
ORIGINAL RESEARCH ARTICLE
published: 02 October 2013

doi: 10.3389/fninf.2013.00019

A novel CPU/GPU simulation environment for large-scale
biologically realistic neural modeling
Roger V. Hoang1*, Devyani Tanna1, Laurence C. Jayet Bray1,2, Sergiu M. Dascalu1 and

Frederick C. Harris Jr.1

1 Brain Computation Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
2 Brain Computation Laboratory, Department of Bioengineering, George Mason University, Fairfax, VA, USA

Edited by:

Marc-Oliver Gewaltig, Ecole
Polytechnique Federale de
Lausanne, Switzerland

Reviewed by:

Robert C. Cannon, Textensor
Limited, UK
K. Jarrod Millman, University of
California at Berkeley, USA

*Correspondence:

Roger V. Hoang, Brain Computation
Laboratory, Department of
Computer Science and Engineering,
University of Nevada, Reno, Nevada
89557, USA
e-mail: rvhoang@gmail.com

Computational Neuroscience is an emerging field that provides unique opportunities to
study complex brain structures through realistic neural simulations. However, as biological
details are added to models, the execution time for the simulation becomes longer.
Graphics Processing Units (GPUs) are now being utilized to accelerate simulations due
to their ability to perform computations in parallel. As such, they have shown significant
improvement in execution time compared to Central Processing Units (CPUs). Most neural
simulators utilize either multiple CPUs or a single GPU for better performance, but still
show limitations in execution time when biological details are not sacrificed. Therefore, we
present a novel CPU/GPU simulation environment for large-scale biological networks, the
NeoCortical Simulator version 6 (NCS6). NCS6 is a free, open-source, parallelizable, and
scalable simulator, designed to run on clusters of multiple machines, potentially with high
performance computing devices in each of them. It has built-in leaky-integrate-and-fire
(LIF) and Izhikevich (IZH) neuron models, but users also have the capability to design
their own plug-in interface for different neuron types as desired. NCS6 is currently able
to simulate one million cells and 100 million synapses in quasi real time by distributing
data across eight machines with each having two video cards.

Keywords: neocortical simulator (NCS), CPU/GPU simulation, leaky integrate-and-fire neurons, izhikevich neurons,

biologically realistic, large-scale modeling

INTRODUCTION
Many different scales of experiments in neuroscience research
attempt to clarify the complex functions of the nervous system.
From the genetics of single molecules to the behavioral research
of cognitive neuroscience, studies lead to a better understand-
ing of neural networks, such as the brain. When in vivo and in
vitro experiments are impossible to perform due to the com-
plexity of structures, computational neuroscience provides new
opportunities. Its unique access to any brain region as well as
its different levels of abstraction allow biologically-realistic neural
simulations, and thus additional neuroscience findings. However,
neural simulations have always involved a trade-off between exe-
cution time and biophysical realism. Even as neuron models are
simplified and approximated, the neural regions of interest may
require an unreasonable amount of running time. To further
drive computational neuroscience research, computer scientists
and engineers have created more optimized simulation programs
and more advanced hardware architecture, respectively.

Biologically, most simulation environments already have built-
in spiking neuron models. These models, described as hybrid
systems, satisfy a set of differential equations that describe
the continuous evolution of several state variables and discrete
events (Brette and Goodman, 2012b). The well-known ones are
Hodgkin-Huxley (HH), Izhikevich (IZH), and leaky integrate-
and-fire (LIF) neuron models. The HH model quantifies the pro-
cess of spike generation with a set of four differential Equations

(Trappenberg, 2010), formalizing their measured findings of the
giant axon of a squid. This model uses the voltage dependence and
the dynamics of Sodium and Potassium channels, which captures
many biological details while losing computational efficiency. The
IZH model is a powerful engine, capable of replicating much of
the dynamics phenomena observed in neurons. It uses a math-
ematical formulation derived from the treatment of a neuron
as a dynamical system, resulting in a membrane voltage expres-
sion (Izhikevich, 2003). This is an intermediate model, which is
computationally efficient while still capturing a large variety of
response properties of real neurons. The LIF model is comprised
of a subthreshold leaky-integrate dynamic, a firing threshold, and
a reset mechanism, which gives an approximation of the sub-
threshold dynamics of the membrane potential with a simple
linear differential Equation (Trappenberg, 2010). It is beneficial
for analytic calculations and is efficient in numerical implemen-
tations. However, the approximation is not sufficient to include
most of the response patterns seen in real neurons.

Computationally, most simulators [e.g., NEURON (Carneval
and Hines, 2012), NEST (Diesmann and Eppler, 2012), GENESIS
(Bower and Beeman, 2012a,b), BRIAN (Brette and Goodman,
2012a)] were designed to run one or more of these models on
a single Central processing Unit (CPU). Over the years, they have
evolved to support simulations on multiple CPUs for extensibility
and higher performance. These enhancements, in combination
with parallel computing (Bower and Beeman, 1998; Migliore

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00019/abstract
http://community.frontiersin.org/people/RogerHoang/111113
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DevyaniTanna&UID=99668
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LaurenceJayet_Bray&UID=43483
http://community.frontiersin.org/people/SergiuDascalu/112887
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FrederickHarris&UID=22273
mailto:rvhoang@gmail.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

et al., 2006), have become a necessity to cope with the higher
computational and the communication demands of neuroap-
plications. Recently, a number of developers have investigated
the possibility of simulating spiking neural networks on a single
Graphical Processing Unit (GPU) (Bernhard and Keriven, 2005;
Fernandez et al., 2008; Fidjeland et al., 2009; Nageswaran et al.,
2009a,b; Tiesel and Maida, 2009; Bhuiyan et al., 2010; Fidjeland
and Shanahan, 2010; Han and Taha, 2010a,b; Hoffmann et al.,
2010; Mutch et al., 2010; Scorciono, 2010; Yudanov et al., 2010;
Nowotny, 2011; Ahmadi and Soleimani, 2011; Igarashi et al.,
2011; Thibeault et al., 2011; Wang et al., 2011) or on multiple
Graphics Processing Units (GPUs) (Brette and Goodman, 2012b).
All these current simulators have shown significant improvements
over their CPU only counterparts by integrating the utilization
of GPUs. However, these approaches have had limitations. Two
of the main limitations are that researchers either utilize an
Izhikevich neuron model while running the simulation on GPU,
or if they utilize more than one neuron model (e.g., HH and IZH)
their model focuses on small-scale networks. Additionally, they
are not capable of running simulations on heterogeneous cluster
of GPUs.

To reduce execution times without sacrificing biological
details, we have developed a new version of our brain simulator.
Here, we present a new CPU/GPU Simulation Environment for
Large-Scale Neural Modeling, called the NeoCortical Simulator
(NCS) version 6. Previous versions of NCS were designed to run
on a CPU or cluster of CPUs. Every version of NCS has imple-
mented a hybrid spiking neuron model. Sub-threshold dynamics
are determined by channels that follow the HH formalism. When
the voltage crosses a specified threshold value, the membrane
potential follows a user-specified spike shape pattern, similar
to an LIF neuron. This hybrid model is referred to as an LIF
model in the rest of this paper. For a detailed history of NCS
and related equations, please refer to our Brain Computation
Laboratory’s website: http://www.cse.unr.edu/brain/. In addition
to the hybrid LIF spiking neurons , NCS6 implements the simpli-
fied IZH Equations (Izhikevich, 2003) as a separate neuron type.
The Compute Unified Device Architecture (CUDA) by NVIDIA
(NVIDIA, 2013) provides an instruction set and tools to devel-
opers to work in a GPU environment. NCS utilizes CPUs and
CUDA-capable GPUs for simulation. Computationally, shared-
memory multiprocessor architectures and recent experiments
with clustered GPUs indicate that we will soon be able to sim-
ulate a million cells in real time without sacrificing biological
detail. In this manuscript, Section 2 explains how NCS has been
designed, Section 3.1 gives a validation of its implementation,
and Section 3.2 shows a representation of its high performance.
Furthermore, we provide a brief comparison between NCS and
other simulation environments in Section 3.4. In Section 4 we
conclude with a summary of the paper and our planned future
work.

DESIGN
SIMULATION COMPOSITION
At the detailed level, every simulation is comprised of four pri-
mary types of elements: neurons, synapses, stimuli, and reports.
Neurons represent the cell body and must report two values

at each time-step: the spiking state and the membrane voltage.
Synapses represent a unidirectional connection between a presy-
naptic neuron and a postsynaptic neuron. When the presynaptic
neuron fires, the synapse introduces a synaptic current into the
postsynaptic cell after some specified delay. Stimuli are connected
to a neuron and represent a type of external input, able to either
clamp the membrane voltage to some level or inject some amount
of current. Reports connect to a set of elements (e.g., cell group)
and are used to extract output information (e.g., voltage) from
those elements and generate the result to some arbitrary data sink.

While each component type has some required constraints, the
majority of the internal behavior is determined by the more spe-
cific subtype being simulated. For example, one neuron could be
specified to simulate a LIF neuron while another neuron could
be specified to simulate an IZH cell. The underlying equations
governing the behavior are completely different between the two,
but they can still be used within the same simulation. The only
requirements are that they each receive an external stimulation
and/or a synaptic current, and that they each report a firing state
and/or a voltage.

SIMULATION ENVIRONMENT AND DISTRIBUTION
To improve the simulation run times, NCS6 is designed to run
on clusters of multiple machines, potentially with different com-
puting devices in each computer. These devices include CUDA-
capable GPUs, and CPUs. Even within the same device class, the
computational power of different devices can be drastically differ-
ent. To better facilitate load-balancing, a relative computational
power rating is assigned to each device. The current method for
determining this quantity is to multiply the device’s clock rate by
the number of computational cores.

After determining the computational power of each device, a
cost estimate for each neuron is computed. Since the number of
synapses outnumbers the number of neurons and inputs by sev-
eral orders of magnitude, we use the number of synapses as the
cost estimation. Neurons are then sorted in decreasing order of
computational cost and distributed across all available computing
devices in the cluster so the device with the lowest computational
load (total computational cost/computational power) receives the
next neuron. Once all neurons in the simulation are distributed,
all contributing synapses and stimuli are also placed on the same
devices as their targeted neurons. With all elements distributed
across all devices, they are further partitioned by their subtypes,
each of which being managed by a plugin. Figure 1 shows an
example of a complete distribution.

DATA SCOPES AND STRUCTURES
Due to the distributed nature of NCS6, elements may be ref-
erenced in a number of scopes that mirror the environment’s
hierarchy: plugin, device, machine, and global (cluster). After the
distribution is finished, every element is assigned a zero-based ID
for each scope. IDs are padded between plugins so that data words
for structures allocated in other scopes are related to only one plu-
gin. In general, this means that IDs are padded to a factor of 32
(the number of bits in a word) between plugins. It is important to
note that IDs are only unique within the same element type; that
is, there can be both a neuron and a synapse with a global ID of 0.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 2

http://www.cse.unr.edu/brain/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

FIGURE 1 | An example of a complete distribution of simulation

elements in NCS6. Elements are distributed across devices based on the
devices’ computational power and their dependencies. Synapses and
inputs associated with a particular neuron are linked to it on a device.
Within devices, elements are organized into contiguous sections by type
that are simulated by plugins of their specific type.

Depending on which elements need access to other elements,
certain key data structures are allocated and accessed using differ-
ent scopes. Data that is specific to an element subtype is stored
at the plugin scope. Because synapses may need to access the
membrane voltage from their postsynaptic neurons in order to
determine their synaptic current contributions, membrane volt-
ages are stored and accessed using device level IDs. The reason
is all postsynaptic neurons and their associated synapses reside
on the same device due to the way they are distributed. However,
because the spiking state of a synapse depends on the spiking state
of the presynaptic neuron, the spiking state of neurons is accessed
using a global level ID when updating synaptic spiking states.

SIMULATION FLOW AND PARALLELIZATION
The basic flow of a simulation is as follows: for each time-step,
the current from stimuli and synapses is computed and used to
update the state of every neuron. The resulting spiking state of
each neuron is then used to determine the spiking state of their
associated synapses in later time-steps.

To facilitate maximum utilization of computing devices, the
simulation is partitioned into several stages that can be exe-
cuted in parallel as long as the requisite data for a given stage
is ready. Figure 2 illustrates this division of work (dark boxes)
along with the required data (light boxes) needed to simulate a
particular stage and the data that is produced once that stage has
been updated. A publisher-subscriber system is used to pass data
buffers from one stage to the next. During the simulation, a stage
attempts to pull all necessary data buffers from their associated
publishing stages. The stage is blocked until all the data is ready.
Once it obtains all the required data buffers, it advances the sim-
ulation by a single time-step and publishes its own data buffer
while releasing all the others that it no longer needs. When all

FIGURE 2 | Division of work: the dark boxes represent stages that can

run concurrently as long as the necessary data has been received for a

given time step. Each stage produces an output (denoted by the lighter
boxes) that is consumed by the stage denoted by the dotted arrows.

subscribers to a data buffer release it, the data buffer is added
back to its publisher’s resource pool for reuse. For any given stage,
a limited number of publishable buffers are used to prevent a
stage from consuming all computational resources and getting
unnecessarily ahead of any other stages. For example, without
limiting the buffer count, because the input update stage requires
no data from any other sources, the stage could simulate all time-
steps before a single neuron update is allowed to occur, effectively
adding a serial time cost to the overall run time.

Within a single stage, further granularity is gained by par-
allelizing across subtypes. As an example, if a device simulates
both LIF Neurons and Izhikevich Neurons, the plugins updat-
ing each can be executed in parallel. Due to padding from the ID
assignments, updates should affect completely separate regions of
memory, including operations on bit vectors. Exceptions to this,
such as when an input writes to a device-indexed input current for
its target neuron, are handled by using atomic operations or by
aggregating partial buffers generated by each plugin. The method
chosen depends on the type of device and its memory characteris-
tics. While plugins are allowed to update ahead of one another, the
results for from a stage at a given time-step will not be published

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

FIGURE 3 | IZH neuron model: specific values used for parameters a, b,

c, and d.

to subscribers until all plugins (in that stage) have updated up to
that time-step.

Input update
The purpose of the input update stage is to compute the total
input current to each neuron on the device as well as any voltage
clamping that should be done. The input current is represented
by an array of floating point values, one for each neuron (includ-
ing padding) on the device, initialized to zero at the beginning of
each time-step. The voltage neurons are clamped and stored in a
similar fashion where a bit vector is used to select which neurons
should actually be clamped.

Inputs are expected to be updated by input plugins designed
to handle their subtype. Other than the device-level Neuron ID
for each Input that is statically determined at the beginning of the
simulation, input plugins rely on no other data from any other
stage of the simulation. As such, they are allowed to simulate
ahead of the rest of the system as long as it has empty buffers that
can be written to and published.

Neuron update
Unlike the input update stage, the neuron update stage has two
dependencies: the input current per neuron published from the
input update stage and the synaptic current per neuron published
by the synapse update stage. Given these two pieces of informa-
tion, this stage is expected to produce the membrane voltage and
spiking state of every neuron on the device. Like the input cur-
rent, the membrane voltage is represented by an array of floating
point values. On the other hand, the spiking state is represented
by a bit vector.

Similar to inputs, neurons are expected to be updated by neu-
ron plugins designed to handle their subtypes. Despite receiving
and writing data out into device-level structures, neuron plugins
operate purely in plugin space. This is possible due to the fact that
each plugin is given a contiguous set of device-level IDs during the
distribution. As a result, device-level data passed into each plugin
is simply offset accordingly to yield the appropriate plugin-level
representation.

Vector exchange
The result of the neuron update stage is the firing state of every
neuron residing on the device. However, synapses are distributed
purely based on the postsynaptic neurons and as such the presy-
naptic neurons could possibly reside on a different device. Thus,
to determine synaptic spiking, the state of every neuron in the

simulation must be gathered first. Again, the publisher-subscriber
scheme is used to pass data asynchronously. However, rather
than passing data between stages, it is used to pass data between
different data scopes.

Figure 2 shows the flow of the neuron spiking information
across a cluster. When the device-level vector exchanger receives a
local firing vector, the data is published to the machine-level vec-
tor exchanger. Within this exchanger, the local vector is copied
into a global vector allocated in the system memory. Once all
local device vectors are copied for a single time-step, the complete
machine-level vector is broadcast to all the other machines in the
cluster. After all machines in the cluster finish broadcasting, the
complete global firing vector is published back to the device-level
vector exchangers where it is copied back into the appropri-
ate type of device memory before being published out to any
subscribing stages.

Firing table update
With the firing state of every neuron in the simulation, a device
can determine when all of its synapses will receive the firing based
on a per-synapse delay value. Given the potential range of delays,
this information is stored within a synaptic firing table. A row
of the table is a bit vector representing the firing state of every
synapse on the device. The number of rows in the table depends
on the maximum delay of all local synapses. When this stage
receives the global neuron fire vector, each synapse checks its
associated presynaptic neuron for a firing state. If it is firing, the
synapse adds its delay to the current time-step to determine the
appropriate vector which is then modified by setting its bit to 1.

After updating the table for a single time-step, the table row
associated to that step can be published. However, up to N time-
steps ahead of the current time can be published, where N is the
minimum delay across all local synapses. This allows devices to
simulate ahead of one another to a point rather than being com-
pletely locked in step. Additionally, the publication of these extra
buffers at the beginning of the simulation allows the data to start
flowing through the simulation.

Synapse update
Given the firing state of each synapse on the device, the synapses
themselves can be updated. Like the input update stage, the
synapse update stage produces the total synaptic current per
device-level neuron also represented by an array of floating point
values. In terms of operating spaces, synapse plugins update
synapses that operate at both the plugin and device levels, reading
from the synaptic fire vector while writing to the synaptic current
vector.

Reports
Reports gather information regarding some aspect of the simula-
tion. They are specified by the user as a set of elements and values
that should be extracted from them as the simulation progresses.
Because these elements can be scattered across multiple devices
and/or different machines and the data required can reside on one
of several different scopes, every machine, device, and plugin are
given a unique identifier. Following the distribution, every ele-
ment that must be reported on can be located by the appropriate

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

FIGURE 4 | LIF neuron model: regular spiking firing patterns.

FIGURE 5 | IZH neuron model: regular spiking firing patterns.

ID based on the data scope and the identifier within the data
source.

With these two values, the appropriate data can be extracted
during the simulation. To accomplish this, a single reporter is
instantiated on each machine, which contains at least one element
that should be collected. Then, a reporter subscribes to each pub-
lisher of the data through a more generalized publisher-subscriber
interface. This interface allows a reporter to access data arrays
along with the memory type using a string identifier. At each
time-step, the reporter extracts data from all of its subscriptions
and aggregates them as necessary. A separate MPI communication
group is then used to further aggregate these data across the entire
cluster asynchronously before being written out to a file or some
other data sink.

Instead of using a built-in reporter type, a plugin-type inter-
face is devised to provide flexibility in terms of data extraction,
aggregation, communication, and output techniques without
overly complicating the resulting code. For instance, a reporter
that counts the number of neuron firings may choose to min-
imize data bus traffic on CUDA devices by implementing the
count directly on the device and retrieving the single value rather
than by downloading the entire buffer to the system memory first
before operating on it. Implementations of the reporter inter-
face are given access to an MPI communication group along
with the element IDs and source identifiers to accomplish the
aforementioned tasks.

CUDA IMPLEMENTATION
Every CUDA plugin in any stage of the simulation flow uses a sep-
arate CUDA stream to enqueue work for the GPU, sleeps while
waiting for kernel execution to finish, and publishes the results to

FIGURE 6 | LIF neuron model: fast spiking firing patterns.

FIGURE 7 | IZH neuron model: fast spiking firing patterns.

subscribing stages when the results are ready. Each stream oper-
ates independently on separate pieces of data, allowing the CUDA
scheduler to execute kernels from different streams concurrently
in order to maximize hardware utilization.

Unlike the computationally-straightforward Izhikevich model,
the LIF model as specified by NCS presents a number of chal-
lenges when implementing it in CUDA. To begin with, LIF
neurons can be composed of multiple compartments that affect
one another and have different synaptic connections. To maintain
minimal data transfer, all compartments of a single LIF neuron
are decomposed into neuron-like objects that must be distributed
to the same device, localizing cross-compartment interactions to
that device. Since each compartment is modeled like a neuron,
compartment-specific connections are realized as well.

An additional complexity of the LIF neuron comes from the
ability for a compartment to have one or more channels that alter
its current based on a number of different attributes. The solu-
tion to this comes from applying the simulation flow breakdown
to this smaller subproblem. Each unique channel type is imple-
mented as a plugin to the larger LIF plugin in order to minimize
branching within a single kernel. At each time-step, the channel
plugins concurrently modify a current buffer. This buffer is then
published to the compartment updater, which in turn publishes
the compartments newly updated state for use by the channel
plugins in the subsequent time-step.

A final challenge to modeling NCS neurons is due to the
behavior of firings. Rather than sending a single impulse across
a synapse when the neuron fires, a waveform is sent over a
potentially large number of time-steps. Repeated firings over a
short time period produce multiple waveforms that are summed
together. To enable this memory of firings in CUDA, the synaptic

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

update plugin behavior is decomposed into a few steps. A synapse
begins by checking the fire table to see if a firing has been received.
If so, it pushes the event composed of a waveform iterator onto a
list. That list along with the list from the previous update are then
updated, computing the total synaptic current for a single neuron
at the same time. If an event has not yet iterated across its entire
waveform, it is pushed onto a new list that is published for the
next time-step.

RESULTS
The results of this manuscript are presented in the form of:
neuron model validation, NCS performance, existing models
using NCS, and a comparison of simulation environments.

NEURON MODEL VALIDATION
The validation of our neuron models is crucial to the reliabil-
ity of modeling studies. We have compared membrane potential
traces using our two types of neurons models in response to cur-
rent injection with electrophysiological data (Contreras, 2004)
and the well-known Izhikevich firing patterns (Izhikevich, 2003).
As examples, we looked at three major types of neuronal firing
patterns: regular spiking (RS), fast spiking (FS), and bursting (B).
For the LIF neuron model, we used different types of channels and
parameters. Channels included voltage-dependent and calcium-
activated potassium channels. For the IZH neuron model, we
used specific values for the parameters a, b, c, and d, which are
given in Figure 3.

Figures 4, 5 show the firing patterns of simulated regular
spiking neurons using the LIF and the IZH neuron models,

FIGURE 8 | LIF neuron model: bursting firing patterns.

FIGURE 9 | IZH neuron model: bursting firing patterns.

respectively. Figures 6, 7 show the firing patterns of simulated
fast spiking neurons using the LIF and the IZH neuron models,
respectively. Figures 8, 9 show the firing patterns of simulated
bursting neurons using the LIF and the IZH neuron models,
respectively. All six figures graph a sample of the simulation from
100 to 300 msec. Overall, our two neuron models were validated
by closely replicating spike shapes and spike frequencies from
electrophysiological data (Contreras, 2004) and the well−known
Izhikevich firing patterns (Izhikevich, 2003) for three major types
of neurons: RS, FS, and B. Note: our two models are not limited
to these three types; all neural patterns can be replicated.

NCS PERFORMANCE
Based on recent development and enhancements of NCS, we
are capable of running large-scale neural models (100,000–
1,000,000 neurons) faster than most simulators by distributing
data across multiple GPUs. Considering a synapse to neuron ratio
of 100 (e.g., 500,000 neurons and 50 million synapses), NCS
runs any models up to almost 1 million neurons in real-time,
for example, 1 s simulation = 1 s (IZH) or 2 s (LIF) real-time,
as presented in Figures 10, 11 for the hybrid and Izhikevich
neurons, respectively. In the NCS performance figures, eight
machines were used with each having two video cards (GTX
680s, GTX 480s, GTX 460s, or Tesla C2050s) with a time-step
of 1 ms. From one to ten-second simulations, NCS has shown
no loss of performance over time, as shown in Figures 12, 13.
However, the loss of performance can occur in models contain-
ing more than 50 million synapses due to the high computation
power required by synapses. The limit in terms of communi-
cations occurs when the size of the neuron vector is too large
for the network to handle. In the case of GigE(1000 Mbps)

FIGURE 10 | LIF neuron model: 1 s simulation.

FIGURE 11 | IZH neuron model: 1 s simulation.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

simulating at 1 ms intervals, we have 1 Mb per update, which rep-
resents 1 million cells (1 bit per cell). Additionally, there is MPI
packet overhead. Currently, the main reason for loss of perfor-
mance in very large models is due to memory constraints of the
GPUs and not due to network limitations.

EXISTING MODELS USING NCS
For details regarding existing models using NCS, related research
projects, and publications please refer to our Brain Computation
Laboratory’s website: http://www.cse.unr.edu/brain/.

FIGURE 12 | LIF neuron model: 10 s simulation.

FIGURE 13 | IZH neuron model: 10 s simulation.

COMPARISON OF SIMULATION ENVIRONMENTS
As every simulation environment have their own advantages and
disadvantages, we have compared NCS with three well-known
simulators, NEURON, GENESIS, and NEST. This comparison,
presented in Figure 14, can be useful for scientists to decide
which simulator is better suited for their modeling experiments.
Specifically, it describes the four simulation environments’ fea-
tures, such as platforms, back-end language, front-end coding
style, GUI, appropriate applications, supported neuron mod-
els, type of parallel computation, and possible python version.
Overall, NCS is currently well suited for large-scale neural net-
works and average biological details which can be simulated
with LIF and IZH models. The input language for NCS is
a text file and it requires minimum computer programming
experience.

DISCUSSION AND FUTURE WORK
NCS6 is a new, free, open-source, parallelizable, and scal-
able simulator, designed to run on clusters of multiple
machines, potentially with high performance computing devices
in each of them. Simulator, tutorial slides, models, docu-
mentation, and conference posters are available for down-
load at http://www.cse.unr.edu/brain/ncs. It has built-in LIF
and IZH neuron models that replicate biological neural fir-
ing patterns based on experimental data (Contreras, 2004).
All firing patterns can be reproduced with realistic spikes
shapes and spikes frequencies. If users are not satisfied
with these available models, they also have the flexibility
to design their own plug-in interfaces for different neuron
types. NCS6 is currently able to simulate one million cells
and 100 million synapses in quasi real time by distribut-
ing data across these heterogeneous clusters of CPUs and
GPUs. A variety of models have been created and simu-
lated with NCS, and they have shown interesting findings
on high-level behaviors (e.g., navigation). The advantages of
using NCS6 are its computational power, its biological capa-
bilities at multiple levels of abstraction, and its minimum

FIGURE 14 | Simulation environments comparison.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 7

http://www.cse.unr.edu/brain/
http://www.cse.unr.edu/brain/ncs
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

computer programming demand. NCS6’s main limitations
include its lack of biophysical parameters, its only avail-
ability on LINUX platforms, and the absence of a GUI.
Therefore, our current work consists of increasing the biolog-
ical details behind NCS6 without affecting simulation time.
NCS6 should be soon available on Windows, and be able to
run on openCL-capable devices. Additionally, our main focus

has been on developing a real-time visualization and analy-
sis tool to make the use of NCS6 convenient to a broader
community.

ACKNOWLEDGMENTS
This work was partially supported by the U.S. Office of Naval
Research (N000140110014).

REFERENCES
Ahmadi, A., and Soleimani, H. (2011).

“A GPU-based simulation of mul-
tilayer spiking neural networks,”
in Proceedings of the 19th Iranian
conference on Electrical Engineering
(ICEE) (Tehran), 1–5.

Bernhard, F., and Keriven, R. (2005).
Spking neurons on GPUs. Technical
report, Ecole Nationale des Ponts et
Chaussées, Paris.

Bhuiyan, M., Pallipuram, V., and
Smith, M. (2010). “Acceleration
of spiking neural networks in
emerging multi-core and GPU
architectures,” in Proceedings of the
2010 IEEE International Symposium
on Parallel and Distributed
Processing (Atlanta), 1–8. doi:
10.1109/IPDPSW.2010.5470899

Bower, J. M., and Beeman, D. (1998).
The Book of GENESIS. 2nd Edn.
Chapter 21: Large-Scale Simulation
Using Parallel GENESIS. New York,
NY: Springer-Verlag.

Bower, J. M., and Beeman, D. (2012a).
GENESIS 2.3. Available online at:
http://www.genesis-sim.org/GENES
IS/. (Retrieved September 24, 2012).

Bower, J. M., and Beeman,
D. (2012b). GENESIS 3.
Available online at: http://www.

genesis-sim.org/. (Retrieved
September 24, 2012).

Brette, R., and Goodman, D. (2012a).
Brian: The Brian Spiking Neural
Network Simulator. Available online
at: http:/http://briansimulator.org/.
(Retrieved October 12, 2012).

Brette, R., and Goodman, D. (2012b).
Simulating spiking neural networks
on GPU. Network 23, 167–182.

Carneval, N. T., and Hines, M. L.
(2012). NEURON for Empirically-
Based Simulations of Neurons and
Networks of Neurons. Available
online at: http://www.neuron.yale.
edu/neuron/. (Retrieved September
24, 2012).

Contreras, D. (2004). Electro-
physiological classes of neocortical
neurons. Neural Netw. 17, 633–
646. doi: 10.1016/j.neunet.2004.
04.003

Diesmann, M., and Eppler,
J. M. (2012). NEST Initiative.
Available online at: http://www.

nest-initiative.org/. (Retrieved
September 24, 2012).

Fernandez, A., San Martin, R., and
Farguell, E. P. G. (2008). “Cellular
neural networks simulation on
a parallel graphics processing
unit,” in Proceedings of the 11th
International Workshop on Cellular
Neural Networks and Theire
Applications (CNNA) (Santiago
de Compostela), 208–212. doi:
10.1109/CNNA.2008.4588679

Fidjeland, A., Roesch, E., Shanahan,
M., and Luk, W. (2009). “Nemo:
a platform for neural mod-
elling of spiking neurons using
GPUs,” in Proceedings of the 20th
IEEE International Conference
on Application-specific Systems,
Architectures and Processors
(ASAP) (Boston), 137–144. doi:
10.1109/ASAP.2009.24

Fidjeland, A., and Shanahan, M.
(2010). “Accelerated simula-
tion of spiking neural networks
using GPUs,” in Proceedings
of the 2010 International Joint
Conference on Neural Networks
(IJCNN) (Barcelona), 1–8. doi:
10.1109/IJCNN.2010.5596678

Han, B., and Taha, T. (2010a).
“Neuromorphic models on a
gpgpu cluster,” in Proceedings
of the 2010 International Joint
Conference for Neural Networks
(IJCNN) (Barcelona), 1–8. doi:
10.1109/IJCNN.2010.5596803

Han, B., and Taha, T. M. (2010b).
Acceleration of spiking neural
network based pattern recognition
on nvidia graphics processors.
Appl. Opt. 49, B83–B91. doi:
10.1364/AO.49.000B83

Hoffmann, J., El-Laithy, F., Gttler,
F., and Bogdan, M. (2010).
“Simulating biological-inspired
spiking neural networks with
openCL.” in Proceedings of the
20th international conference on
Artificial neural networks: Part
I (ICANN) (Thessaloniki). doi:
10.1007/978-3-642-15819-3_23

Igarashi, J., Shouno, O., Fukai, T.,
and Tsujino, H. (2011). Real-time
simulation of a spiking neu-
ral network model of the basal
ganglia circuitry using general
purpose computing on graphics
processing units. Neural Netw. 24,
950–960. doi: 10.1016/j.neunet.
2011.06.008

Izhikevich, E. M. (2003). Simple model
of spiking neurons. IEEE Trans.
Neural Netw. 14, 1569–1572. doi:
10.1109/TNN.2003.820440

Migliore, M., Cannia, C., Lytton,
W. W., Markram, H., and Hines,
M. L. (2006). Parallel network
simulations with NEURON. J.
Comput. Neurosci. 21, 119–129. doi:
10.1007/s10827-006-7949-5

Mutch, J., Knoblich, U., and Poggio,
T. (2010). CNS: a gpu-based
framework for simulating cortically-
organized networks. Technical
report, Massachusetts Institute of
Technology, Cambridge, MA.

Nageswaran, J. M., Dutt, N., Krichmar,
J. L., Nicolau, A., and Veidenbaum,
A. (2009a). “Efficient simulation of
large-scale spiking neural networks
using CUDA graphics processor,” in
Proceedings of the 2009 International
Joint Conference on Neural Networks
(IJCNN) (Atlanta).

Nageswaran, J. M., Dutt, N., Krichmar,
J. L., Nicolau, A., and Veidenbaum,
A. V. (2009b). A configurable simu-
lation environment for the efficient
simulation of large-scale spiking
neural networks on graphics proces-
sors. Neural Netw. 22, 791–800. doi:
10.1016/j.neunet.2009.06.028

Nowotny, T. (2011). Flexible neu-
ronal network simulation
framework using code genera-
tion from NVidia CUDA. BMC
Neurosci. 12(Suppl. 1). P239. doi:
10.1186/1471-2202-12-S1-P239

NVIDIA (2013). CUDA 5. Available
ONLINE at: http://www.nvidia..
com/object/cuda_home_new.html/
(Retrieved August 5, 2013).

Scorciono, R. (2010). “GPGPU
implementation of a synapti-
cally optimized, anatomically
accurate spiking network sim-
ulator,” in Proceedings of the
Biomedical Sciences and Engineering
Conference (BSEC) (Oak Ridge).
doi: 10.1109/BSEC.2010.5510832

Thibeault, C. M., Hoang, R. V.,
and Harris, F. C. Jr. (2011). “A
novel multi-GPU neural simu-
lator,” in Proceedings of the 3rd
Conference on Bioinformatics and
Computational Biology (BICoB
2011) (New Orleans). 146–151.

Tiesel, J.-P., and Maida, A. S. (2009).
“Using parallel GPU architecture for

simulation of planar i/f networks,”
in Proceedings of International Joint
Conference on Neural Networks
(IJCNN) (Atlanta). 754–759. doi:
10.1109/IJCNN.2009.5178688

Trappenberg, T. P. (2010).
Fundamentals of Computational
Neuroscience. 2nd Edn., New York,
NY: Oxford University Press.

Wang, M., Yan, B., Hu, J., and
Li, P. (2011). “Simulation of
large neuronal networks with
biophysically accurate mod-
els on graphics processors,” in
Proceedings of the International
Joint Conference on Neural
Networks (IJCNN) (San Jose).
doi: 10.1109/IJCNN.2011.6033643

Yudanov, D., Shaaban, M., Melton,
R., and Reznik, L. (2010). “GPU-
based simulation of spiking neural
networks with real-time perfor-
mance and high accuracy,” in
Proceedings of the International
Joint Conference on Neural
Networks (IJCNN) (Barcelona).
doi: 10.1109/IJCNN.2010.5596334

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 24 May 2013; accepted: 03
September 2013; published online: 02
October 2013.
Citation: Hoang RV, Tanna D, Jayet Bray
LC, Dascalu SM and Harris Jr FC (2013)
A novel CPU/GPU simulation environ-
ment for large-scale biologically realis-
tic neural modeling. Front. Neuroinform.
7:19. doi: 10.3389/fninf.2013.00019
This article was submitted to the journal
Frontiers in Neuroinformatics.
Copyright © 2013 Hoang, Tanna, Jayet
Bray, Dascalu and Harris. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the origi-
nal author(s) or licensor are credited and
that the original publication in this jour-
nal is cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 8

http://www.genesis-sim.org/GENESIS/
http://www.genesis-sim.org/GENESIS/
http://www.genesis-sim.org/
http://www.genesis-sim.org/
http:/http://briansimulator.org/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.nest-initiative.org/
http://www.nest-initiative.org/
http://www.nvidia.com/object/cuda_home_new.html/
http://www.nvidia.com/object/cuda_home_new.html/
http://dx.doi.org/10.3389/fninf.2013.00019
http://dx.doi.org/10.3389/fninf.2013.00019
http://dx.doi.org/10.3389/fninf.2013.00019
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

APPENDIX
NCS CELL EQUATIONS
At a cellular level, NCS solves a limited and slightly reordered
form of the Hodgkin-Huxley model that is similar to Equation
(1). However, during the numerical integration a constant mem-
brane leak is added. This is explained further below.

CN
dV

dt
− IM − IA − IAHP − Iinput − Isyn + Ileak = 0 (1)

The currents expressed in this equation fall into several differ-
ent categories that are only briefly explained here. To begin, both
IM and IAHP contribute to the membrane voltage by control-
ling spike-frequency adaptation. These are small ionic currents
that have a long period of activity when the membrane volt-
age is between rest and threshold. IM is the Non-inactivating
Muscarinic Potassium Current and is defined by

IM = ḡMSmP(Ek − V) (2)

Where S is a non-dimensional strength variable added to NCS
and P is the power that the activation variable m is raised to. This
is essentially decreasing the slope of the activation variable. The
change of that activation variable is defined as

dm

dt
= m∞ − m

τm
(3)

where

τm = ε

e

(
V − V1/2

ω

)
+ e

−
(

V − V1/2

η

)

m∞ = 1

1 + e
−
(

V − V1/2

ξ

)

ε is the scale factor.
V1/2 satisfies the equation m∞(V1/2) = 0.5.

ω, η, and ξ are slope factors affecting the rate of change of the
activation variable m.
Notice that (2) is different from the traditional equation shown
below in equation (4). This reverse of the driving force explains
the sign changes in equation (1).

IM = ḡMmm (V − EK) (4)

IAHP is the current provided by the other small spike-adaptation
contributing channel. These are voltage independent potassium
channels that are regulated by internal calcium.

IAHP = ḡAHPSmP(EK − V) (5)

Where S is a non-dimensional strength variable added to NCS
and P is the power that the activation variable m is raised to. The
change of that activation variable is defined as

dm

dt
= m∞ − m

τm
(6)

τm = ε

f (Ca) + b

m∞ = f (Ca)

f (Ca) + b

Where
ε is a scale factor.
b is the backwards rate constant, defined as CA_Half_Min in the
NCS documentation.
f (Ca) is the forward rate constant defined by (7).

f (Ca) = κ [Ca]αi (7)

Internal calcium concentrations are calculated at the compart-
ment level in NCS. Physiologically the calcium concentration of
a cell increases when an action potential fires. After the action
potential has ended the internal concentration of calcium will
diffuse throughout the cell where it is taken up by numerous phys-
iological buffers. In NCS this diffusion/buffering phenomena is
modeled by a simple decay equation defined by Equation (8).

[Ca]i (t + 1) = [Ca]i (t)

(
1 − dt

τCa

)
(8)

Where
dt is the simulation time step.
τCa is the defined time constant for the Ca decay.

When an action potential fires in NCS the internal calcium
concentration is increased by a static value specified in the input
file.

The third and final channel type modeled in NCS is the tran-
sient outward potassium current or Ka. This channel requires
hyperpolarization for its activation; meaning that the chan-
nel will open during inhibitory synaptic input. This is defined
by (9).

IK = ḡMSmPhC (EK − V) (9)

Where as before S is a non-dimensional strength variable added
to NCS, P is the power that the activation variable m is raised to
and C is the power that the inactivation variable h is raised to. The
change of activation and inactivation variables is defined by (10)
and (11).

dm

dt
= m∞ − m

τm
(10)

dh

dt
= h∞ − m

τh
(11)

Where

m∞ = 1

1 + e
−
(

V − V1/2m

ξ

)

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hoang et al. A Novel CPU/GPU Brain Simulator

V1/2m satisfies the equation m∞(V1/2m) = 0.5.
ξ is slope factor affecting the rate of change of the activation
variable m.

h∞ = 1

1 + e
−
(

V − V1/2h

η

)

V1/2h satisfies the equation h∞(V1/2h)=0.5.
η is slope factor affecting the rate of change of the inactivation
variable h.
τm and τh are voltage dependent. NCS allows this dependence to
be defined using an array of values for both voltages and time
constants. This is defined by (12).

τ (V) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ (1) if V < V(1),

τ (2) if V < V(2),
...

τ (n) if V < V(n)

τ (n + 1) else

(12)

The leakage current is voltage-independent and is modeled by
(13). Notice that the driving force is expressed using the normal
convention. This is the reason the leakage current is subtracted in
the membrane voltage equation rather than added, as seen in the
traditional membrane voltage equations.

Ileak = gleak (V − Eleak) (13)

The synaptic currents are calculated by

Isyn = ḡsynPSG (t)
(
Esyn − V

)
(14)

The numerical integration scheme employed by NCS is similar
to an Eulerian method. However, as mentioned above a constant

leak term is added to the discretized form of (1). To begin the
current values defined above are summed

ITotal = IM + IA + IAHP + Iinput + Isyn − Ileak (15)

The new voltage is then calculated as a combination of the defined
membrane resting potential, the previously calculated membrane
potential, the membrane resistance, capacitive time constant and
total currents.

V (t + 1) = Vrest + (V (t) − Vrest)

(
1 − �

τmem

)
+ �

ITotal

Cn
(16)

Rearranging for clarity

V (t + 1) = V (t) + (Vrest − V (t))
�

τmem
+ �

ITotal

Cn
(17)

Where
Cn= τmem

Rmem
Rmem is the defined resistance of the membrane.
τmem is the defined capacitive time constant of the membrane.
� is the change in time between t and t + 1.

Notice the form of (1) in a simple Eulerian integration scheme
would be

V (t + 1) = V (t) + �
ITotal

Cn
(18)

The addition of the middle term in Equation (17) numerically
drives the membrane voltage of the cell back to a predefined
resting potential.

When the voltage crosses a specified threshold value vthreshold,
the membrane potential follows a user-specified spike shape pat-
tern. During this time, the internals of each channel are updated;
however, they have no effect on the value of the memberane
potential. At the end of the pattern, calculations resume using
Equation(17).

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 19 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling
	Introduction
	Design
	Simulation Composition
	Simulation Environment and Distribution
	Data Scopes and Structures
	Simulation Flow and Parallelization
	Input update
	Neuron update
	Vector exchange
	Firing table update
	Synapse update
	Reports

	CUDA Implementation

	Results
	Neuron Model Validation
	NCS Performance
	Existing Models using NCS
	Comparison of Simulation Environments

	Discussion and Future Work
	Acknowledgments
	References
	Appendix
	NCS Cell Equations



