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Label fusion based multi-atlas segmentation has proven to be one of the most competitive
techniques for medical image segmentation. This technique transfers segmentations
from expert-labeled images, called atlases, to a novel image using deformable image
registration. Errors produced by label transfer are further reduced by label fusion
that combines the results produced by all atlases into a consensus solution. Among
the proposed label fusion strategies, weighted voting with spatially varying weight
distributions derived from atlas-target intensity similarity is a simple and highly effective
label fusion technique. However, one limitation of most weighted voting methods is that
the weights are computed independently for each atlas, without taking into account the
fact that different atlases may produce similar label errors. To address this problem, we
recently developed the joint label fusion technique and the corrective learning technique,
which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one
of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications
(SATA) challenge. To make our techniques more accessible to the scientific research
community, we describe an Insight-Toolkit based open source implementation of our label
fusion methods. Our implementation extends our methods to work with multi-modality
imaging data and is more suitable for segmentation problems with multiple labels. We
demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas
Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image
dataset. We report the best results on these two datasets so far.
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1. INTRODUCTION
Image segmentation is often necessary for quantitative medi-
cal image analysis. In most applications, manual segmentation
labeled by human expert is treated as the gold standard. However,
due to the high labor intensive nature of manual segmenta-
tion and its poor reproducibility, it is often desirable to have
accurate automatic segmentation techniques to replace manual
segmentation.

As an intuitive solution for applying manually labeled images
to segment novel images, atlas-based segmentation (Rohlfing
et al., 2005 ) has been widely applied in medical image analysis.
This technique applies example-based knowledge representation,
where the knowledge for segmenting a structure of interest is
represented by a pre-labeled image, called an atlas. Through
establishing one-to-one correspondence between a target novel
image and an atlas image by image-based deformable registration,
the segmentation label can be transferred to the target image from
the atlas.

Segmentation errors produced by atlas-based segmentation
are mostly due to registration errors. One effective way to reduce
such errors is through employing multiple atlases. When multiple
atlases are available, each atlas produces one candidate segmen-
tation for the target image. Under the assumption that seg-
mentation errors produced by different atlases are not identical,

it is often feasible to derive more accurate solutions by label
fusion. Since the example-based knowledge representation and
registration-based knowledge transfer scheme can be effectively
applied in many biomedical imaging problems, label fusion based
multi-atlas segmentation has produced impressive automatic seg-
mentation performance for many applications (Rohlfing et al.,
2004; Isgum et al., 2009; Collins and Pruessner, 2010; Asman
and Landman, 2012 ; Wang et al., 2013a ). For some most
studied brain image segmentation problems, such as hippocam-
pus segmentation (Wang et al., 2011) and hippocampal subfield
segmentation (Yushkevich et al., 2010), automatic segmentation
performance produced by multi-atlas label fusion has reached the
level of inter-rater reliability.

Weighted voting with spatially varying weight distributions
derived from atlas-target intensity similarity is a simple and
highly effective label fusion technique. However, most weighted
voting methods compute voting weights independently for each
atlas, without taking into account the fact that different atlases
may produce similar label errors. To address this problem, we
developed the joint label fusion technique (Wang et al., 2013b)
and the corrective learning technique (Wang et al., 2011). To
make our techniques more accessible to the scientific research
community, we describe an Insight-Toolkit based implementa-
tion of our label fusion methods. Our work has the following
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novel contributions. First, we extend our label fusion techniques
to work with multi-modality imaging data and with user designed
features. Second, we simplify the usage and improve the effi-
ciency of the corrective learning technique to make it more
suitable for segmentation problems with multiple labels. Both
theoretical and implementation issues are discussed in detail.
We demonstrate the usage of our software through two appli-
cations: brain magnetic resonance image (MRI) segmentation
using the data from the 2012 MICCAI Multi-Atlas Labeling
Challenge (Landman and Warfield, 2012 ) and canine leg mus-
cle segmentation using the data from 2013 SATA challenge.
We report the best segmentation results on these two datasets
so far.

2. MATERIALS AND METHODS
2.1. METHOD OVERVIEW
2.1.1. Multi-atlas segmentation with joint label fusion
Let TF be a target image to be segmented and A1 =(
A1

F, A1
S

)
, . . . , An = (

An
F, An

S

)
be n atlases, warped to the space

of the target image by deformable registration. Ai
F and Ai

S denote
the ith warped atlas image and manual segmentation. Joint label
fusion is a weighted voting based label fusion technique.

Weighted voting is a simple yet highly effective approach
for label fusion. For instance, majority voting (Rohlfing et al.,
2005 ; Heckemann et al., 2006) applies equal weights to every
atlas and consistently outperforms single atlas-based segmen-
tation. Among weighted voting approaches, similarity-weighted
voting strategies with spatially varying weight distributions have
been particularly successful (Artaechevarria et al., 2009; Isgum
et al., 2009; Sabuncu et al., 2010; Yushkevich et al., 2010;
Wang et al., 2013b). The consensus votes received by label
l are:

p̂ (l|x, TF) =
n∑

i = 1

wi
xp
(

l|x, Ai
)

(1)

where p̂ (l|x, TF) is the estimated probability of label l for the
target image at location x. p

(
l|x, Ai

)
is the probability that Ai

votes for label l at x, with
∑

l ∈ {1,...,L} p
(
l|x, Ai

) = 1. L is the
total number of labels. Note that for deterministic atlases that
have one unique label for every location, p

(
l|x, Ai

)
degenerates

into an indicator function, i.e., p (l|x, TF) = I (TS(x) = l) and
p
(
l|x, Ai

) = I
(
Ai

S(x) = l
)
, where TS is the unknown segmenta-

tion for the target image. wi
x is the voting weight for the ith atlas,

with
∑n

i = 1 wi
x = 1.

2.1.1.1. The joint label fusion model Wang et al., 2013b. For
deterministic models, we model segmentation errors produced
by each warped atlas as δi(x) = I (TS(x) = l) − I

(
Ai

S(x) = l
)
.

Hence, δi(x) ∈ {−1, 0, 1} is the observed label difference. The
correlation between any two atlases in producing segmentation
errors at location x are captured by a dependency matrix Mx, with

Mx(i, j) = p
(
δi(x)δj(x) = 1 | TF, Ai

F, A
j
F

)
measuring the prob-

ability that atlas i and j produce the same label error for the
target image. The expected label difference between the con-
sensus solution obtained from weighted voting and the target
segmentation is:

Eδ1(x),...,δn(x)

⎡
⎣(I

(
TS(x) = l

)−
n∑

i = 1

wi
xI
(

Ai
S(x) = l

))2∣∣∣
TF, A1

F, . . . , An
F

] = wt
xMxwx (2)

where t stands for transpose. To minimize the expected label
difference, the optimal voting weights can be solved by wx =

M−1
x 1n

1t
n M−1

x 1n
, where 1n = [1; 1; . . . ; 1] is a vector of size n. To avoid

inverting an ill-conditioned matrix, we always add an identity
matrix weighted by a small positive number α to Mx.

The key difference between joint label fusion and other label
fusion methods is that it explicitly considers correlations among
atlases, i.e., the dependence matrix, into voting weight assignment
to reduce bias in the atlas set. In the extreme example, if one of
the atlases in the atlas set is replicated multiple times, the com-
bined weight assigned to all replicates of the atlas would be the
same as when the atlas is included only once. This is in contrast
to earlier weighted voting label fusion methods (Artaechevarria
et al., 2009; Sabuncu et al., 2010), in which the weight assigned to
the replicated atlas increases with the number of replicates. More
generally, the weights assigned by joint label fusion to anatomical
patterns in the atlases are not biased by the prevalence of those
patterns in the atlas set.

2.1.1.2. Estimation of the pairwise atlas dependency matrix Mx.
Since the segmentation of the target image is unknown, we apply
an image similarity based model over local image patches to
estimate Mx as follows:

Mx(i, j) ∼
[

D∑
d = 1

〈∣∣Ai, d
F

(N (x)
)− Td

F

(N (x)
)∣∣, ∣∣Aj, d

F

(N (x)
)

−Td
F

(N (x)
)∣∣〉]β (3)

where d indexes through all imaging modality chan-
nels and D is the total number of imaging modalities.∣∣∣Ai, d

F

(N (x)
)− Td

F

(N (x)
)∣∣∣ is the vector of absolute inten-

sity difference between a warped atlas and the target image in
the dth modality channel over a local patch N (x) centered at x
and 〈·, ·〉 is the dot product. β is a model parameter. Note that
if the off-diagonal elements in Mx are set to zeros, the voting
weights derived from Mx is equivalent to the local weighted
voting approach with the inverse distance weighting function
as described in Artaechevarria et al. (2009). In this simplified
case, β has a more straightforward interpretation that controls
the distribution of voting weights. Large βs will produce more
sparse voting weights and only the atlases that are most similar to
the target image contribute to the consensus solution. Similarly,
small βs will produce more uniform voting weights.

To make the measure more robust to image intensity scale vari-
ations across different images, we normalize each image intensity
patch to have zero mean and a unit variance before estimating Mx.

2.1.1.3. The local search algorithm. To make label fusion more
robust against registration errors, we apply a local search
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algorithm to find the patch from each warped atlas within a small
neighborhood Ns(x) that is the most similar to the target patch in
the target image. Under the assumption that more similar patches
are more likely to be correct correspondences, instead of the orig-
inal corresponding patches in the warped atlases, the searched
patches are applied for label fusion.

We determine the local search correspondence map between the
atlas i and the target image as follows:

ξi(x) = arg min
x′ ∈Ns(x)

∥∥∥Ai
F

(N (x′)
)− TF

(N (x)
)∥∥∥2

, (4)

Note that the domain of the minimization above is restricted
to a neighborhood Ns(x). Given the set of local search corre-
spondence maps {ξi}, we refine the definition of the consensus
segmentation as:

p̂ (l|x, TF) =
n∑

i = 1

wi(ξi(x)
)
p
(

l|ξi(x), Ai
)

, (5)

The local search algorithm compares each target image patch with
all patches within the searching neighborhood in each warped
atlas. Normalizing image patches within the search neighborhood
can be an expensive operation. To make the algorithm more effi-
cient, we make the following observation. Let X and Y be vectors
storing the original intensity values for two image patches. Let
x and y be the normalized vector for X and Y , respectively. Let

Ȳ = ∑k
i = 1 Y(i)/k and σ(Y) =

[∑k
i = 1(Y(i) − Ȳ)

2

k

]0.5

be the mean

and standard deviation for Y , where k is the vector size of Y .

Hence, y(i) = Y(i) − Ȳ
σ(Y)

. To compute the sum of squared distance
between x and y, we have:

n∑
i = 1

[
x(i) − y(i)

]2 =
n∑

i = 1

[
x(i) − Y(i) − Ȳ

σ(Y)

]2

(6)

= 1

σ(Y)2

k∑
i = 1

[
Y(i)2 − Ȳ2 + x(i)2σ2(Y)

− 2x(i)Y(i)σ(Y) + 2x(i)Ȳσ(Y)
]

(7)

= k + 1 − 2

σ(Y)

k∑
i = 1

x(i)Y(i) (8)

Equation (8) is obtained from the fact that
∑k

i = 1

[
Y(i)2 − Ȳ2

] =
kσ(Y)2,

∑k
i = 1 x(i)2 = 1, and

∑k
i = 1 x(i) = 0. Hence, to make the

local search algorithm more efficient, we only need to normal-
ize the target image patch and search the patch in the warped

atlas that minimizes − 1
σ(Y)

∑k
i = 1 x(i)Y(i). Efficiency is achieved

by avoiding the normalization operation for atlas patches during
local search.

Note that, similar to the non-local mean patch based label
fusion approach Coupe et al. (2011), employing all patches
within the searching neighborhood for estimating the pair-
wise atlas dependencies produces more accurate estimation

Wang et al. (2013a ). However, this approach has much higher
computational complexity. To make our label fusion software
more practical, we choose the local search algorithm in our
implementation.

2.1.1.4. Parameter summary. The joint label fusion technique
has four primary parameters:

• rp: the radius defining the image patch for estimating atlas
dependencies (3).

• rs: the radius defining the search neighborhood Ns.
• β: the model parameter for transferring image similarity mea-

sures into atlas dependencies in (3).
• α: the weight of the conditioning identity matrix added to Mx.

2.1.1.5. Joint label fusion user interface. Our implementation,
jointfusion, is based on Insight Toolkit (ITK), which allows us to
take advantage of the image I/O functions implemented in ITK.
jointfusion has the following user interface.

Joint Label Fusion
usage:
jointfusion dim mod [options] output_
image
required options:

dim Image dimension (2 or 3)
mod Number of imaging modalities
-g Warped atlas images
-tg Target image(s)
-l Warped atlas segmentations
-m <method> [parameters]

Options: Joint[alpha,beta]
other options:

-rp Appearance patch radius
-rs Local search radius
-p Output label posterior maps

produced by label fusion

2.1.2. Corrective learning
As we show in (Wang et al., 2011), automatic segmentation algo-
rithms may produce systematic errors comparing to the gold
standard manual segmentation. Such systematic errors could
be produced due to the limitations of the segmentation model
employed by the segmentation method or due to suboptimal
solutions produced by the optimization algorithm. To reduce
such systematic errors, corrective learning applies machine learn-
ing techniques to automatically detect and correct systematic
errors produced by a “host” automatic segmentation method.

To illustrate how corrective learning works, we take a simple
binary segmentation problem as an example. Using a set of exam-
ple images, for which the gold standard manual segmentation is
available, and to which the host method has been applied, we train
a classifier [using AdaBoost (Freund and Schapire, 1997 ) in our
current implementation] to discriminate between voxels correctly
labeled by the host method and the voxels where the host method
and the manual segmentation disagree. When segmenting a tar-
get image, the host method is first applied, and then each voxel is
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examined by the classifier. If the classifier believes that a voxel was
mislabeled, its label is changed. In case of more than two labels,
corrective learning needs to learn additional classifiers, as detailed
below.

Note that machine learning is commonly used for image seg-
mentation in computer vision (Kumar and Hebert, 2003 ; Tu and
Bai, 2010) and medical image analysis (Tu et al., 2007; Morra
et al., 2009; Tu and Bai, 2010). Typically, classifiers assigning labels
to image voxels are trained and applied purely based on features
extracted from images. By contrast, corrective learning allows the
learning algorithm to benefit from the domain-specific knowl-
edge captured by the host segmentation method. For instance,
a host segmentation method may represent domain-specific
knowledge in the form of shape priors and priors on spatial rela-
tions between anatomical structures. Corrective learning allows
such high-level domain-specific knowledge to be incorporated
into the learning process efficiently by using the segmentation
results produced by the host method as an additional contextual
feature (see more details below).

2.1.2.1. Implementation. In (Wang et al., 2011), we devel-
oped two corrective learning algorithms: explicit error correction
(EEC) and implicit error correction (IEC). First, we define a
working region of interest (ROI) to be derived from performing a
dilation operation to the set of voxels assigned to non-background
labels by the host method. Each voxel in the working ROI of
each training image serves as a sample for training the correc-
tive learning classifiers. The motivation for using the working
ROI is that when the host method works reasonably well, most
voxels labeled as foreground are in the close proximity of the
foreground voxels in the manual segmentation. Hence, using a
working ROI simplifies the learning problem by excluding most
irrelevant background voxels from consideration.

In binary segmentation problems, IEC is equivalent to EEC. In
a problem with L > 2 labels, EEC uses all voxels in the working
ROI to train a single “error detection” classifier, whose task is to
identify the voxels mislabeled by the host method. EEC then uses
the voxels mislabeled by the host method to train L “error cor-
rection” classifiers, whose task is to reassign labels to the voxels
identified as mislabeled by error detection. Each error correction
classifier is designed to detect voxels that should be assigned each
target label. To reassign labels to a voxel, it is evaluated by all
L error correction classifiers, and the label whose classifier gives
the highest response is chosen. By contrast, IEC treats all vox-
els within the working ROI as mislabeled and directly trains N
error correction classifiers to reassign labels. In principle, EEC is
more efficient than IEC for multi-label segmentation because IEC
trains N error correction classifiers using all voxels in the working
ROI, while EEC only uses a subset of voxels to train those correc-
tion classifiers. On the other hand, IEC has the advantage of not
affected by incorrect error detection results.

To make corrective learning more efficient and more effective
for segmentation problems with multiple labels, we implemented
a third hybrid error correction strategy that combines the advan-
tage of both EEC and IEC. This error correction strategy aims
at problems with large numbers of labels by incorporating the
prior knowledge that when a host method works reasonably well,
most voxels assigned by the host method to a foreground label are

in the close proximity of the voxels manually assigned that label.
To improve the efficiency of IEC, we propose to restrict error
correction for any foreground label only within the label’s work-
ing ROI, derived by performing dilation to the set of all voxels
assigned the label by the host method. To apply these trained
classifiers to correct segmentation errors for a testing image, we
apply each classifier to evaluate the confidence of assigning the
corresponding label to each voxel within the label’s working ROI.
If a voxel belongs to the ROI of multiple labels, the label whose
classifier gives the maximal response at the voxel is chosen for
the voxel. Since error detection is not explicitly performed, our
current implementation is simplified compared to the EEC algo-
rithm. Furthermore, the implemented error correction strategy
is not affected by incorrect error detection results. Compared
with the IEC algorithm, our implementation is more efficient and
more effective as only a small portion of the data, which are also
more relevant to the problem of classifying the target label, are
used to train the classifier for each label.

Note that the above label’s working ROI definition has one
limitation. If a host segmentation method fails to produce some
segmentation labels, then the algorithm cannot recover the miss-
ing labels. To address this problem, we allow a second approach to
define a label’s working ROI by using a predefined ROI mask. If a
ROI mask is provided for a label, the label’s ROI is obtained from
performing a dilation operation to the set of voxels in the mask.
In principle, the ROI mask should cover most voxels of the target
label. One way to define ROI masks for missing labels produced
by the host method is to use the ROI of labels whose working
ROIs cover most voxels manually assigned to the missing label.
The union of these labels’ working ROIs can be defined as the
missing label’s working ROI.

2.1.2.2. Features. Typical features that can be used to describe
each voxel for the learning task include spatial, appearance, and
contextual features. The spatial features are computed as the
relative coordinate of each voxel to the ROI’s center of mass.
The appearance and contextual features are directly derived from
the voxel’s neighborhood image patch from the training image
and the initial segmentation produced by the host method,
respectively. To enhance the spatial correlation, the joint spatial-
appearance and joint spatial-contextual features are also included
by multiplying each spatial feature with each appearance and con-
textual feature, respectively. To include other feature types, one
can compute features for each voxel and store the voxel-wise fea-
ture response into a feature image, i.e., the intensity at each voxel
in the feature image is the feature value at that voxel. Passing these
feature images to the algorithm, as shown below, will allow these
features to be used in corrective learning.

Note that the above patch based features are not rotation or
scale invariant. Hence, they are only suitable for images that have
similar orientations and scales. Since many medical images, e.g.,
MRI and CT, are acquired under constrained rotations and scales,
these features are often adequate in practice. For problems that do
have large rotation and scale variations, one should apply more
suitable features.

2.1.2.3. Subsampling for large training dataset. For large data
set, it is not always possible to include all voxels within a label’s
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working ROI for learning its classifier due to the memory con-
straint. For such cases, a subsampling strategy can be applied
to randomly select a portion of training voxels according to a
specified sampling percentage.

2.1.2.4. Parameter summary. The corrective learning technique
has three primary parameters:

• rd: the radius for the dilation operation for defining each label’s
working ROI.

• rf : the radius defining the image patch for deriving voxel-wise
features.

• SampleRatio: the portion of voxels within the label’s working
ROI to be used for learning the classifier for the label.

2.1.2.5. Corrective learning user interface. We separately imple-
mented the algorithm for learning corrective classifiers and the
algorithm applying these classifiers for making corrections. We
name the program for learning corrective classifiers as bl, which
stands for bias learning as it learns classifiers that capture the
systematic errors, or bias, produced by an automatic segmenta-
tion algorithm. We name the program for making corrections as
sa, which stands for segmentation adapter because it adapts the
segmentation produced by the host method to be closer to the
desired gold standard. These two programs have the following
user interface.

Corrective Learning
usage:

bl dim [options] AdaBoost_Prefix
required options:

dim Image dimension (2 or 3)
-ms Manual Segmentation
-as Automatic segmentation
-tl The target label
-rd Dilation radius
-rf Feature radius
-rate Training data sampling rate
-i Number of AdaBoost training

iterations
other options:

-c Number of feature channels
-f Feature images
-m ROI mask

Segmentation correction
usage:

sa input_segmentation AdaBoost_Prefix
output_segmentation [options]

options:
-f Feature images
-p Output posterior maps
-m ROI mask

2.2. APPLICATION 1: BRAIN MRI SEGMENTION
To demonstrate the usage of the joint label fusion and cor-
rective learning software, we provide implementation details

for two applications: whole brain parcellation and canine leg
muscle segmentation using MR images. In this section, we
describe our application for brain segmentation. The software
used in our experiments will be distributed through the Advanced
Normalization Tools (ANTs) package Avants et al. (2008) and at
http://www.nitrc.org/projects/picsl_malf.

2.2.1. Data and manual segmentation
The dataset used in this study includes 35 brain MRI scans
obtained from the OASIS project. The manual brain segmenta-
tions of these images were produced by Neuromorphometrics,
Inc. (http://Neuromorphometrics.com/) using the brain-
COLOR labeling protocol. The data were applied in the
2012 MICCAI Multi-Atlas Labeling Challenge and can
be downloaded at (https://masi.vuse.vanderbilt.edu/work
shop2012/index.php/Main_Page). In the challenge, 15 subjects
were used as atlases and the remaining 20 images were used for
testing.

2.2.2. Image registration
To apply our algorithms, we need pairwise registered trans-
formations between each atlas and each target image and
between each pair of atlas images. To facilitate comparisons
with other label fusion algorithms, we applied the standard
transformations provided by the challenge organizers. For
the brain image data, the standard transformations are pro-
duced by the ANTs registration tool and can be download-
able at http://placid.nlm.nih.gov/user/48. To generate warped
images from the transformation files, we applied antsApplyTrans-
forms with linear interpolation. To generate warped segmen-
tations, we applied antsApplyTransforms with nearest neighbor
interpolation.

2.2.3. Joint Label Fusion
The following command demonstrates how to apply jointfusion
to segment one target image, i.e., subject 1003_3.

./jointfusion 3 1 -g ./warped/*_to_1003_3_
image.nii.gz \

-l warped/*_to_1003_3_
seg_NN.nii.gz \

-m Joint[0.1,2] \
-rp 2x2x2 \
-rs 3x3x3 \
-tg ./Testing/1003_3.nii.

gz \
-p ./malf/1003_3_Joint_

posterior%04d.nii.gz \
./malf/1003_3_Joint.nii.gz

In this application, only one MRI modality is available. Hence,
mod=1. The folder warped stores the warped atlases for each
target image. We set the following parameters for jointfusion:
α = 0.1, β = 2 and isotropic neighborhoods with radius two and
three for rp and rs, respectively. These parameters were chosen
because they are optimal for segmenting the hippocampus in our
previous study (Wang et al., 2013b). In addition to producing the
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consensus segmentation for the target subject, we also saved the
posterior probabilities produced by label fusion for each anatom-
ical label as images. These posterior images were applied as an
additional feature for corrective learning, as described below.
Note that we specify the file name of the output posterior images
by the C printf format such that one unique posterior image is
created for each label. For instance, for label 0 and 4, the gen-
erated posterior images are ./malf/1003_3_JointLabel_posterior
0000.nii.gz and ./malf/1003_3_JointLabel_posterior0004.nii.gz,
respectively.

To quantify the performance of jointfusion with respect to the
four primary parameters, we also conducted the following leave-
one-out cross-validation experiments using the training images.
To test the impact of the appearance window size rp, we varied rp

from 1 to 3 and fixed rs = 3, β = 2, β = 0.1. To test the impact of
the local search window size, we varied rs from 0 to 4 and fixed
rp = 2, β = 2, β = 0.1. We also varied β from 0.5 to 3 with a 0.5
step and fixed rp = 2,rs = 3, α = 0.1. Finally, we fixed rp = 2,rs =
3,β = 2 and tested with α = 0, 0.01, 0.05, 0.1, 0.2. For experi-
ments testing the effects of rp and rs, we report both computa-
tional time and segmentation accuracy for each parameter setting.
Since varying β and α does not have significant impact on com-
putational complexity, we only report segmentation accuracy for
each parameter setting.

2.2.4. Corrective Learning
To apply corrective learning, we first applied joint label
fusion with the above chosen parameters, i.e., (α, β, rp, rs, ) =
(0.1, 2, 2, 3), to segment each atlas image using the remaining
atlases. With both manual segmentation and segmentation pro-
duced by joint label fusion, the atlases were applied for training
the corrective learning classifiers. Recall that one classifier needs
to be learned for each anatomical label. The following command
trains the classifier for label 0, i.e., the background label.

./bl 3 -ms Training/*_glm.nii.gz \
-as ./malf/1000_3_Joint.nii.gz \

...

./malf/1036_3_Joint.nii.gz \
-tl 0 \
-rd 1 \
-i 500 \
-rate 0.1 \
-rf 2x2x2 \
-c 2 \
-f ./Training/1000_3.nii.gz \

./malf/1000_3_Joint_posterior
0000.nii.gz \
...
./Training/1036_3.nii.gz \
./malf/1036_3_Joint_posterior
0000.nii.gz \

./malf/BL/Joint_BL

We applied two feature images. In addition to the original inten-
sity image, we also included the label posteriors generated by
jointfusion for corrective learning. As we show in (Wang and

Yushkevich, 2012 ), weighted voting based label fusion pro-
duces a spatial bias on the generated spatial label posteriors,
which can be modeled as applying a spatial convolution on the
ground truth label posteriors. Hence, the label posteriors pro-
duced by joint label fusion offers meaningful information for
correcting such systematic errors. We set the dilation radius
to be rd = 1, which was shown to be optimal for correcting
segmentation errors produced by multi-atlas label fusion for
hippocampus segmentation in our previous study (Wang et al.,
2011). For this learning task, a 10 percent sampling rate is
applied.

We use the following command to apply the learned classifiers
to correct segmentation errors for one testing image.

./sa ./malf/1003_3_Joint.nii.gz \
./malf/BL/Joint_BL \
./malf/1003_3_Joint_CL.nii.gz \
-f ./Testing/1003_3.nii.gz ./malf/
1003_3_Joint_posterior\%04d.nii.gz

Again, we used the C printf format to specify the file name of label
posterior images as feature images.

Since we have shown in our previous work (Wang et al., 2011)
that corrective learning is not sensitive to the dilation radius
parameter. Here, we only conducted experiments to test the effect
of the feature patch size rf on the performance. We tested using
rf = 1 and rf = 3 with the same dilation radius.

2.2.5. Evaluation
To facilitate comparisons with other work, we follow the chal-
lenge evaluation criteria and evaluate our results using the Dice
Similarity Coefficient (DSC) (Dice, 1945) between manual and
automatic segmentation. DSC measures the ratio of the volume
of overlap between two segmented regions and their average
volume. For the brain image data, the results were evaluated
based on 134 labels, including 36 subcortical labels and 98
cortical labels (see https://masi.vuse.vanderbilt.edu/workshop201
2/index.php/Challenge_Details for details of the evaluation crite-
rion). We separately report summarized results for all labels, cor-
tical labels and subcortical labels. To give more information, we
also report segmentation performances for nine subcortical struc-
tures, including accumbens area, amygdala, brain stem, caudate,
cerebral white matter, CSF, hippocampus, putamen, and thala-
mus proper. For the canine lege data, evaluation iwas performed
over all labels.

2.2.6. Results
Using 15 atlases, jointfusion segments one image in about 1
h using a single core 2GHZ CPU with the parameter setting,
rp = 2, rs = 3. Applying corrective learning to correct segmen-
tation errors for an image can be done within a few minutes.
Figure 1 shows some segmentation results produced by each
method.

Table 1 reports the segmentation performance for major-
ity voting, joint label fusion, and joint label fusion combined
with correction learning. Joint label fusion produced an aver-
age DSC 0.757 for all labels, 0.732 for cortical labels, and 0.825

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 27 | 6

https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Wang and Yushkevich Joint fusion and corrective learning

FIGURE 1 | Segmentations produced by manual segmentation, majority voting, joint label fusion (JLF), and joint label fusion combined with

corrective learning (JLF+CL).

for subcortical labels. Corrective learning improved the results to
0.771, 0.747, and 0.836, respectively.

Figures 2, 3 show the average processing time and aver-
age segmentation accuracy produced by joint label fusion with
respect to rp and rs, respectively. As expected, the processing
time grows proportionally with respect to the neighborhood
size. The performance of joint label fusion is not sensitive to
the size of appearance patch rp, with the best performance
produced by rp = 2. In contrast, the local search algorithm
produced more prominent improvement. Although applying
larger searching neighbor consistently produced higher aver-
aged DSC, applying rs = 1 produced the greatest improvement.
Further increasing rs only slightly improved the segmentation
accuracy.

Figure 4 shows the segmentation accuracy produced by joint
label fusion using different β values. For this application, the
performance of joint label fusion is not sensitive to β. Among
the tested β values, β = 1.5 produced the best segmentation
accuracy.

Figure 5 shows the segmentation accuracy produced by joint
label fusion with respect to α. Adding the conditioning matrix,
i.e., α > 0, produced prominent improvement over without
adding the conditioning matrix, i.e., α = 0. When the condition-
ing matrix is added, setting α between 0.01 and 0.2 has a slight
impact on the performance, with the best performances achieved
at α = 0.05 or 0.1.

Figure 6 shows the segmentation performance produced by
corrective learning with respect to feature patch radius. Again,
we did not observe large performance variation. The performance
produced by radius 2 is slightly better than those produced with
radius 1 and 3.

2.3. APPLICATION 2: CANINE LEG MUSCLE SEGMENTATION
2.3.1. Data and manual segmentation
The dataset used in this study contains 45 canine leg MR scans.
For each dog, images were acquired with two MR modalities:
a T2-weighted image sequence was acquired using a variable-
flip-angle turbo spin echo (TSE) sequence and a T2-weighted
fat-suppressed images (T2FS) sequence was then acquired using
the same variable-flip-angle TSE sequence with the same scan-
ning parameters except that a fat saturation preparation was
applied. Seven proximal pelvic limb muscles were manually seg-
mented: cranial sartorius, rectus femoris, semitendinosus, biceps
femoris, gracilis, vastus lateralis and adductor magnus. In the
challenge, 22 subjects were used as atlases and the remaining 23
subjects were used for testing. We will use this dataset for val-
idating the multi-modality extension to our joint label fusion
algorithm.

2.3.2. Image registration
For this challenge, we produced the standard reg-
istration using ANTs, which can be downloaded
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Table 1 | Segmentation performance in Dice Similarity Coefficient(
2|A ∩ B|
|A| + |B|

)
.

Anatomical Majority Joint label Joint label

region voting fusion fusion+
Corrective

learning

All labels 0.726 ± 0.138 0.757 ± 0.133 0.771 ± 0.131

Cortical labels 0.701 ± 0.113 0.732 ± 0.114 0.747 ± 0.115

Subcortical labels 0.796 ± 0.171 0.825 ± 0.154 0.836 ± 0.149

Left accumbens area 0.776 ± 0.074 0.804 ± 0.053 0.795 ± 0.048

Right accumbens area 0.759 ± 0.086 0.798 ± 0.058 0.795 ± 0.048

Left amygdala 0.800 ± 0.040 0.812 ± 0.032 0.815 ± 0.034

Right amygdala 0.808 ± 0.028 0.827 ± 0.025 0.830 ± 0.024

Brain stem 0.940 ± 0.009 0.943 ± 0.008 0.946 ± 0.008

Left caudate 0.801 ± 0.134 0.870 ± 0.101 0.881 ± 0.088

Right caudate 0.788 ± 0.122 0.865 ± 0.076 0.884 ± 0.070

Left cerebral white matter 0.903 ± 0.018 0.925 ± 0.019 0.937 ± 0.017

Right cerebral white matter 0.906 ± 0.018 0.926 ± 0.018 0.935 ± 0.019

CSF 0.723 ± 0.166 0.789 ± 0.092 0.820 ± 0.074

Left hippocampus 0.831 ± 0.046 0.862 ± 0.031 0.872 ± 0.023

Right hippocampus 0.830 ± 0.044 0.861 ± 0.027 0.871 ± 0.022

Left putamen 0.911 ± 0.029 0.915 ± 0.037 0.909 ± 0.042

Right putamen 0.909 ± 0.033 0.914 ± 0.040 0.907 ± 0.043

Left thalamus proper 0.903 ± 0.030 0.920 ± 0.014 0.921 ± 0.012

Right thalamus proper 0.903 ± 0.031 0.921 ± 0.012 0.923 ± 0.009

FIGURE 2 | Joint label fusion performance (Left: segmentation

accuracy, error bars at ±0.05 standard deviation; Right: average

processing time) with respect to image patch size. Other parameters
are set to rs = 3, α = 0.1, β = 2.

at https://masi.vuse.vanderbilt.edu/workshop2013/index.php/
Segmentation_Challenge_Details. Avants et al. (2013 ) contains
details for how the registrations were generated. To quantify the
accuracy of the standard transformations, we applied majority
voting to generate a baseline segmentation performance.

2.3.3. Joint label fusion
The following command demonstrates how to apply jointfusion
to segment one target image, i.e., subject DD_039, using both MR
modality channels.

./jointfusion 3 2 -g ./canine-lege-warped/
DD_040_to_DD_039_T2.
nii.gz \

FIGURE 3 | Joint label fusion performance (Left: segmentation

accuracy, error bars at ±0.05 standard deviation; Right: average

processing time) with respect to local search neighborhood size. Other
parameters are set to rp = 2, α = 0.1, β = 2.

FIGURE 4 | Joint label fusion performance with respect to β (error bars

at ±0.05 standard deviation). Other parameters are set to
rp = 2, rs = 3, α = 0.1.

./canine-lege-warped/
DD_040_to_DD_039_T2FS.
nii.gz ... \

-l warped/*_to_DD_039_seg.
nii.gz \

-m Joint[0.1,0.5] \
-rp 2x2x2 \

-rs 3x3x3 \
-tg ./canine-legs/testing-

images/DD_039_T2.
nii.gz \
./canine-legs/testing-
images/DD_039_T2FS.
nii.gz \

-p ./canine-legs-malf/DD_
039_Joint_posterior%04d.
nii.gz \

./canine-legs-malf/DD_039_
Joint.nii.gz

Note that, for this application, we applied β = 0.5. This
parameter was chosen because it produced the optimal results
for the cross-validation experiments on the training images as
described below. To compare with the performance produced by
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FIGURE 5 | Joint label fusion performance with respect to α (error bars

at ±0.05 standard deviation). Other parameters are set to
rp = 2, rs = 3, β = 2.

FIGURE 6 | Corrective learning performance with respect to image

feature patch radius (error bars at ±0.05 standard deviation).

Parameters for joint label fusion are set to rp = 2, rs = 3, α = 0.1, β = 2.

using a single modality and by using two modalities, we also
applied jointfusion by only using the T2-weighted image.

Since rs and β have the most impact on the joint label fusion
performance, for this application we only conducted experiments
to quantify the performance of jointfusion with respect to these
two parameters using leave-one-out cross-validation experiments
on the training images. We varied σ from 0.5 to 2.5 with a 0.5 step
while fixing rp = 2,rs = 3, λ = 0.1. We varied rs from 0 to 4 while
fixing rp = 2, β = 0.5, λ = 0.1.

2.3.4. Corrective Learning
To apply corrective learning, again we first applied joint label
fusion with the above chosen parameters, i.e., (α, β, rp, rs, ) =
(0.1, 0.5, 2, 3), to segment each atlas image using the remaining
atlases. With both manual segmentation and segmentation pro-
duced by joint label fusion, the atlases were applied for training
the corrective learning classifiers. The following command trains
the classifier for the background label.

./bl 3 -ms ./canine-legs/training-labels/*_
seg.nii.gz \

-as ./canine-legs-malf/DD_040_Joint.

nii.gz \
...
./canine-legs-malf/DD_173_Joint.
nii.gz \

-tl 0 \
-rd 1 \
-i 500 \
-rate 0.05 \
-rf 2x2x2 \
-c 3 \
-f ./canine-legs/training-images/DD_

040_T2.nii.gz \
./canine-legs/training-images/DD_
040_T2FS.nii.gz \
./canine-legs-malf/DD_040_Joint_
posterior0000.nii.gz \
...
./canine-legs/training-images/DD_
173_T2.nii.gz \
./canine-legs/training-images/DD_
173_T2FS.nii.gz \
./canine-legs-malf/DD_173_Joint_
posterior0000.nii.gz \

./canine-legs-malf/BL/Joint_BL

We use the following command to apply the learned classifiers to
correct segmentation errors for one testing image.

./sa ./canine-legs-malf/DD_039_Joint.
nii.gz \
./canine-legs-malf/BL/Joint_BL \
./canine-legs-malf/DD_039_Joint_CL.
nii.gz \
-f ./canine-legs/testing-images/DD_

039_T2.nii.gz \
./canine-legs/testing-images/DD_
039_T2FS.nii.gz \
./canine-legs-malf/DD_039_Joint_
posterior\%04d.nii.gz

2.3.5. Results
Using 22 atlases and both imaging modalities, jointfusion seg-
ments one image in about 1 h using a single core 2GHZ CPU with
the parameter setting, rp = 2, rs = 3. Applying corrective learning
to correct segmentation errors for an image can be done within
1 min. Figure 7 shows some segmentation results produced by
each method.

Figure 8 shows the segmentation accuracy produced by joint
label fusion using different β values. The results produced by
using a single modality and by using two modalities are given
separately. As expected, multi-modality based label fusion did
result in substantial performance improvement over using a sin-
gle modality. For this application, the performance of joint label
fusion is more sensitive to β when only one modality is applied.
Among the tested β values, β = 0.5 produced the best segmenta-
tion accuracy.
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FIGURE 7 | Segmentations produced by manual segmentation, majority voting, joint label fusion with one imaging modality (JLF-Mod1), and joint

label fusion with two imaging modalities (JLF-Mod2).

FIGURE 8 | Joint label fusion performance with respect to β (error bars

at ±0.05 standard deviation). Other parameters are set to
rp = 2, rs = 3, α = 0.1.

Figure 9 shows the segmentation accuracy produced by joint
label fusion with respect to rs. Since image registrations for canine
leg images have lower quality than those produced for brain
images, the local search algorithm produced more substantial
improvement for this application than for brain segmentation.
The average processing time produced by joint label fusion using
two modalities is also given in Figure 9.

Table 2 reports the segmentation performance produced by
majority voting, joint label fusion using a single imaging modal-
ity and joint label fusion using two imaging modalities from
the leave-one-out cross-validation experiment on the training
dataset. Table 3 reports the segmentation performance generated
by the challenge organizer during the challenge competition pro-
duced by majority voting and joint label fusion combined with
corrective learning.

FIGURE 9 | Joint label fusion performance (Left: segmentation

accuracy, error bars at ±0.05 standard deviation; Right: average

processing time) with respect to local search neighborhood size. Other
parameters are set to rp = 2, α = 0.1, β = 0.5.

Table 2 | Segmentation performance in Dice Similarity Coefficient(
2|A ∩ B|
|A| + |B|

)
produce by leave-one-out cross validation using the canine

leg muscle training data.

Anatomical Majority Joint label Joint label

region voting fusion mod1 fusion mod2

All labels 0.411 ± 0.274 0.690 ± 0.185 0.722 ± 0.160

3. DISCUSSION
3.1. COMPARISON TO THE STATE OF THE ART
Our algorithms participated in the MICCAI 2012 and 2013 multi-
atlas labeling challenge competition. Our results on the canine leg
muscle dataset are the best among all 2013 challenge entries for
this dataset (see Asman et al., 2013 for more detail). Our results
for brain segmentation produced based on the standard regis-
tration transforms are better than what we originally produced
during the competition (Landman and Warfield, 2012 ). In the
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Table 3 | Segmentation performance in Dice Similarity Coefficient(
2|A ∩ B|
|A| + |B|

)
produce for the canine leg muscle testing data.

Anatomical Majority Joint label fusion +
region voting corrective learning

All Labels 0.418 ± 0.108 0.762 ± 0.098

2012 challenge, applying joint label fusion alone, our results are
0.750 for all labels, 0.722 for cortical labels, and 0.827 for subcor-
tical labels. Combining joint label fusion and corrective learning,
we produced the best results in the challenge competition, with
0.765 for all labels, 0.739 for cortical labels, and 0.838 for sub-
cortical labels. In this study, applying joint label fusion alone,
our results are 0.757 for all labels, 0.732 for cortical labels, and
0.825 for subcortical labels. Combining joint label fusion with
corrective learning, our results are 0.771 for all labels, 0.747 for
cortical labels, and 0.836 for subcortical labels. Note that, most
improvements in our current study are for cortical labels. Hence,
it is reasonable to expect that the standard registration transforms
provided by the challenge organizers have better accuracy for the
cortical regions than those produced by us during the challenge
competition.

3.2. PARAMETER SELECTION
We found that both joint label fusion and corrective learning
are not sensitive to the parameter setting in this brain MRI seg-
mentation application. However, using large local appearance
neighborhood, e.g., rp > 2, and large local search neighborhood,
rs > 2, significantly increase the computational cost. Hence, when
computational cost is a limiting factor, one could achieve a good
trade off between computational complexity and segmentation
performance by choosing proper values for these two parame-
ters. Based on our experiments, setting rp = 1, 2 and rs = 1, 2 can
produce almost optimal performance and keep joint label fusion
using 15 atlases within 30 min for whole brain segmentation.

For α, the weight for adding the conditioning matrix, we
found that adding conditioning matrix is important for joint
label fusion. To make sure that the added conditioning matrix
is sufficient to avoid inverting an ill-conditioned matrix and the
resulting voting weights also give a solution close to the global
minimum of the original objective function, α should be chosen
with respect to the scale of the estimated dependency matrix Mx.
According to our experiments, we found that setting α � 1% of
the scale of estimated Mx seems to be a good choice.

For the model parameter β used in estimating appearance
based pairwise atlas dependencies Equation (8), its selection
depends on the registration quality produced for the application
at hand. Based on our experiments and our previous study (Wang
et al., 2013b), we found that when registration can be done in
good quality such as brain MRI registration in this study, setting
β � 2 is optimal. For mitral valve segmentation in ultra sound
images (Wang et al., 2013a ) and canine leg muscle segmentation,
where good image registration is more difficult to produce due to
low image quality and greater deformations, we found that setting
β = 1 or 0.5 is optimal. Hence, setting β depends more on the
application.

As we have applied in paper, one way to determine the opti-
mal parameter settings is based on a leave one out experiment
on the atlas set. That is segmenting each atlas using the remain-
ing atlases with different parameter settings, the setting produced
the best overall segmentation for all atlases should be chosen.
As training classifiers in corrective learning, parameter selection
for joint label fusion can be done offline. Hence, no additional
burden is added for online label fusion. Similarly, combining cor-
rective learning with multi-atlas label fusion is a natural choice,
as no additional training data is need for corrective learning and
no significant additional online computational burden is added
by applying corrective learning.

3.3. FUTURE WORK
Note that when the host segmentation method produces more
accurate solutions, applying corrective learning further improves
the overall accuracy. Hence, efforts on improving label fusion and
corrective learning can be conducted in parallel. For improving
corrective learning, one direction would be to explore more effec-
tive features and more effective learning algorithms. As recent
studies (Montillo et al., 2011 ; Zikic et al., 2012 ) have shown
that random forrest (Breiman, 2001) is a highly effective learn-
ing algorithm for addressing segmentation problems. Hence,
replacing AdaBoost with random forrest may result in further
improvement.
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