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Experiments to monitor human brain activity during active behavior record a variety of
modalities (e.g., EEG, eye tracking, motion capture, respiration monitoring) and capture
a complex environmental context leading to large, event-rich time series datasets.
The considerable variability of responses within and among subjects in more realistic
behavioral scenarios requires experiments to assess many more subjects over longer
periods of time. This explosion of data requires better computational infrastructure to
more systematically explore and process these collections. MOBBED is a lightweight,
easy-to-use, extensible toolkit that allows users to incorporate a computational database
into their normal MATLAB workflow. Although capable of storing quite general types of
annotated data, MOBBED is particularly oriented to multichannel time series such as EEG
that have event streams overlaid with sensor data. MOBBED directly supports access to
individual events, data frames, and time-stamped feature vectors, allowing users to ask
questions such as what types of events or features co-occur under various experimental
conditions. A database provides several advantages not available to users who process
one dataset at a time from the local file system. In addition to archiving primary data
in a central place to save space and avoid inconsistencies, such a database allows
users to manage, search, and retrieve events across multiple datasets without reading
the entire dataset. The database also provides infrastructure for handling more complex
event patterns that include environmental and contextual conditions. The database can
also be used as a cache for expensive intermediate results that are reused in such
activities as cross-validation of machine learning algorithms. MOBBED is implemented
over PostgreSQL, a widely used open source database, and is freely available under the
GNU general public license at http://visual.cs.utsa.edu/mobbed. Source and issue reports
for MOBBED are maintained at http://vislab.github.com/MobbedMatlab/
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INTRODUCTION
Traditional EEG research has focused on highly controlled exper-
iments such as visual-oddball tasks performed in laboratory
settings. Increasingly, researchers have recognized that the brain
and body cannot be isolated from their environmental context
and have started to measure active behavior using new monitor-
ing and sensor technologies. The result is a dramatic explosion in
the number, size, and complexity of datasets available for analysis.
For example, a monitoring experiment to capture brain and body
data during active behavior might record 256 channels of EEG
along with eye tracking, motion capture, and respiration infor-
mation for several hours at mixed sampling rates of 512 Hz or
higher. Richer environmental contexts cannot be encoded as sim-
ple event streams of target presentation and user response. Rather,
a mosaic of complex, interacting environmental conditions and
events unfolds during the course of the experiment, leading to
the idea of event-rich time series.

This explosion of data requires a computational infrastruc-
ture that allows ordinary users to more systematically explore

and process collections of datasets. Basic tasks include manag-
ing, searching, and retrieving events across multiple datasets and
handling complex event patterns containing environmental and
contextual conditions applicable for a specified time interval (e.g.,
during this period of time, the subject is standing up and the
lights are off). As datasets become larger, central archiving of
primary data becomes necessary to save space and avoid incon-
sistencies. Systematic evaluation of algorithms and phenomena
requires that primary data be subjected to consistent process-
ing pipelines and that the output of these pipelines be cataloged
and shared.

The goal of this work is to build a flexible database infras-
tructure that will support advanced large-scale analysis and data-
mining applications for EEG and other types of sensor time-series
within event-rich contexts. The remainder of the paper is orga-
nized as follows. We begin by introducing some motivating use
cases and then describe the database organization of MOBBED
and how it supports these use cases. We present examples of
the MOBBED MATLAB programming interface and also provide
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performance measurements for several types of EEG collections.
Finally we discuss some related work and offer some concluding
remarks.

MOTIVATING USE CASES
The focus of most neuroscience databases is the storage and
retrieval of datasets and the querying of experimental metadata.
Extensible Neuroimaging Archive Toolkit (XNAT), for example,
provides tools and database infrastructure for organizing and
sharing data and metadata (Marcus et al., 2007). Such a database
can serve as the replacement for the traditional laboratory note-
book and has many advantages over its more traditional hardcopy
counterparts by providing organizational structure, enabling data
sharing, preventing information loss, and making information
accessible for query.

Although the MOBBED provides some metadata storage capa-
bilities, its purpose is quite different. The goal is to provide a
lightweight, easy-to-use, extensible toolkit that users can incor-
porate into their computational workflow to store and query EEG
and other types of data in an event-rich context. The remain-
der of this section introduces four motivating use cases for the
development of the MOBBED toolkit.

CREATING AND QUERYING COMPLEX EVENTS AND SCENARIOS
Traditional EEG experiments have been conducted under rigidly
controlled conditions using a small number of stimulus types
(e.g., “red square displayed in right field of view”) and response
types (e.g., “subject presses a button”). Downstream data analysis
typically focuses on behavior around these time markers.

New technologies and research efforts such as the development
of wireless EEG (Lun-De et al., 2012) and the ability to record
complex task scenarios (Lance et al., 2011) result in significantly
more complex stimuli, environmental context, and response sce-
narios. For example a military mission simulation might include
video, audio, instrument status, and environmental feedback.
Furthermore, these stimuli have many nuances identified as dis-
tinct event types. For example, in a situation where a subject is
listening to audio communication, background communication
is usually distinguished from communication targeted to the sub-
ject. Distinctions might also be made as to the importance of the
communication, the relationship of the speaker to the subject,
and whether the subject is expected to respond.

Events of this nature are generally “synthesized” by process-
ing time-synchronized logs from external devices, and often
researchers create different event overlays depending on the focus
of the study. A database provides an ideal infrastructure for
managing and querying extensive event overlays.

Event overlays, which can arise from many different sources,
can be used to organize and evaluate the results of complemen-
tary analyses. For example, alpha spindles have been associated
with degradations in driver performance (Simon et al., 2011).
Researchers could apply an automated alpha spindle detection
algorithm to driving simulator data to further explore this rela-
tionship. Each alpha spindle could be encoded as an event with
a starting and ending time. If the detection algorithm provided
a probability measure of correctness along with a classification
label, the researcher might want to filter query results based on

certainty of detection. The researchers could annotate the spindle
event data with tags indicating that the events corresponded to
alpha spindles detected during a driving simulation. Other infor-
mation such as the location of the electrode used for the detection
could be included as attributes of these events. Researchers could
create a second event overlay with driver lane deviation markers
derived from simulator recordings and another overlay contain-
ing markers derived from eye trackers indicating intervals when
eye blink rate or other features were abnormal.

An appropriate database should allow researchers to represent
this information in a way that will allow complex queries and
exploration. With database support, researchers can specify and
analyze complex event scenarios across multiple datasets and look
for patterns. For example, researchers may want to distinguish
and analyze the concordance of events of different types by asking
questions such as:

Across a specified sub-collection of datasets, when did an event
of type A occur within 500 ms of an event of type B? What other
events occurred during that time?

In the driving simulator example, one could ask how often lane
deviations occurred within 5 s of an alpha spindle.

MAPPING OF EVENT TYPES ACROSS DATA COLLECTIONS
As researchers begin to tackle more complex questions about real-
world behavior, larger data collections are needed to sufficiently
cover the possible scenarios. Meta-analysis applied across mul-
tiple studies is increasingly appealing, both from the need for
more data and to establish conclusions that are broadly applica-
ble. A barrier to this analysis is the lack of a common vocabulary
across datasets.

One way to circumvent vocabularies differences across labora-
tories is to allow users to associate arbitrary descriptive tags with
events, much like Internet users assign tags to their shared images
to enable searching. To assure overlap in tag vocabulary, Nima
Bigdely-Shamlo and others (HED-homepage) have developed the
Hierarchical Event Descriptor (HED) system, which is a hierarchy
of standard descriptors for EEG and related experimental events.
HED tags are of the form of path names (e.g., Stimulus/Visual/
Background/Uniform Color/Black denotes a path from the root
Stimulus → Visual → Background → Uniform Color → Black)
and users can extend the hierarchy at the leaf nodes to enable
experiment-specific tagging. Standard prefix processing can be
used to match tagged events to a particular level of specificity.

Recently, several toolboxes have been developed to associate
arbitrary lists of these tags with events either during data acqui-
sition (Kothe, 2013a,b) or during processing (CTAGGER, 2013).
To realize the potential of such a tagging scheme for data-mining,
researchers need efficient tools for searching and matching tags
across large collections of dataset events.

CACHING AND REUSING COMPUTATIONS FOR EFFICIENCY AND
PROVENANCE
As data collections become more complex, it is harder to keep
track of the output of different stages of the processing pipeline.
Researchers usually preprocess raw data by applying various fil-
tering transformations. They save selected intermediate results of
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these transformations on their local file system, often employ-
ing a naming scheme that reflects the processing. This approach
has several drawbacks from a stability and reliability point of
view. Often multiple copies of the files exist; these files only
are accessible on the local machine; and there is no perma-
nent documentation on the exact computations that produced
the files. As a result, each time these files are needed, they are
recomputed.

BCILAB (Delorme et al., 2011), a MATLAB package created
by Christian Kothe as a platform for systematically developing
and testing machine learning algorithms, has a caching sys-
tem that provides a model for overcoming these issues. BCILAB
represents each computation as a string containing the fully-
parenthesized nested expressions back to the initial dataset and
caches intermediate results locally so that they don’t have to be
recomputed during repetitive operations such as cross-validation.
The cached results are hashed using the nested expression
strings as keys. When performing an operation, BCILAB creates
the string representation of the fully-parenthesized expression
and successively parses the nested expression from outermost
to innermost parentheses until it finds a string that appears
in the hash table or it reaches the original dataset. BCILAB
then evaluates the expression outward and stores and indexes
the intermediate results if their computation time exceeds a
threshold.

A database with the capability of mapping unique string iden-
tifiers to datasets can provide a third-level cache for systems such
as BCILAB. The database provides more permanence and gives
the user the opportunity to document the transformations in a
standard way. The database server infrastructure allows users to
access data from remote machines and to organize and control
the sharing of their data and computations.

CONTENT-BASED EEG RETRIEVAL (CBER)
A motivating use-case in our own work has been the develop-
ment of content-based EEG retrieval (CBER) systems (Su and
Robbins, 2013). Content-based retrieval or query-by-example
uses features from an example segment to retrieve similar seg-
ments from a database. Content-based image retrieval (CBIR) is
well-established, with a variety of applications including enhance-
ment of search in online image databases to automatic annotation
and identification from surveillance video. As large scale EEG
databases become available, CBER could enable a range of appli-
cations such as identification of similar subjects for enhancing
brain computer interface (BCI) performance and discovering
which environmental contexts are “enriched” when particular
brain patterns occur.

DATABASE ORGANIZATION
We have built a MATLAB toolbox, MOBBED, that uses a
PostgreSQL relational database to store datasets for access during
computation. The toolkit includes a MATLAB layer for storing,
searching, and retrieving data as well as an underlying Java layer
that does not depend on MATLAB. This section provides a brief
overview of the database infrastructure. Additional details on
the database organization and information for programmers are
available at (Cockfield et al., 2013a,b). MOBBED is designed for

easy use in MATLAB workflows without any SQL programming.
Readers who are not interested in the details of implementation
may skip directly to the section describing the MATLAB interface.

MOBBED DATASET ORGANIZATION
Figure 1 shows a view of the MOBBED data model. Datasets
are a central organizing concept for the MOBBED database.
A dataset is a group of related items representing a single modal-
ity such as EEG usually collected from a single experimental
run. Each dataset is uniquely identified by a 128-bit Universally
Unique Identifier (UUID), which serves as the primary key for
the DATASETS table. A session UUID allows scientists to group
datasets that were acquired in the same session for easy retrieval.
The dataset namespace allows investigators who share a database
to avoid naming conflicts. Typically investigators use their indi-
vidual laboratory URL as the namespace designator. The combi-
nation (dataset name, dataset namespace, dataset version) must
always be unique.

Users can store and retrieve datasets from MATLAB using the
high-level mat2db and db2mat methods. The mat2db always
stores the actual dataset as a single large binary object, but may
explode events and other metadata into the database to facili-
tate searching. The dataset modality indicates how a dataset is
exploded into the database. Currently three modalities are sup-
ported: SIMPLE, EEG, and GENERIC, but other modalities can be
added quite easily.

SIMPLE modality, which works for any type of data, just enters
dataset information into the DATASETS table and stores the data as
a large binary object. This modality is useful for archiving data. If
the data is stored in some variable called mydata, the user simply
creates a structure such as the following and calls the mat2db
method.

x.dataset_name = ’my data’;
x.dataset_modality_uuid = ’simple’;
x.data = mydata;

On retrieval using db2mat, the user will receive a structure such
as the following, with the original data stored in the .data sub-
field. The remaining fields directly correspond to the columns
of the DATASETS table. MOBBED fills in the fields that the user
didn’t provide with defaults.

x
.dataset_uuid
.dataset_session_uuid
.dataset_namespace
.dataset_name
.dataset_version
.dataset_contact_uuid
.dataset_creation_date
.dataset_description
.dataset_parent_uuid
.dataset_modality_uuid
.dataset_oid
.data
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FIGURE 1 | A diagram of MOBBED data model. The connecting lines
indicate an association between rows of two database tables. An unmarked
end always indicates exactly 1 of that item. The o-| combination indicates
zero or one of the corresponding item. For example, the connection between
DATADEFS and NUMERIC_VALUES indicates that each row in the DATADEFS
table corresponds to either zero or one row in the NUMERIC_VALUES table,

while each row in the NUMERIC_VALUES table corresponds to exactly one
row in DATADEFS. The three prong connector specifies “many.” Tables
containing an entity_uuid and entity_class column combination (i.e.,
ATTRIBUTES, DATAMAPS, and TAGS) may have associations with any table.
For readability, these associations are omitted except for the connection
between DATASETS and DATAMAPS, which is given as an exemplar.

Although MOBBED doesn’t explode events and other metadata in
the database for SIMPLE modality datasets, users can still associate
tags, attributes, and additional data with the dataset as described
later.

EEG modality assumes that the dataset is a standard
EEGLAB (Delorme et al., 2011) EEG structure and explodes
the EEG.event, EEG.urevent, and EEG.chanlocs field
values into the database. The GENERIC modality explodes exist-
ing x.element, x.event, x.feature, and x.metadata
subfields into the database. As explained in the MOBBED user
manual (Cockfield et al., 2013b), users can easily create an addi-
tional modality XXX by providing an XXX class with a store
method and adding a row to the MODALITIES table using the
MOBBED putdb method.

ASSOCIATING ADDITIONAL DATA WITH A PRIMARY DATASET
Once a dataset (of any modality) has been created and has
a UUID, users can associate arbitrary additional data with
that dataset using data definitions. The DATADEFS table sup-
ports five formats of data: NUMERIC_VALUE (a vector of
doubles), NUMERIC_STREAM (individual time-stamped vectors
of doubles), XML_VALUE (an XML string), XML_STREAM

(individual time-stamped vectors of XML strings), and
EXTERNAL (an external data blob). If the data format is not
EXTERNAL, MOBBED explodes the data into one of the data
tables (NUMERIC_VALUES, NUMERIC_STREAMS, XML_VALUES,
XML_STREAMS) so that it is available for searching. PostgreSQL

supports vectors as data elements and can search within ele-
ments. If the data is a stream, sampled at a fixed rate, the
sampling rate column of DATADEFS gives the sampling rate in
Hz. Otherwise this entry is −1. The time stamps for stream
data can always be recovered from the time-stamped stream
itself.

The DATAMAPS table allows users to create an arbitrary num-
ber of associations of data definitions with datasets or other
entities. For example, a researcher may wish to keep different
Independent Component Analysis (ICA) decompositions of a
dataset as auxiliary data using data definitions.

During a typical computational workflow, users may produce
several versions of a dataset (e.g., after filtering, after artifact
removal, etc.). MOBBED supports four methods of associating
the new data with the original:

(1) As a later version: If the IsUnique flag is set to false in
mat2db, MOBBED automatically increments the dataset
version when attempting to write datasets whose (name,
namespace) already exists. If IsUnique is true (the default),
attempts to perform such a write fail.

(2) As child: Researchers often save multiple copies of a file at
different stages of processing, appending monikers to the
original file name to indicate processing steps. Following this
strategy, a MOBBED user can set the parent UUID to the
original dataset when using mat2db to store the new dataset
with a modified name.
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(3) As a data definition: MOBBED users may also create data
definitions for the additional versions and then add an asso-
ciation of the data definitions with the original through the
data map.

(4) As a transform: If the transformation of the original dataset
to the new dataset can be represented as a string that can be
evaluated to reproduce the new dataset, then this command
string can be stored as a transform. These transform strings
can be searched to determine whether a dataset derived by
this transformation already exists and doesn’t have to be
recomputed (caching). If the transform string represents the
original dataset by its UUID, forward searching can find all
datasets that have been computed from an original dataset
(provenance). Transforms are intended to be used in auto-
mated workflows.

MOBBED EVENT ORGANIZATION
Events provide contextual overlays for the data. Experimenters
use events in traditional laboratory settings to encode the admin-
istered stimuli (e.g., target appears on right of screen) and user
responses (e.g., button press). As experiments capture more
realistic behavior in richer environments, the event overlays
become more complex. Environmental conditions such as ter-
rain or lighting changes, external noise, and motion may be
encoded as events. Furthermore, data streams representing other
modalities such as eye tracking, motion capture, or respira-
tion monitoring might be processed to produce higher-level
event streams (e.g., eye blink, saccade left, move left arm, res-
piration rate high). A central motivation for MOBBED is to
support analysis of datasets that have complex combinations of
events.

We define events as time-markers in the data that have a label
(type) as well as a start time and an end time (which may be
the same). Each event, which is identified by a UUID, has an
entry in the EVENTS table. Events have start times and end times
that are defined in seconds since the beginning of the associated
dataset. Each event also has an event type, which is defined in the
EVENT_TYPES table. Event types are strings identified by UUIDs.
Researchers will typically reuse event types across multiple exper-
iments to facilitate identification. Event can also have arbitrary
data associated with them through the DATAMAPS table as well
as attributes and tags, which are described in the next section.
Event types are often tagged to facilitate searching across data
collections.

The certainty value is specifically included as a column of the
EVENTS table to provide an efficient filter when extracting events.
Events can come from a variety of sources and increasingly these
events will be the product of computation or synthesis of other
data streams. Computational algorithms are not perfect and often
these algorithms have an accuracy or probability associated with
them. The event certainty is a value between 0 and 1 that cap-
tures this accuracy or certainty. The hardware-inserted markers
of traditional EEG experiments will always have a certainty value
of one, but results such as classification of audio streams into
different types may not be as certain. Class labels output by clas-
sifiers can be defined as event types, and many machine learning
algorithms produce certainty measures in various formats.

MOBBED automatically explodes events for EEG and GENERIC

modality datasets. In each case the dataset is assumed to be in
structure form with certain structure fields (.event for GENERIC

and .event and .urevent for EEG). The .event.type or
.urevent.type subfield is assumed to specify the event type.
The storing of events is done automatically as part of storing the
dataset. The event type, which is described in more detail in sec-
tion on events, is important for identifying common events across
datasets in data mining applications.

MOBBED TAGS AND ATTRIBUTES FOR STORING METADATA
A challenging aspect of complex event-rich time series is the
variety of additional metadata that is possible. Specifying a
fixed format for such data would make the system unusable
for researchers. MOBBED takes a semi-structured approach to
metadata using tags and attributes.

Tags, which are stored in the MOBBED TAGS table, are strings
that can be assigned to any entity (dataset, event, data stream
item, etc.) to facilitate searching. Tags can be ordinary strings
or hierarchical path strings to support queries that match pre-
fixes or use more general regular expressions. To enable mapping
of events across different studies, the researcher can tag event-
types or individual events. A rich and flexible vocabulary for
tagging events is needed for effective data-mining across differ-
ent data collections, particularly in real-world virtual or actual
environments. For example, in a simulated driving study, the
experimenters originally encoded an event corresponding to the
subject (driver) passing a car as ’[2, 2, 4]’, which would
make it impossible for an analyst to data mine without delving
into the detailed experimental notes of the original investiga-
tor. However, if the original investigator tagged the data with
information such as:

’/Time-locked Event/Stimulus/Visual/Complex/
Dynamics/Passing/Same Direction/Overtaken
by Subject’

The dataset could be tagged to provide a context for searching
such as:

’/Context/Indoors/Simulator/Driving’
’/Context/Participants/Alone’

Hierarchical tag specifications allow users to select events or other
entities at a specific level of detail, particularly if the original
investigator tagged from a specified hierarchy. However, an inves-
tigator could have also used the individual tokens of these paths
as the tags in a flat search scheme.

In contrast to tags, which are free-floating associations,
attributes have a location in the entity structure, which is stored as
a path. If the attribute path is ’/event/target_dist’, the
value of the attribute was stored in x.event.target_dist
of the corresponding data structure, x. The ATTRIBUTES table
stores both the qualified entity’s UUID and its class (table
name) to facilitate searching. Although users can manually store
attributes after creating a dataset to facilitate a particular search
strategy, most attributes are stored at dataset creation time based
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on the modality definition. For example, MOBBED automat-
ically maps channel locations and some event modifiers into
attributes for EEG modality. Attributes can be either string or dou-
ble. More complex data types can be encoded as XML strings or
stored using the data definition mechanism in the appropriate
format.

OTHER MOBBED TABLES
MOBBED has several secondary tables, the most important of
which are the COLLECTIONS and TRANSFORMS tables. A collection
is an arbitrary grouping of entities. Collections can also be associ-
ated with attributes, tags, and data definitions. The TRANSFORMS

table is essentially a hash table mapping provenance strings
to data. Other tables include COMMENTS, CONTACTS, DEVICES,
ELEMENTS, and SUBJECTS. Additional details about the database
can be found in (Cockfield et al., 2013a).

MATLAB INTERFACE
A simple, usable interface is the key that allows researchers to
incorporate a computational database as an intrinsic part of their
MATLAB scripting without learning SQL or becoming familiar
with the underlying database schema. Careful thought has been
given to default parameters to simplify scripting. The following
section presents the MOBBED interface using examples that a
typical researcher might use in practice. Additional details and
complete interface specifications can be found in the MOBBED
User Manual (Cockfield et al., 2013b).

Table 1 summarizes the MATLAB interface for MOBBED.
The functionality is encapsulated in a MATLAB class, Mobbed,
which also has static methods to create and delete databases.
To access a database, the users create a Mobbed object and
call methods on this object. For users unfamiliar with MATLAB
object syntax, method calls are similar to ordinary function
calls except that the first argument is the variable containing
the object. Each of the methods listed in Table 1 is treated as
a single transaction. That is, all of the operations needed to
complete the call are either performed successfully or the oper-
ations are undone (rolled back) so that the underlying database is
unchanged.

The mat2db method stores a dataset in the database, and
the db2mat method retrieves a dataset from the database.
The getdb method retrieves rows from any database table
using simple, but flexible search criteria. The putdb method

Table 1 | MATLAB-database interface (Mobbed MATLAB class).

Method Description

mat2db create and store a dataset in the database

data2db create a new data definition and store corresponding
data in the database

db2mat retrieve a dataset from the database

db2data retrieve a data definition from the database

getdb retrieve rows from a single table

putdb create or update rows from a single table

close disconnect from the database (i.e., further calls cause an
exception)

creates or updates individual rows in a specified MOBBED
database table and is used to add tags, attributes, or event
overlays after storing the dataset with mat2db. The close
method disconnects from the database and releases associated
resources.

The remainder of this section presents some examples using
the Mobbed methods, assuming the original datasets are stored
in EEGLAB EEG structures. Runnable MATLAB scripts contain-
ing these examples as well the examples in the User Manual come
with the MOBBED distribution. The examples assume that the
user has installed PostgreSQL on the machine that will host the
database.

CREATING AND DELETING A DATABASE
The following example creates a database on the local machine
using the createdb static method of Mobbed:

Mobbed.createdb(’dbmobbed’, ’localhost’, ...
’postgres’, ’admin’, ...
’mobbed.sql’);

The first argument is the name of the database, and the sec-
ond argument is the name of the machine hosting the database
(in this case the local machine). To create a database on a dif-
ferent machine, replace ’localhost’ with the IP address or
hostname of the host machine. This example uses the default
’postgres’ user with a password of ’admin’ to create a
database called ’dbmobbed’. The mobbed.sql script, which
comes with the distribution, contains the SQL code needed to cre-
ate the database. The createdb function throws an exception if
an error occurs.

Once created, a database has permanent existence until it is
deleted, independently of whether MATLAB is running. Users can
use the pgAdmin tools (pgAdmin-homepage) or web-based tools
to examine the data outside of MATLAB.

The deletedb method of Mobbed deletes a particular
database:

Mobbed.deletedb(’dbmobbed’, ’localhost’, ...
’postgres’, ’admin’);

Users should exercise caution in using deletedb, particularly if
the database is being shared among users.

ACCESSING THE DATABASE IN MATLAB
Within MATLAB, users access a database by creating a Mobbed
object connecting MATLAB to the database and calling the meth-
ods listed in Table 1 using a handle for this object. The following
statement creates a connection to the ’dbmobbed’ database
that resides on the local machine:

DB = Mobbed(’dbmobbed’, ’localhost’, ...
’postgres’, ’admin’);

DB is the connector object handle used for future references using
this connection. Users may open connectors to multiple databases
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or have multiple connections to the same database active at the
same time. To close a connection use:

close(DB);

STORING DATASETS IN THE DATABASE
Users can store and retrieve datasets using the mat2db and
db2mat methods, respectively. MOBBED uses structures to pass
information to and from the database, so users don’t have to know
SQL or be aware of details of the underlying database organiza-
tion. The following example loads a previously saved EEGLAB
EEG structure into MATLAB and then writes the result to the
database:

% load an EEG structure
load eeglab_data_ch.mat;
% get an empty datasets structure
s = db2mat(DB);
% dataset name is required
s.dataset_name = ’eeglab_data’;
% set data to be stored
s.data = EEG;
% store in database DB
sUUID = mat2db(DB, s);

To store a dataset, first get an empty dataset structure from the
database by calling db2mat. The returned structure, s, is a tem-
plate to be filled in. The only field that is required to be a given
value is s.dataset_name. The s.data field should contain
the actual dataset data, which is stored as a large binary object for
easy retrieval. Store the dataset in the database by simply calling
mat2db with the filled in structure. The example file comes with
the MOBBED distribution.

The mat2db method returns a string containing the UUID
that identifies the dataset in the database. The system uses
128-bit UUIDs for all keys, which allows records from mul-
tiple sources to be manipulated and merged without con-
flict. Since the example sets only the name and data fields
of the input structure, s, MOBBED uses the default contact
(’System’), the default namespace (’mobbed’), the default
parent UUID (‘591df7dd-ce3e-47f8-bea5-6a632c6fcccb’), and the
default modality (’EEG’). MOBBED not only stores the actual
data as an external file, but also explodes the dataset events and
channel information into the database to facilitate searching. The
next section describes commands for exploding additional data
into the database.

The mat2db method also allows additional optional param-
eters. For example, the following call associates the tags
’EyeTrack’, ’VisualTarget’, and ’AudioLeft’ with
the dataset:

sUUID = mat2db(DB, s, ’IsUnique’, false, ...
’Tags’, {’EyeTrack’, ...
’VisualTarget’, ’AudioLeft’});

Since the keyword-value parameter ’IsUnique’ is false,
MOBBED increments the version if a dataset already exists with

that namespace and name combination. On return, sUUID con-
tains the UUID of the newly created dataset.

SEARCHING FOR AND RETRIEVING DATASETS FROM THE DATABASE
To provide an interface that is MATLAB-like, MOBBED uses
structures that mirror database tables. The getdb provides a
flexible SQL-free query mechanism for searching by returning an
array of structures with specified rows of a particular database
table:

mStruct = getdb(DB, table, limit, varargin)

The limit argument specifies the maximum number of rows
to return. The following statement retrieves a structure array
containing all of rows in the DATASETS table:

s = getdb(DB, ’datasets’, inf);

Users may qualify the search by specifying particular table column
values as well as tag and attribute values. Thegetdbmethod only
returns row-sets of the specified table, which includes metadata of
various types, but no actual data. The next example uses getdb
to retrieve up to 10 dataset rows matching a qualified search:

% get empty datasets structure
s = getdb(DB, ’datasets’, 0);
% dataset name starts with ’eeg’
s.dataset_name = ’eeg*’;
sNew = getdb(DB, ’datasets’, 10, s, ...

’RegExp’, ’on’, ...
’Tags’, {{’EyeTrack’}, ...
{’VisualTarget’, ’Audio*’}})

The first call to getdb retrieves an empty structure to be filled
with information specifying a qualified search. The second call
to getdb retrieves DATASETS rows based on four types of qual-
ifications. The first qualification limits how many matches are
retrieved as specified by the third argument of getdb, with inf
indicating all rows and 0 indicating the return of the empty row
structure for the specified table.

The fieldnames of the structure, s, returned by the first call
have a one-to-one correspondence to the DATASETS table column
names. The second qualification allows users restrict the retrieved
column values by setting match criteria in the fields of s.

String columns may be queried in one of three
ways: by direct match, with a cell array of allowed
choices, or by matching a regular expression. For exam-
ple, the qualification s.dataset_namespace =
’www.cs.utsa.edu’ restricts the search to datasets
whose namespace is ’www.cs.utsa.edu’. The qualification
s.dataset_namespace = {’www.cs.utsa.edu’,
’restricted’} restricts the search to datasets whose names-
pace is either ’www.cs.utsa.edu’ or ’restricted’. If
’RegExp’ is ’on’ as in the above example, the choices are
interpreted as regular expressions rather than direct matches. The
qualification s.dataset_name = ’eeg*’ specifies datasets
whose name starts with the string ’eeg’.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 20 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Cockfield et al. MOBBED for large dataset collections

Structure fields corresponding to database table columns con-
taining UUIDs allow a single UUID value query or a cell array of
UUIDs. Numerical columns allow query by matching particular
numeric values.

The third qualification uses combinations of AND, OR, and
regular expressions with tags. The getdb command allows an
arbitrary number of tag groups, specified by a keyword-value pair.
The keyword is ’Tags’ and the value is a cell array of tag groups.
Each tag group is a string specifying a single tag or a cell array
of string tags. Every tag group must be matched for the item to
be retrieved (AND). Within a tag group, at least one item must
match the query for the tag group to be matched (OR). In the
example, the dataset must have an ’EyeTrack’ tag and either a
’VisualTarget’ tag or a tag that starts with ’Audio’. The
specification:

’Tags’, {’EyeTrack’,’VisualTarget’,’Audio*’}

has three separate tag groups, and the datasets must match all
three tags. Matching of individual tags supports regular expres-
sions if ’RegExp’ is ’on’.

The fourth qualification matches attributes instead of tags.
Attributes are similar to tags except that attributes are structured,
meaning that they have a particular position in the data structure
relative to the item they qualify.

The retrieved datasets must match at least one value in each
tag or attribute group as well as the qualifications on the column
values. The UUIDs returned in the sNew structure array provide
the keys for retrieving the complete datasets using db2mat:

% extract a cell array of UUIDs
UUIDs = {sNew.dataset_uuid};
% retrieve datasets
datasets = db2mat(DB, UUIDs);

The returned datasets structure array has fields correspond-
ing to the DATASETS table column names, plus a data field
containing the actual data (in this case an EEGLAB EEG
structure):

EEG = datasets(1).data;

The getdb method also supports data cursors for iteratively
fetching the results of a query. In the following example, we pro-
cess 100 events at a time corresponding to the datasets identified
by UUIDs:

% get template for retrieving events
s = getdb(DB, ’events’, 0);
% set search criteria
s.event_dataset_uuid = UUIDs;
s = getdb(DB, ’events’, 100, s, ...

’DataCursor’, ’mycursor’);
.
while ~isempty(s)

% do stuff to events in s

s = getdb(DB, ’events’, 100, ...
’DataCursor’, ’mycursor’);

end

The first getdb gets the EVENTS table template to fill in, while
the second getdb initializes a data cursor called ’mycursor’
and retrieves up to 100 events corresponding to datasets whose
UUIDs are in the cell array UUIDs. The getdb in the loop
fetches the next 100 events after processing the previous set.
MOBBED supports data cursors only for the getdb method.
Single datasets are always retrieved in their entirety from the
externally stored binary object.

EVENTS
A key to manipulating large-scale event-rich environments is
the correct association and tagging of events across multiple
datasets. Events in different datasets may have the same names,
but completely different meanings, even within the same labora-
tory. Tags are a valuable step in this process. While the meaning
of “ButtonPress” may vary dramatically from study to study,
“ButtonPress” tagged events are likely to be more similar to each
other than say “ButtonPress” is to “TargetAppears.”

However, tags are not the complete solution. In order to give
researchers finer grain control over event associations across mul-
tiple datasets and studies, MOBBED supports event types that
are defined uniquely by UUIDs. These types play the role of
the “event codes” that researchers typically assign during data
acquisition. Usually a researcher runs experiments over multiple
subjects and conditions using a common set of event codes. If
the researcher anticipates combining multiple studies for analy-
sis, he or she may reuse these codes or map the correspondence
between the codes across the studies. The MOBBED event types
are designed to support this process.

When a user stores a dataset using mat2db, MOBBED auto-
matically creates a unique event type for each unique value of
EEG.event.type. (The dataset modality, in this case EEG,
determines the particular name of the field.) The mat2db
method returns a list of these unique types, which the user can
then pass to successive calls to mat2db to reuse the same codes.
During analysis, an analyst can extract events of a particular event
type and be assured that the experimenter believed that these
events were the “same.” The event types also provide a conve-
nient way for researchers to provide detailed annotation, making
it easier for others to understand what the type or code represents.

The following example illustrates how a user can create a set
of event types that is consistent over multiple datasets using the
’EventTypes’ optional argument of mat2db. This optional
argument specifies the event types corresponding to the names of
events in the experiments. MOBBED creates a new event type for
each event whose type or code does not correspond to an event
type already in this list:

% no unique event names (types) so far
uniqueEvents = {};
% get an empty datasets structure to fill
s = db2mat(DB);
% make space for 10 datasets
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UUIDs = cell(10, 1);
for k = 1:10

s.dataset_name = ...
[’eeg_data_ch’ num2str(k) ’.mat’];

load(s.dataset_name);
s.data = EEG;
% uniqueEvents is updated
[UUIDs(k), uniqueEvents] = ...

mat2db(DB, s, ...
’EventTypes’, uniqueEvents);

end

The example loads ten files: eeg_data_ch1.mat,...,
eeg_data_ch10.mat and stores each dataset in the database.
Each data file contains an EEGLAB EEG structure. Initially, the
uniqueEvents structure is empty, and MOBBED creates a
unique set of event types when storing the first dataset. For
EEG datasets, the values in EEG.event.type are converted to
strings and used as the event type. The ’EventTypes’ value
is a list of EVENT_TYPE_UUID keys for the EVENT_TYPES table. If
the type string matches the EVENT_TYPE value corresponding to
any of these keys, then MOBBED uses the corresponding key as
the EVENT_TYPE_UUID. If MOBBED doesn’t find a match, it cre-
ates a new type and adds the UUID to the uniqueEvents set.
When the loop completes, uniqueEvents contains a complete
set of event types for this data collection, having reused event
types where appropriate.

STORING AND RETRIEVING ADDITIONAL DATA
MOBBED supports several methods of associating additional
data with a dataset: by versioning, by parentage, by creating a
data definition, or by creating a transformation. The data defi-
nition approach is particularly useful for associating secondary
data or feature vectors with the data. The additional data can be
stored as a large data blob or can be exploded into the database in
various formats to allow search and retrieval of individual pieces.
Transforms are discussed in the section on caching, reuse, and
standardization.

The following example illustrates MOBBED data definitions.
Suppose a user wanted to store individual frames of the sample
EEG dataset used in the previous section. The following code cre-
ates a data definition that stores each data frame of the dataset
individually with a timestamp:

sdef = db2data(DB);
sdef.datadef_format = ’NUMERIC_STREAM’;
sdef.datadef_sampling_rate = EEG.srate;
sdef.datadef_description = ...

[EEG.setname ’individual frames’];
sdef.data = EEG.data;
sdefUUID = data2db(DB, sdef);

The call to data2db stores the data in a numeric stream for-
mat (each column of the data field is stored individually for direct
access). The individual columns have time stamps that give the
time in seconds relative to the start of the data, with spacing of the
reciprocal of the sampling rate. Other formats include large data

blobs (external), xml streams, numeric, and xml. The numeric
can be a single value or a vector of arbitrary size. For example,
to store epoched data for direct retrieval, simply provide an array
with the epochs in the columns as data and a sampling rate of
1. Alternatively you can provide timestamps of the epoch starts
instead of the sampling rate. Windowed power spectra can be
stored in this way or externally as large data blobs. PostgreSQL
incorporates some machine learning algorithms such as K-Means
clustering through the MADLIB library (Hellerstein et al., 2012).
Individual features can be stored in a data definition and clustered
using calls to this library.

The data2db method stores data in MOBBED, but does not
associate it with any datasets or other entities. To associate a data
definition with a particular entity such as a dataset, you create a
data map entry for the association. The following code segment
maps this data to all 10 of the datasets loaded in the previous
section. The structure path indicates how this data is associated
with the entity. In the example, the data should be mapped to the
.dataEx field of the dataset:

smap = getdb(DB, ’datamaps’, 0);
smap.datamap_def_uuid = sdefUUID{1};
smap.datamap_path = ’/dataEx’;

% load destination
for k = 1:10

smap.datamap_entity_uuid = UUIDs{k};
smap.datamap_entity_class = ’datasets’;
putdb(DB, ’datamaps’, smap);

end

The db2data method returns the reconstituted data given the
data definition UUID:

% ddef.data has the actual data
ddef = db2data(DB, sdefUUID);

More typically, a user will want to retrieve all of the data asso-
ciated with a particular dataset. The db2data method has an
alternative form in which the rowsets from the data maps are
passed as an argument. The following code segment retrieves all
of the data items associated with the dataset whose UUID is in
UUIDs{1} and puts them in the structures specified by the data
map. In the example shown below, the dataset has one data item,
which will be returned in the ddef.data.dataEx structure
variable:

% get empty datamaps structure
smap = getdb(DB, ’datamaps’, 0);
% pick first dataset to try
smap.datamap_entity_uuid = UUIDs{1};
% retrieve all data
dmaps = getdb(DB, ’datamaps’, inf, smap);
% get data in structured form
ddef = db2data(DB, dmaps);

When presented with multiple row sets, db2data returns the
result for the ith row set in ddef.data(i).dataEx.
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CACHING, REUSE, AND STANDARDIZATION
MOBBED can also be used for caching expensive results and
facilitating the reuse of calculations produced by standardized
pipelines. Many groups have a standardized automated pipeline
for processing their data and use a file naming convention to
designate the results. Such approaches usually produce multi-
ple copies of the processed data, and investigators can easily lose
track of these copies. Sharing among group members or across
groups compounds these difficulties. Often each individual will
end up redoing the processing at great computational expense to
be certain of the starting point and processing steps.

Many workflow-oriented programs and packages partially
track the processing history or provenance of the data to
improve reproducibility, and a number of journals and confer-
ences encourage or require that authors make their code and data
available after paper acceptance. Unfortunately, most users have
not adopted tools to facilitate provenance, and no standards have
emerged for doing so. True provenance (which requires every
bit of history to be saved) can be quite difficult, making histo-
ries unreadable and unusable for ordinary users (Chapman and
Jagadish, 2010).

MOBBED provides a simple provenance mechanism that users
can incorporate into their workflows to facilitate caching, reuse,
and standardization. The steps are as follows:

(1) Store the original data in the database and obtain its UUID
(mat2db).

(2) Apply the processing pipeline to the data to obtain a new
dataset.

(3) Store the resulting data in the database and obtain its UUID
(mat2db).

(4) Choose a transform string that unambiguously identifies the
transformed data.

(5) Add the UUID and transform string to the TRANSFORMS

table (putdb).

Suppose an original dataset has been uploaded to the database
from the ’eeglab_data_ch.mat’ data file and that the
resulting UUID is available in sUUID{1} (step 1).

For illustration purposes, assume that the pipeline consists of
calling the EEGLAB pop_eegfilt command to high-pass the
data at 1 Hz (step 2):

EEG = pop_eegfilt(EEG, 1.0, 0, [], 0);

After we execute the following code to save the EEG dataset in
MOBBED, the sUUIDNew{1} field contains the resulting UUID
(step 3):

% get empty datasets structure
s = db2mat(DB);
% set up for storage
s.dataset_name = ’eeglab_data_filtered.set’;
% put data in structure for storing
s.data = EEG;
s.dataset_parent_uuid = sUUID{1};
% store the dataset
sUUIDNew = mat2db(DB, s);

The user can choose any transform string, but the choice should
be something that unambiguously identifies the result and can
be computed or remembered. An example string might be con-
structed as (step 4):

tString = [’pop_eegfilt((’...
sUUID{1} ’),1.0,0,[],0)’];

The tString transform string can be created from the orig-
inal command by substituting the UUID corresponding to the
input EEG structure for the EEG argument and removing extra
blanks. The EEGLAB pop functions produce a suitable string for
transformation in the command history.

The result can then be stored as a transformation for later
lookup (step 5):

t = getdb(DB, ’transforms’, 0);
t.transform_uuid = sUUIDNew{1};
t.transform_string = tString;
t.transform_description = ...

’Used EEGLAB FIR filter [1.0, 0]’;
putdb(DB, ’transforms’, t);

Once the transform is in the database, researchers can retrieve the
result using getdb rather than recomputing it. The following
example retrieves the row(s) of the TRANSFORMS table using the
transform string:

% retrieve an empty structure
t = getdb(DB, ’transforms’, 0);
t.transform_string = tString;
% get the results
cached = getdb(DB, ’transforms’, inf, t);
% get dataset
filtEEG = db2mat(DB, ...

cached(1).transform_uuid);

This strategy promotes sharing and organizes reuse more sys-
tematically than a simple file naming convention and documents
the process in as much detail as the user chooses. To make this
transformation process reliable, users would need to develop pro-
cessing scripts that used wrapper functions to include database
logging automatically.

THREADING AND PARALLEL PROCESSING
MOBBED also supports parallel processing and multi-threading
if the user has the MATLAB Parallel Computing Toolbox as illus-
trated by the following example. The threads variable contains
the number of workers used for parallel computing. For local pro-
cessing, this should be less than the number of cores the desktop
has. The fUUIDs variable is a cell array containing lists of UUIDs
of datasets to be processed by each thread or worker:

matlabpool(threads);
parfor k = 1:length(fUUIDs)

doDbPar(dbName, host, user, ...
password, fUUIDS{k});

end
matlabpool close;
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An example of the doDbPar is shown below. The key to using
MOBBED in parallel processing is to open a connection to the
database within each worker itself rather than passing an open
connection as an argument, since all arguments to the worker
functions must be serializable:

function doDbPar(dbName, hostName, ...
userName, password, dataUUIDs)

if ~isempty(dataUUIDs)
DB = Mobbed(dbName, hostName, ...

userName, password, false);
for k = 1:length(dataUUIDs)

dataset = db2mat(DB, dataUUIDs{k});
% do stuff to this dataset

end
close(DB);

end
end

The distribution provides a number of example functions that
illustrate various uses of parallel processing.

IMPLEMENTATION
An overview of the MOBBED tables is shown in Figure 1. The
getdb and putdb methods provide a 1-to-1 mapping between
database columns and MATLAB structure fields. These meth-
ods determine the fields and their types directly by interrogating
the database. The getdb method allows regular expressions and
other qualifications for the supported types: char varying, double,
bigint, and UUID.

It would be possible to use the reflection facilities of JAVA and
MATLAB to map fairly general structures into the database. We
decided against this approach for a number of reasons, most espe-
cially efficiency and complexity. Instead we use the concept of
a dataset modality to define how a particular MATLAB dataset
should be exploded into the database. Many tools represent their
datasets using some type of standardized format. For formats
other than the supported ones, the user would need to implement
a new modality using EEG_Modality as a model. Once this is
accomplished, search and retrieval is performed as before. Any
dataset can be stored using the SIMPLE modality, which creates an
entry in the DATASETS table and stores the tags or attributes asso-
ciated with the dataset itself. MOBBED also stores every dataset
as a large binary object retrievable by db2mat, irrespective of
modality.

The mat2db and data2db methods each require a struc-
ture whose fields reflect the columns of the DATASETS and the
DATADEFS table, respectively. To use these methods, users retrieve

an empty structure and fill in the fields, leaving default entries
blank. In each case, the user must set the .data field of the struc-
ture to the corresponding data before calling the method. The
mat2db stores a dataset, while the data2db creates a data def-
inition and stores auxiliary data in the specified format. Storing
auxiliary data is generally a two-stage process—the user first cre-
ates a data definition with data2db and then uses putdb to
create any number of entries in the DATAMAPS table associating
this data item with other entities in the database. Any MOBBED
entity can have associated data through this mechanism.

The CTAGGER tools for systematic tagging of event streams
have recently been released (CTAGGER, 2013). These tools sup-
port efficient tagging of events represented in MATLAB through
the .event subfield in a format that is consistent with the EEG

modality (as used by the EEGLAB EEG structure) as well as the
GENERIC modality. The CTAGGER tools store the tags in a stan-
dardized format in the .etc.tags subfield. The next release of
MOBBED will automatically read this standardized format and
store the tags for both of these modalities.

The MOBBED User Guide (Cockfield et al., 2013b) provides
additional details and many more examples of the mapping
between MATLAB structures and the database.

PERFORMANCE
In order to assess the performance and overhead of adding a
database to the MATLAB workflow, we tested basic database oper-
ations on four different data collections summarized in Table 2.

The first collection consists of the small, relatively simple
dataset distributed with EEGLAB that is used for the examples in
this paper. We created 10 identical copies of this dataset to form
a collection. Each dataset has 154 different events, but the events
are only of two distinct types.

The second collection (attention) contains large datasets, each
having a large number of events. The third collection (shooter)
contains large datasets, each with a moderate number of events.
However, the events have a large number of attributes that must
be stored individually for each event. The fourth data collection
(BCI2000) is publicly available and contains a large number of
datasets. The individual datasets were stored as EEGLAB EEG
structures in .mat files on the local files system for all tests.

To test the performance, we used three identical machines
whose specifications are shown in Table 3 (one running the
Windows 7 operating system and two running Linux). We did a
clean install of the operating system and software on the three
machines. No other programs were installed. We ran eight dif-
ferent configurations. The local configurations refer to MATLAB
and the database running on the same machine. Remote con-
figurations refer to configurations in which the database resided

Table 2 | Attributes of test datasets (average number per dataset).

Data collection Datasets Subjects Channels Frames Events (unique) Event attributes

EEGLAB (Delorme and Makeig, 2004) 10 1 32 30,504 154 (2) 4

Attention (Onton et al., 2006) 40 39 36 654,234 5,571 (17) 4

Shooter (Kerick et al., 2007) 112 14 40 206,487 270 (17) 18

BCI2000 (Schalk et al., 2004) 1526 109 64 18,226 26 (16) 3
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Table 3 | Configuration of test machines for performance tests.

Item Description

Processor Intel Core i5-2400 quad-core processor 3.10 GHz, 1 MB
L2 + 6 MB L3 cache

Memory 16 GB DDR3-1333 MHz SDRAM

Disk Hitachi Deskstar 3 TB 7200 RPM SATA 6.0 Gb/s 3.5-Inch

OS Windows 7 Professional or Ubuntu 12.04 LTS

MATLAB 2012a

PostgreSQL Version 9.2

on a Linux machine separate from the client machine, but on
the same sub network. We also ran parallel versions of the tests
using two connections to the database and the MATLAB parfor
command.

Table 4 shows the timing results for basic operations on the
four different data collections of Table 2. Each entry represents
the time in seconds averaged over a dataset. Values in parentheses
indicate the parallel version with two threads.

The first section of Table 4 gives the average time in seconds
to load a dataset (from a .mat file) and store it as a temporary
file on the local file system. A load and store operation is per-
formed each time a dataset is uploaded to the database in the
current implementation, so these values indicate how important
this overhead is in overall performance.

The second section of Table 4 provides the average time to
store each dataset in the database. The events are exploded into
the database, including event attributes and channel information.
The entire dataset is stored in the database as a large binary object
external to the database tables. The times shown are averaged over
each dataset, so datasets with many events and time points, such
as the attention, take longer.

Ordinarily, datasets are retrieved from the database using their
representation as large binary objects. The third section of Table 4
shows that retrieval from the database can be comparable to
reading and writing to the local file system.

The fourth section of Table 4 shows the average time in sec-
onds to explode the vector time samples of the dataset as individ-
ual searchable items in the data table. Again, since these values
represent the average for a dataset, collections containing long
recordings (e.g., attention and shooter) take longer. The next sec-
tion shows the time it takes to reassemble individual frames into
dataset from the exploded data.

The final section shows the average time per dataset to retrieve
all of the events of the dataset without retrieving the entire
dataset. The shooter data has complex event attributes and the
attention collection has a significant number of events per dataset,
so the average time per dataset is significantly longer for these.
PostgreSQL has a vacuum operation, which should be run after
a large number of writes or modifications. Each database was
vacuumed between the storage operations and the retrieval.

The process was also run with two workers (and four
workers—not shown) using the MATLAB Parallel Processing
Toolbox. The performance improved by a factor of approximately
1.7 for each doubling of the number of workers. The benefit of
multithreading is most apparent for large retrieval operations,

Table 4 | MOBBED performance in time in seconds averaged over the

datasets within each collection.

Description EEGLAB Attention Shooter BCI2000

LOAD/STORE LOCAL.mat FILE:

Windows 0.15 (0.08) 4.42 (3.31) 1.44 (0.96) 0.41 (0.23)

Linux 0.15 (0.07) 4.45 (2.72) 1.42 (0.84) 0.41 (0.22)

STORE DATASET IN db:

Windows 0.67 (0.44) 14.50 (9.42) 5.36 (3.88) 0.62 (0.53)

Linux 0.77 (0.47) 14.66 (8.83) 6.73 (4.16) 1.25 (1.06)

Linux-Linux 0.87 (0.54) 16.08 (9.60) 7.21 (4.53) 1.15 (1.02)

RETRIEVE DATASET FROM db:

Windows 0.15 (0.11) 1.87 (1.03) 0.60 (0.32) 0.08 (0.04)

Linux 0.18 (0.10) 1.99 (1.12) 0.70 (0.31) 0.10 (0.04)

Linux-Linux 0.22 (0.14) 2.90 (1.67) 1.05 (0.56) 0.12 (0.06)

CREATE A db DATA DEFINITION FOR FRAMES:

Windows 1.74 (1.58) 37.97 (33.34) 14.85 (12.36) 2.92 (2.90)

Linux 1.63 (1.22) 40.46 (34.36) 17.35 (14.55) 3.19 (3.35)

Linux-Linux 1.72 (1.27) 44.29 (34.46) 17.71 (13.39) 3.64 (3.36)

RETRIEVE FRAMES FROM db DATA DEFINITION:

Windows 4.61 (2.34) 77.73 (42.34) 25.28 (13.02) 2.54 (1.29)

Linux 4.83 (2.45) 83.35 (44.00) 27.10 (13.79) 2.87 (1.40)

Linux-Linux 4.93 (2.43) 85.44 (43.56) 28.24 (14.37) 2.98 (1.48)

RETRIEVE EVENTS FROM db:

Windows 0.05 (0.09) 0.32 (0.32) 0.02 (0.02) 0.002 (0.002)

Linux 0.05 (0.09) 0.25 (0.27) 0.02 (0.03) 0.002 (0.002)

Linux-Linux 0.05 (0.09) 0.26 (0.28) 0.02 (0.02) 0.002 (0.002)

Values in parentheses are for the parallel version with two workers.

and a nearly linear speedup has been observed for the individual
frame retrieval from independent datasets.

RELATED WORK
Data sharing and integration of searching and retrieval
of databases with computational analysis is common in
bioinformatics (Galperin and Fernández-Suárez, 2011) and has
resulted in an explosion of large-scale reproducible analysis. In
contrast, the sharing of neurophysiological data and tools is in
its infancy (Akil et al., 2011; Koch and Reid, 2012; Poline et al.,
2012), and systematic integration of EEG data into computa-
tional pipelines is uncommon. The number of publicly available
recordings of human brain activity such as EEG and ECOG is
also very limited. Two large EEG collections are available through
PhysioNet (Goldberger et al., 2000): a 109-subject data collec-
tion of multichannel EEG recordings of BCI motor tasks (Schalk
et al., 2004) and a 22-subject data collection of multichannel EEG
recordings of pediatric seizure patients (Shoeb, 2009). Schulze-
Bonhage et al. (2011) demonstrate the importance of large-scale
high-quality datasets in their retrospective comparison of meth-
ods for predicting seizures from EEG.

Clearinghouse-type resources such as the Neuroscience
Information Framework (NIF) (Gardner et al., 2008; Bandrowski
et al., 2012), the International Neuroinformatics Coordinating
Facility (INCF) (De Schutter, 2009), and Neuroimaging
Informatics Tools and Resources Clearinghouse (NITRC) (Luo
et al., 2009) provide portals to heterogeneous collections of
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neuroscience resources, but do not provide tools for integrating
these resources into computations. The EPILEPSIAE (Evolving
Platform for Improving the Living Expectations in Subjects
Suffering from Ictal Events) project is a European effort to pro-
duce a high-quality, highly-annotated database of multi-channel
continuous recordings of 300 subjects that includes EEG (Ihle
et al., 2012).

Databases are rarely incorporated into MATLAB time-series
workflows in general and EEG research in particular. The semi-
structured nature of the data makes it difficult to map this data
into a traditional relational database, and most users would pre-
fer to avoid dealing with schemas and SQL queries in their
workflows. G-Node (Herz et al., 2008) offers an online database
for users to archive their data in a platform neutral manner.
They offer a MATLAB client that allows users to import datasets
and associated metadata into MATLAB and to write informa-
tion back to the database. G-Node allows users to maintain a
parent-child relationship among datasets and to store metadata
along with experimental data (Grewe et al., 2011). G-Node is
meant to provide archival storage and high-level provenance for
data-collections, while MOBBED is meant to directly support
large-scale computation in event-rich environments. The two
database approaches are complementary, and G-Node structures
can be mapped to and from a MOBBED representation in a
straightforward manner, although MOBBED currently does not
provide utility functions to do so.

A few MATLAB software packages keep internal data struc-
tures to organize information across multiple datasets. EEGLAB
(Delorme and Makeig, 2004; Delorme et al., 2011), a general pur-
pose MATLAB-based platform for EEG and MEG, has a STUDY
structure that allows users to group a collection of datasets to
perform a statistical comparison across subjects and conditions.
Brainstorm (Tadel et al., 2011) also supports data structures for
internal grouping of data by experiment, subject, and condition.
MOBBED has direct support for EEGLAB EEG structures, with
plans to develop a database browsing function and a plugin to
load and store to a MOBBED database. No direct support for
Brainstorm is planned, but Brainstorm representations could be
mapped to a MOBBED database.

EPILAB (Teixeira et al., 2011), another MATLAB-based
analysis toolbox for EEG in the context of seizure prediction, cre-
ates a mapping of data files on a local disk so that multiple files
can be treated as a single dataset for analysis. Similarly, MoBILAB
(MoBILAB-homepage), a MATLAB toolkit under development at
the Swartz Center for Computational Neuroscience at UCSD, uses
memory mapped files to represent collections of related stream
data including EEG, eye-tracking, video, audio, and motion cap-
ture. Direct support for mapping MoBILAB files to a MOBBED
database is planned in the next release.

BCILAB (Delorme et al., 2011), a MATLAB toolbox for
automating machine learning pipelines, has an internal caching
system for holding and retrieving the results of expensive cal-
culations during processing. BCILAB uses the internal caching
system for cross-validation and motivated the transformations
incorporated into MOBBED.

FieldTrip (Oostenveld et al., 2011) is another widely-
used MATLAB toolbox for analysis of EEG and other
electrophysiological data. FieldTrip is oriented toward the

development of automated batch pipelines and presents a very
clean scripting interface. Most FieldTrip functions have two types
of input-output arguments: data and cfg. The configuration
structure, cfg, contains the parameters specifying how the data
is to be processed. The data structure is usually the result of a
previous FieldTrip function call. This structure usually has a cfg
subfield containing the FieldTrip function call that produced
it. Researchers could adapt MOBBED to FieldTrip applications
by storing both the data and cfg structures as SIMPLE datasets,
replacing the .cfg field of data with the UUID of the stored cfg
structure. To enable caching, researchers would need to add each
FieldTrip function call to the TRANSFORMS table, replacing data
and cfg structures by the UUIDs.

The PSOM pipeline system (Bellec et al., 2012) provides a
lightweight scripting framework and execution engine for sci-
entific workflows in MATLAB. The infrastructure manages jobs
and functional “bricks” that are functions developed by the user.
By using an appropriate naming convention, users could develop
bricks that save and restore from a MOBBED database and
incorporate them into the pipeline.

The MATLAB Database Toolbox (Mathworks) supports data
cursors and queries in SQL from MATLAB. Several freely available
MATLAB toolboxes (Almgren, 2005; Shvorob, 2007; Kerr, 2012)
also support execution of SQL scripts from within MATLAB.
Unlike these MATLAB SQL query toolkits, MOBBED is designed
to provide SQL-free database access using a more familiar struc-
ture paradigm that can be easily incorporated into computational
workflows.

DISCUSSION
Our primary goal in implementing MOBBED was to facilitate
large-scale data-mining of event-rich time series, particularly
those associated with realistic EEG. In a typical analysis of a lab-
oratory experiment, a researcher might demonstrate a significant
difference in an EEG feature such as the P300 or the power in
a particular frequency band between epochs corresponding to
different experimental conditions.

With access to a large MOBBED database, the researcher could
then extract similarly tagged event conditions and determine
whether a similar pattern was observed in other data collections.
MOBBED directly supports retrieval of events within a window
of events with specified tags or other characteristics. Assuming
that the database datasets were richly-annotated with multiple
event overlays, the researcher could ask which types of events were
likely to co-occur. Supervised learning methods generally require
labeling of the data at particular time points with “ground truth.”
Tagged events can play the role of ground truth. Unsupervised
learning techniques find patterns in the data or in data features.
Often the most difficult step in unsupervised learning is deter-
mining what the data items in each group have in common, a
process that can be facilitated by retrieving event information
from a MOBBED database.

Another type of question that might be asked is how often
particular features co-occur across data collections. A researcher
could store these feature vectors as MOBBED data defini-
tions and use the underlying capabilities of PostgreSQL for
searching. PostgreSQL is a widely-used open source object-
relational database that supports a variety of data types and
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extensions such as elements that are vectors and JSON-like
unstructured query support. As of version 9.1, PostgreSQL sup-
ports K-nearest-neighbor indexing and some machine learning
algorithms available through MADlib (Hellerstein et al., 2012). A
user may compute feature vectors for a dataset, store them as part
of the dataset, and retrieve records corresponding to these features
or close to these features.

An alternative to the relational approach is the NoSQL
approach as implemented by databases such as Cassandra
(Hewitt, 2010) or MongoDB (Chodorow and Dirolf, 2010).
NoSQL databases generally provide tables with unstructured rows
that can be queried using name:value queries. These databases
are highly scalable, but often don’t have consistency guarantees
and can be tricky to set up and tune, especially if they are dis-
tributed over multiple nodes. We chose a more traditional route
because we were able to map the semi-structured problem space
to a relational representation that is sufficiently flexible to imple-
ment the core use cases. We do not envision a computational scale
that would exceed the capabilities of PostgreSQL systems. We felt
the stability, power, and flexibility of PostgreSQL made it a logical
choice.

The potential and need for individualized computational
databases is just beginning to be realized. By providing a sim-
ple, turnkey, generalized database for MATLAB programmers,
MOBBED can facilitate sharing and reuse of data. Although
MOBBED can be used as a permanent archival database for
a variety of data types, its primary focus is sharing and reuse
of intermediate computations and standardized pipeline results
among members of a group. MOBBED can facilitate the han-
dling of large-scale analysis, including extraction of complicated
event scenarios, searching for data based on features, and com-
bining results across multiple studies that have been tagged using
a common framework.

The MOBBED architecture is designed to accommodate very
general types of data and currently supports three modalities: EEG

(the default), SIMPLE, and GENERIC. The EEG modality assumes
the data is in an EEGLAB EEG structure. It stores the entire struc-
ture as a large binary object, but fully explodes the events and their
attributes as well as channel information and other attributes for
searching and manipulation. The SIMPLE modality simply stores
the dataset as a large binary object and does not explode events.
Users use this modality for simple archiving of datasets and are
free to assign additional tags and attributes for special purpose
searching. The GENERIC modality allows the flexible creation of
datasets that have exploded events and metadata. Users who wish
to create a new modality called XXX simply identify the modal-
ity by adding an entry to the modality table using putdb and

implement a MATLAB class called XXX_Modality that has
a static save method. The implementations call the JAVA API
using the underlying database transaction mechanism.

MOBBED has flexible data representations that can repre-
sent a variety of different types of data. It is also possible to
use MOBBED in a cloud computing environment with compu-
tational workers running on the remote infrastructure and deliv-
ering results to local clients. MOBBED has the infrastructure to
support common tagging of event types across multiple datasets
to facilitate combining of data across studies using CTAGGER and
related tools. The current release of MOBBED has limited support
for stored procedures and nearest neighbor queries. User-friendly
support for these features is planned for the next release, with the
goal of enhancing capabilities for large-scale data mining. Also
planned are plugins for direct integration into EEGLAB and the
addition of direct support for MoBILAB representations.

MOBBED consists of a MATLAB library and an independent
Java layer that manages the database connections using JDBC
and performs operations as SQL queries. One could write an
adaptor to store and retrieve data using other platforms and
languages through this Java layer. MOBBED runs on MATLAB
versions R2010b and higher and requires no additional tool-
boxes. The project is open source and is freely available at:
http://visual.cs.utsa.edu/mobbed. MATLAB users do not need to
download the source for the Java layer, as the appropriate Java
archive files are included with the distribution. Source and issue
reports for MOBBED are maintained at http://vislab.github.com/
MobbedMatlab/
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