
line at 500 ms) the decoding accuracy is at chance (black horizontal line) objects shown at one position, and each bar shows the results from test
and it rises quickly after stimulus onset. (B) Results examining whether the classifier with data from either the same position or at a different
information is contained in a dynamic population code that are obtained by position (the cyan bar shows the results generated by the code in the
training the classifier at one time period (y-axis) and testing the classifier text). As can be seen, the best results are usually obtained when the
at a second time period (xaxis). The results here show there are some classifier is trained and tested with data from the same position, however,
dynamics to the population code, as can be seen by the fact that the even when the classifier is tested with data from a different position, the
some of the highest decoding accuracies occur along the diagonal of the results are well above chance (black horizontal line) showing that the
plot, however, overall there dynamics appear weak compared to those neural population represents objects similarly across different positions.

trial). Previous work showed that information in several brain
regions often is contained in a highly dynamic population code
(Meyers et al., 2008, 2012; Crowe et al., 2010; Carlson et al., 2011).
To test whether information is contained in a dynamic population
code, we can plot a temporal cross-training matrix (TCT plot)
using the plot_standard results_TCT_object as
follows:

11 plot_obj = plot_standard_results_TCT_
object (’'basic_results’);

Frontiers in Neuroinformatics

www.frontiersin.org

12 plot_obj.significant_event_times = 500;

13 plot_obj.plot_results;

The results from this plot are shown in Figure4B. As
can be seen, the information in IT has some slight dynamics
(e.g., training at 675 ms and testing at 875 ms leads to lower per-
formance than training and testing at 875 ms), however, overall
there is a lot of similarity between the patterns of neural activity
across time points in the trial.

May 2013 | Volume 7 | Article 8 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

EXAMINING POSITION INVARIANCE USING THE NDT

An important step in solving many tasks faced by intelligent
organisms involves creating abstract (or invariant) representa-
tions from complex input patterns. For example, in order to act
appropriately in social settings, it important to be able to recog-
nize individual people. However, the images of a particular person
that are projected on our retinas can be very different due to
the fact that the person might be at different distances from us,
in different lighting conditions, etc. Thus, at some level in our
brain, neural representations must be created that have abstracted
away all the details present in particular images to create invariant
representations that are useful for action.

A powerful feature of the NDT is that it can be used to test
whether a population of neurons has created representations that
are invariant to particular transformations. To test whether neural
activity is invariant to a transformation, one can train a classifier
under one set of conditions, and then test to see if the classifier
can generalize to a related set of conditions in which a particular
transformation has been applied. The generalization_DS
datasouce object is useful for this purpose.

To demonstrate how to use the NDT to do such a “general-
ization analysis,” we will analyze how invariant representations of
objects in the inferior temporal cortex are to translations in the
objects’ position. In particular, we will examine whether a classi-
fier that is trained using data that was recorded when images were
shown in an upper retinal location can discriminate between the
same objects when they are shown at the lower location. To do
this analysis, we start by creating binned-format data that con-
sists of firing rates averaged over a 400 ms bin starting 100 ms after
stimulus onset, and we create the same feature preprocessor and
classifier used in the previous example.

1 file_name = create_binned_data_from raster
_data(’'zD_7object_raster_data/’, ’'Binned_
7object_data’, 400, 400, 601, 1000);

2 ¢l = max_correlation_coefficient_CL;

3 fps{l} = zscore_normalize_ FP;

To test for position invariance, we use the combined position
and stimulus ID labels. Also, to use the generalization_DS
we need to create a cell array that lists which label names the clas-
sifier should be trained on, and a cell array that lists the label
names the classifier should be tested on. Each cell entry in these
“training_label_names,” and “test_label_names”
cell arrays corresponds to the labels that belong for one class (i.e.,
training_label_names{1} are thelabels that the classifier
should be trained on for class 1, and test_label names{1}
are the names that the classifier should predict in order for it to be
counted as a correct prediction). We create these cell arrays con-
taining the appropriate labels for training at the upper position
and testing at the lower position as follows:

4 id_names = {’car’, ’‘couch’, ’'face’,
'kiwi’, ’‘flower’, ’‘guitar’, ’‘hand’};

5 for iID = 1:7

6 training names{iID} = {[id_names{iID}
'_upper’1};

Frontiers in Neuroinformatics

www.frontiersin.org

7 test_names{iID} {[id_names{iID}
'_lower’1};

8 end

Now that have we have created cell arrays that list
the appropriate training and test labels, we can create the
generalization_DS datasouce, which has a constructor that
takes the same first three arguments as the basic_DS data-
source, and takes the training and test label cell arrays as the last
two argumentsg.

9 ds =
"combined_ID_position’,
_names, test_names) ;

generalization_DS(file_name,
18, training

Finally, we can again use the standard_resample_CV
cross-validator to run this decoding analysis.

10 cv = standard_resample_CV (ds,
11 DECODING_RESULTS =

cl, fps);
cv.run_cv_decoding;

Figure 4C shows the results from training at the upper posi-
tion and testing at lower position (cyan bar), as well as all the
other combinations of results for training at one location and
testing either at the same or a different location (blue bars), and
Figure A2 shows how to create the full figure. As can be seen,
slightly higher decoding accuracies are obtained when the clas-
sifier is trained and tested at the exact same location, however,
overall very similar performance is also obtained when training
and testing at different locations. This indicates that the neural
representation in IT is highly invariant to the exact position that
a stimulus is shown.

COMPARISONS TO OTHER DECODING TOOLBOXES

At the time of writing this paper, we are aware of two other
software packages, the princeton-mvpa-toolbox and PyMVPA,
that can also perform decoding analyses. The princeton-mvpa-
toolbox is a Matlab toolbox that is designed to analyze fMRI
data, and has several useful functions for that purpose such as
the ability to import fMRI data, map selective voxels back to their
anatomical coordinates, and to perform a search light analysis
(Detre et al., 2006). Thus if one is interested in using Matlab to
analyze fMRI data, we recommend using this toolbox over the
NDT. However, because the princeton-mvpa-toolbox is designed
for fMRI data analyses, it is not easy to extend it to analyze other
types of neural data that have a temporal component to them
(such as neural spiking data, and electroencephalography record-
ings), thus the NDT is more useful for analyzing such data. The
PyMVPA software package is a set of decoding modules written

9The training and test label names are cell arrays in order to allow one
to set multiple different labels as belonging to the same class. For exam-
ple, if we wanted to train the classifier using all data from the upper and
middle locations we could define use training_names{1} = {’'car_
upper’, ‘car_middle’}; training names{2} = {’couch_
upper’, ‘couch_middle’};,..., training names{7} =
{"hand_upper’, 'hand_middle’}.

May 2013 | Volume 7 | Article 8 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

to do decoding analyses in Python. While its most extensive
functionality is also geared toward fMRI decoding analyses (it
can perform all the functions available in the princeton-mvpa-
toolbox), the PyYMVPA package also has the ability to handle time
series data, and thus it can be used to analyze electrophysiology
as well (Hanke et al., 2009). Using Python to analyze data has
some advantages over using Matlab including the fact that Python
is free and it is a more easily extendable and better organized
programming language. However, currently most neuroscience
researchers use Matlab as their primary data analysis language,
thus we believe the NDT will be valuable to a large number of
researchers who are already familiar with Matlab and want to be
able to easily run decoding analyses on their data. Additionally,
the NDT supports pseudo-populations, allows one to create TCT
plots, and allows one to easily do generalization analyses, which
are features that are not currently built in to the PYMVPA tool-
box. Given that most electrophysiology studies still collect data
from only a few neurons at a time, having the ability to create
pseudo-populations is critical for being able to analyze most elec-
trophysiology data. Also, the ability to examine neural population
coding across time, and the ability to test whether a neural repre-
sentation is invariant/abstract from specific stimulus conditions
are some of the greatest advantages that population decoding
methods have over conventional single site analyses. Thus we
believe the NDT is a useful addition to the other decoding tools
that are currently available.

CONCLUSION
In this paper we have described the organization of the NDT.
We also have given examples of how the toolbox can be used to
decode basic information, and how it can be used to assess more
complex questions such as whether information is contained in
a dynamic population code and whether information is repre-
sented in an abstract/invariant format. While the examples in
this paper have focused on analyzing neural spiking activity from
experiments that explored questions related to vision, we have
also used the toolbox to decode magnetoencephalography signals,
local field potentials, and computational model data (Meyers
et al., 2010; Isik et al., 2012), so we believe the toolbox should be
useful for analyzing a variety of signals and from experiments that
analyze questions related to a variety of perceptual (and abstract)
modalities.

While we have highlighted some of the key features of the
toolbox in this paper, there are several additional properties
and functions that we did not describe in detail. For example,

REFERENCES

Anderson, B., Sanderson, M. I,
and Sheinberg, D. L. (2007).

Brown, E. N., Kass, R. E., and Mitra,
P. P. (2004). Multiple neural spike
train data analysis: state-of-the-art

if one has a dataset where all the sites were recorded simul-
taneously, it possible to easily examine whether there is more
information in the interaction between neurons by compar-
ing the results when the ds.create_simultaneously_
recorded_population property in the basic_DS or
generalization_DS is set to different values (Franco et al.,
2004; Latham and Nirenberg, 2005; Anderson et al., 2007). We
refer the reader to the website readout.info in order to learn more
about all the features available in toolbox. Additionally, because
the toolbox is designed in a modular manner it is easy to expand
its functionality, and we aim to continue to add new features
in the future. We also hope that the data formats we defined
will be useful for sharing data and will enable the development
of new data analysis tools that can all be easily applied to the
same data.

The code for the NDT is open source and free to use (released
under the GPL 3 license). We do, however, ask that if the toolbox is
used in a publication, that the data that has been used in the pub-
lication is made available within 5 years after the publication since
such sharing of data helps in the development of new data analysis
tools and that could potentially lead to new discoveries (Teeters
et al., 2008). Population decoding analyses have several advan-
tages over other data analysis methods (particularly in terms of
the ability to assess abstract information and dynamic coding).
It is our hope that by releasing this toolbox, population decod-
ing methods will be more widely used and that this will lead to
deeper insights into the neural processing that underlies complex
behaviors.

ACKNOWLEDGMENTS

We thank Robert Desimone and Ying Zhang for contributing
the data used in this paper, Joel Leibo and Leyla Isik for test-
ing the toolbox and their comments on the manuscript, and
Tomaso Poggio for his continual guidance. This report describes
research done at the Center for Biological and Computational
Learning, which is in the McGovern Institute for Brain Research
at MIT, as well as in the Department of Brain and Cognitive
Sciences, and which is affiliated with the Computer Sciences
and Artificial Intelligence Laboratory (CSAIL). This research was
sponsored by grants from DARPA (IPTO and DSO), National
Science Foundation (NSF-0640097, NSF-0827427), AFSOR-
THRL (FA8650-05-C-7262). Additional support was provided by:
Adobe, Honda Research Institute USA, King Abdullah University
Science and Technology grant to B. DeVore, NEC, Sony and
especially by the Eugene McDermott Foundation.

sequences of population activ-
ity patterns dynamically encode
task-critical ~ spatial information

Detre, G., Polyn, S. M., Moore, C,,
Natu, V., Singer, B., Cohen, J,
et al. (2006). “The Multi-Voxel

Joint decoding of visual stimuli
by IT neurons’ spike counts is
not improved by simultaneous
recording. Exp. Brain Res. 176,
1-11.

Bialek, W., Rieke, F, De Ruyter van
Steveninck, R. R., and Warland,
D. (1991). Reading a neural code.
Science 252, 1854-1857.

Frontiers in Neuroinformatics

and future challenges. Nat. Neurosci.
7, 456—461.

Carlson, T. A., Hogendoorn, H., Kanai,
R., Mesik, J., and Turret, J. (2011).
High temporal resolution decod-
ing of object position and category.

J. Vis. 11, 1-17.
Crowe, D. A., Averbeck, B. B., and
Chafee, M. V. (2010). Rapid

in parietal cortex. J. Neurosci. 30,
11640-11653.

Dayan, P, and Abbott, L. E
(2001). Theoretical Neuroscience?:
Computational and Mathematical
Modeling of Neural Systems.
Cambridge, MA: Massachusetts
Institute of Technology
Press.

www.frontiersin.org

Pattern Analysis (MVPA) toolbox,”
in Poster Presented at the Annual
Meeting of the Organization for
Human Brain Mapping, (Florence,
Italy).

Donoghue, J. P. (2002). Connecting
cortex to machines: recent advances
in brain interfaces. Nat. Neurosci.
5(Suppl.), 1085-1088.

May 2013 | Volume 7 | Article 8| 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers

The neural decoding toolbox

Duda, R. O., Hart, P. E., and Stork, D. G.
(2001). Pattern Classification. Vol. 2.
New York, NY: Wiley.

Franco, L., Rolls, E. T., Aggelopoulos,
N. C., and Treves, A. (2004). The
use of decoding to analyze the
contribution to the information of
the correlations between the fir-
ing of simultaneously recorded neu-
rons. Exp. Brain Res. 155, 370-384.

Hanke, M., Halchenko, Y. O,
Sederberg, P. B., Hanson, S. J,
Haxby, J. V., and Pollmann, S.
(2009). PyMVPA: A python toolbox
for multivariate pattern analysis
of fMRI data. Neuroinformatics 7,
37-53.

Haynes, J.-D., and Rees, G. (2006).
Decoding mental states from brain
activity in humans. Nat. Rev.
Neurosci. 7, 523-534.

Heller, J., Hertz, J. A, Kjer, T. W,
and Richmond, B. J. (1995).
Information flow and temporal
coding in primate pattern vision.
J. Comput. Neurosci. 2, 175-193.

Hung, C. P,, Kreiman, G., Poggio, T.,
and DiCarlo, J. J. (2005). Fast read-
out of object identity from macaque
inferior temporal cortex. Science
310, 863-866.

Isik, L., Meyers, E. M., Leibo, J.
Z., and Poggio, T. (2012).
“Preliminary ~ MEG decoding
results, MIT-CSAIL-TR-2012-
010,CBCL-307, Massachusetts
Institute of Technology, Cambridge,
MA: Cambridge.

Latham, P. E., and Nirenberg, S. (2005).
Synergy, redundancy, and indepen-
dence in population codes, revis-
ited. J. Neurosci. 25, 5195-5206.

Frontiers in Neuroinformatics

Meyers, E., Embark, H., Freiwald, W.,
Serre, T., Kreiman, G., and Poggio,
T. (2010). “Examining high level
neural representations of cluttered
scenes,” MIT-CSAIL-TR-2010-034 /
CBCL-289, Massachusetts Institute
of Technology, Cambridge, MA:

Cambridge.
Meyers, E. M., Qi, X.-L. L., and
Constantinidis, C. (2012).

Incorporation of new informa-
tion into prefrontal cortical activity
after learning working memory
tasks. Proc. Natl. Acad. Sci. U.S.A.
109, 4651-4656.

Meyers, E. M., Freedman, D.],
Kreiman, G., Miller, E. K., and
Poggio, T. (2008). Dynamic
population coding of category
information in inferior tem-
poral and prefrontal cortex.

J. Neurophysiol. 100, 1407—1419.

Meyers, E. M., and Kreiman, G. (2012).
“Tutorial on pattern classification in
cell recording,” in Visual Population
Codes, eds N. Kriegeskorte and G.
Kreiman (Boston, MA: MIT Press),
517-538.

Mur, M., Bandettini, P. A.,, and
Kriegeskorte, N. (2009). Revealing

representational content with
pattern-information fMRI-an
introductory guide. Soc. Cogn.

Affect. Neurosci. 4,101-109.

Nicolelis, M. A. L. (2003). Brain-
machine interfaces to restore
motor function and probe neural
circuits. Nat. Rev. Neurosci. 4,
417-422.

O’Toole, A. J., Jiang, E, Abdi, H.,
Pénard, N., Dunlop, J. P, and
Parent, M. A. (2007). Theoretical,

statistical, and practical perspec-
tives on pattern-based classification
approaches to the analysis of func-
tional neuroimaging data. J. Cogn.
Neurosci. 19, 1735-1752.

Oram, M. W, Foldidk, P.,, Perrett,
D. I, and Sengpiel, E (1998).
The “Ideal Homunculus”: decoding
neural population signals. Trends
Neurosci. 21, 259-265.

Pereira, F.,, Mitchell, T., and Botvinick,
M. (2009). Machine learning
classifiers and fMRI: a tutorial
overview. Neuroimage 45(Suppl. 1),
$199-5209.

Poggio, T., and Smale, S. (2003). The
mathematics of learning: dealing
with data. Notices Am. Math. Soc. 50,
537-544.

Quian Quiroga, R., and Panzeri,
S. (2009). Extracting
tion from neuronal populations:
information theory and decoding
approaches. Nat. Rev. Neurosci. 10,
173-185.

Sanger, T. D. (2003). Neural popula-
tion codes. Curr. Opin. Neurobiol.
13, 238-249.

Schwartz, A. B., Taylor, D. M., and
Tillery, S. I (2001). Extraction
algorithms for cortical control
of arm prosthetics. Curr. Opin.
Neurobiol. 11, 701-707.

Teeters, J. L., Harris, K. D., Millman, K.
J., Olshausen, B. A., and Sommer,
F T. (2008). Data sharing for
computational neuroscience.
Neuroinformatics 6, 47-55.

Tong, F, and Pratte, M. S. (2012).
Decoding patterns of human brain
activity. Annu. Rev. Psychol. 63,
483-509.

informa-

www.frontiersin.org

Vapnik, V. N. (1999). An overview
of statistical learning theory.
IEEE Trans. Neural Netw. 10,
988-999.

Zhang, K., Ginzburg, I., McNaughton,
B. L., and Sejnowski, T. J. (1998).
Interpreting popula-
tion activity by reconstruction:
unified framework with applica-
tion to hippocampal place cells.
J. Neurophysiol. 79, 1017-1044.

Zhang, Y., Meyers, E. M., Bichot,

neuronal

N. P, Serre, T, Poggio, T.
A., and Desimone, R. (2011).
Object decoding with atten-

tion in inferior temporal cortex.
Proc. Natl. Acad. Sci. US.A. 108,
8850-8855.

Conflict of Interest Statement: The
author that the
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

declares research

Received: 26 February 2013; accepted: 29
April 2013; published online: 22 May
2013.

Citation: Meyers EM (2013) The neural
decoding toolbox. Front. Neuroinform.
7:8. doi: 10.3389/fninf.2013.00008
Copyright © 2013 Meyers. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

May 2013 | Volume 7 | Article 8 | 10

http://dx.doi.org/10.3389/fninf.2013.00008
http://dx.doi.org/10.3389/fninf.2013.00008
http://dx.doi.org/10.3389/fninf.2013.00008
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers The neural decoding toolbox
APPENDIX

1 for k resample runs

2

3 % use the datasource to generate cross-validation training and test sets

4 [XTr_cv,YTr_cv, XTe_cv, YTe_cv] = the_datasource.get_data();

5

6 for each cross-validation-split iCV

7

8 % create variables for the data and labels in the current cross-validation split

9 XTr=XTr_cv{iCV}Y;, YTr=YTr_cv{iCV};, XTe=XTe_cv{iCV}; YTe=YTe_cv{iCV};

10

11 % learn FP parameters from XTr,and YTr, and apply to XTr and XTe (optional)

12 [feat_preprocess, XTr] = feat_preprocess.set_properties_with_training_data(XTr, YTr);

13 XTe = feat_proprocess.preprocess_test_data(XTe);

14

15 % train and test the classifier

16 the_classifier = the_classifier.train(XTr, YTr);

17 predicted_labels = the_classifier.test(XTe);

18

19 % compared predicted labels to actual labels, to get measures of decoding accuracy

20 num_correct_predictions =sum(((predicted_labels -YTe) == 0)); % for 0-1 loss

21

22 end

23 end
FIGURE A1 | An outline of how the datasource (DS), The accuracy of the classifier's predictions are assessed (line 20), and
feature-preprocessors (FP), and classifier (CL) interact within the this whole procedure can be repeated multiple times (line 1),
cross-validator (CV) object’s run_cv_decoding method. The generating new training and test splits (and potentially also
the_cross_validator.run_cv_decoding method works by first pseudo-populations) on each run. Note: XTr_cv and YTr_cv refer to
generating training and test cross-validation splits using the datasource the training data and labels from all cross-validation splits, and XTe_cv
the_datasource.get_data method (line 4). For each cross-validation and YTe_cv refer to the test data and labels from all cross-validation
split, feature-preprocessing is applied to the data (line 12), and a splits. Similarly, XTr, YTr, XTe, and YTe, refer to the training and test
classifier is trained and tested on this preprocessed data (lines 16-17). data and labels from one particular cross-validation split.

Frontiers in Neuroinformatics

www.frontiersin.org

May 2013 | Volume 7 | Article 8 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyers The neural decoding toolbox

% bin the data
binned_file_name = create_binned_data_from_raster_data('ZD_7object_raster_data/', ...
'Binned_7object_data', 400, 400, 601, 1000);

% create the classifier and feature-preprocessor
the_classifier = max_correlation_coefficient_CL;
the_feature_preprocessors{1} = zscore_normalize_FP;

% train and test the classifier at each location
mkdir position_invariance_results; % make a directory to save the results
num_cv_splits = 18;

id_names = {'car', 'couch', 'face', 'kiwi', 'flower', 'guitar', 'hand'};
pos_names = {'upper', 'middle', 'lower'};

for iTrainPos = 1:3
for iTestPos = 1:3

for iID = 1:7
training_names{iID} = {[id_names{iID} '_' pos_names{iTrainPos}]};
test_names{iID} = {[id_names{iID} '_' pos_names{iTestPos}]};

end

ds = generalization_DS(binned_file_name, 'combined_ID_position', ...
num_cv_splits, training_names, test_names);

the_cross_validator = standard_resample_CV(ds, the_classifier, ...
the_feature_preprocessors);

DECODING_RESULTS = the_cross_validator.run_cv_decoding;

save_file_name = ‘position_invariance_results/pos_inv_results_train_pos',
num2str(iTrainPos) '_test pos' num2str(iTestPos)];

save(save_file_name, 'DECODING_RESULTS'")

end
end

% plot the results
position_names = {'Upper’', ‘'Middle’', 'Lower'}

for iTrainPosition = 1:3
for iTestPosition = 1:3

load(['position_invariance_results/pos_inv_results_train_pos' ...
num2str(iTrainPosition) ' test pos' num2str(iTestPosition)]);

all_results(iTrainPosition, iTestPosition) = ...
DECODING_RESULTS.ZERO_ONE_LOSS_RESULTS.mean_decoding_results;
end

subplot(1, 3, iTrainPosition)
bar(all_results(iTrainPosition, :) .* 100);

title(['Train ' position_names{iTrainPosition}])

ylabel(‘Classification Accuracy');

set(gca, 'XTickLabel', position_names);

xlabel('Test position')

xLims = get(gca, 'XLim')

line([xLims], [1/7 1/7], 'color', [0 @ @]); % put line at chance accuracy

end

FIGURE A2 | Full code for training the classifier at one location and testing the classifier at either the same or a different location.

Frontiers in Neuroinformatics www.frontiersin.org May 2013 | Volume 7 | Article 8 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The neural decoding toolbox
	Introduction
	Basics of Pattern Classification
	The Design of the Neural Decoding Toolbox
	Data Formats
	Examples of using the NDT
	Decoding Basic Stimulus Information
	Examining Position Invariance using the NDT

	Comparisons to Other Decoding Toolboxes
	Conclusion
	Acknowledgments
	References
	Appendix

