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A robust multi-modal tool, for automated registration, bias correction, and tissue
classification, has been implemented for large-scale heterogeneous multi-site longitudinal
MR data analysis. This work focused on improving the an iterative optimization framework
between bias-correction, registration, and tissue classification inspired from previous
work. The primary contributions are robustness improvements from incorporation of
following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate
high-deformable registration, (3) use extended set of tissue definitions, and (4) use of
multi-modal aware intensity-context priors. The benefits of these enhancements were
investigated by a series of experiments with both simulated brain data set (BrainVWeb)
and by applying to highly-heterogeneous data from a 32 site imaging study with quality
assessments through the expert visual inspection. The implementation of this tool is
tailored for, but not limited to, large-scale data processing with great data variation with
a flexible interface. In this paper, we describe enhancements to a joint registration, bias
correction, and the tissue classification, that improve the generalizability and robustness
for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was
evaluated by using both simulated and simulated and human subject MRI images.
With these enhancements, the results showed improved robustness for large-scale

heterogeneous MRI processing.
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1. INTRODUCTION
Accurate and robust analysis of brain MR imaging from multi-
site, multi-modal and longitudinal studies is a difficult prob-
lem. A key research technique for advancing the understanding
of the human brain is the analysis of large collections of MR
images (Cocosco et al., 1997; ADNI, 2004; Marcus et al., 2007;
INDI, 2010; IXI, 2013). The largest data sets are commonly
amalgamations of data collected from similar, but indepen-
dent, research studies. Successful development of a fully auto-
mated analysis framework can reduce both the operator time
requirement and measurement variability for clinical trial appli-
cations (Zijdenbos et al., 2002). A primary challenge associated
with automating the analysis of large-scale and multi-site studies
is the development of techniques to address large variabilities in
scan properties due to data collection on different scanner man-
ufacturer and scanning environments. High-quality registration
and bias-field correction techniques become essential to ensure
interpretation consistency of large data-sets collected from differ-
ent scanners or multi-site studies. As a result, there has been an
increased emphasis on automated tool development for multi-site
MR image analysis.

Iterative optimization approaches have been proposed to
achieve robust MR processing, and these often involve three
main techniques: bias-field correction, registration, and tissue

classification. Approaches that incorporate these three techniques
are attractive because they recognize that these are naturally
one interrelated and interconnected optimization problem. The
improved intensity uniformity provided by bias-field correction
produces better registration accuracy, and also enhances tissue
classification. Correct tissue type identification helps to improve
bias-field estimation, which in turn improves registration accu-
racy. In previous studies, Wells et al. (1996) proposed an adaptive
segmentation method by using Expectation Maximization (EM)
algorithm with simultaneous bias field correction. This idea was
further advanced by work in Van Leemput et al. (1999); Prastawa
et al. (2004). Each of these papers described an iterative method
that alternates between bias correction and tissue classification
within an EM algorithm framework. These previous works have
been applied successfully in several research projects (Prastawa
et al., 2003, 2004, 2005; Prastawa, 2007). The reported instances
of these implementations, however, have only been applied with
limited conditions: single-site, single-scanner, single-modality,
affine registration and limited 3-tissue model.

In this paper, we expand upon the previously introduced pro-
cedure in Prastawa et al. (2004), and describe the algorithmic
enhancements for increasing the robustness of the framework
to be applicable to a large-scale multi-site heterogeneous data
analysis (32 sites, 3000+ scan sessions). The improvements for
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robustness were achieved by incorporating four components: (1)
a collective set of inputs including multi-modal and repeated
scans to maximize utilization of data at hands, (2) a high-
deformable registration approach for better correspondence to a
subject from a atlas, (3) expanded tissue spatial prior definitions
to 12 discrete tissue types (and 5 nuisance tissue types), and (4)
intensity-constrained tissue priors, so called region-specific inten-
sity context priors, based on a priori tissue-specific robust statistics.
To evaluate our proposed method, we discuss the relative ben-
efits of high deformable compared against affine registration
and of the extended definition of tissue priors against tradi-
tional three tissue priors towards tissue classification accuracy
of large-scale data (Section 3.1). In addition, we also provide
visual inspection outcome and sample results of our tissue clas-
sification results compared with other well-established works in
the field (Section 3.2). Finally, we conclude with a discussion of
limitation and some possible future directions of development
(Section 4).

2. METHODS

The implementation of our iterative framework incorporates
(1) bias-field correction, (2) tissue classification, and (3) image
registration with specific enhancements for robust processing
of large-scale multi-site MR data. The basic philosophy of the
framework has conceptual similarities to the works from Wells
et al. (1996), Prastawa et al. (2004) and Avants et al. (2011a)
with enhancements (dashed boxes in the Figure 1) that we have
found useful for automated processing of large heterogeneous
data.

EM Algorithm for Bias Correction: A core implementation of
this work uses a general expectation-maximization (EM) algo-
rithm (Wells et al., 1996; Van Leemput et al., 1999; Gelman et al.,
2004; Avants et al., 2011a) by iterating distributional parame-
ter estimation and individual voxel y classification at location
i into K tissue types. The process assumes Gaussian mixture
model y; ~ N(6;) where 0; = {;, 0;} with mean p and vari-
ance o of each tissue label I' € {I|l = 1--- K}. First step is the
expectation (E) step to determine the expected posterior density
function p(y;|0, ®;) with estimated bias-field ®; (Van Leemput
et al., 1999). Formulations in this paper are adapted from the
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FIGURE 1 | Flowchart. The framework takes any number of modalities,
with any number of repetitions of scans as inputs. The algorithm starts with
Intra Subject Registration to align all intra-session scans into first scan
given. Then the initial Atlas to Subject Registration is performed to place all
the atlas priors into subject space. Finally, the iterative process for
Posterior-Estimation, Bias Correction, and Registration Update is repeated
multiple times. Gray dashed boxes represent where our enhancements.

works (Wells et al., 1996; Van Leemput et al., 1999; Gelman et al.,
2004; Avants et al., 2011a).
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The previous equations are extended to multi-modal data as
described in Van Leemput et al. (1999).

Overview of Proposed Procedure with Enhancements: This
multi-modal MRI framework begins by taking inputs of any com-
bination of modalities with any number of repetitions. Repeated
scans within a single sessions can be taken advantage of to
increase in signal-to-noise ratio for each modality. Our proce-
dure begins with spatial normalization of each intra-modal scan
into a common subject-specific reference orientation defined by
the AC (Anterior commissure), PC (Posterior Commissure), and
mid-sagittal plane by using Rigid-type transformation (Ghayoor
et al, 2013). The spatial normalization reduces non-subject
specific spatial variation between scans, and in turn, enhances
robustness and efficiency of subsequent procedures. Subject-
specific tissue posteriors are estimated by performing EM pro-
cedure described previously. The posterior estimation step here
employs (1) atlas-to-subject high-deformable registration algo-
rithm [ANTS (Avants et al., 2011a)] to enhance accuracy of sub-
ject specific tissue priors by increasing warping correspondence
to the subject and (2) a novel region-specific intensity constraint
to ensure the correctness of tissue posteriors. Finally, the bias-
field of each input MR image is estimated and applied based on
current estimate of tissues. The whole process iterates until con-
verges: the step returns to posterior estimation with improved
intensity homogeneity, consecutively brings upgraded estimation
of inter-scan high deformable registration, and so improved tissue
posterior estimation.

To accomplish superior robustness towards large-scale multi-
site longitudinal MR data, each step is carefully reviewed, and
tested (highlighted with gray in Figure1): (1) Multi-modal
images including their repetition images are incorporated to com-
pensate a degraded MRI quality (Section 2.1), (2) high-degree
of deformable registration is integrated for provide better esti-
mate of spatial location of each tissue type (Section 2.2), (3)
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estimated tissue posteriors are constrained with intensity- context
prior to accommodate shortcomings of atlas based tissue seg-
mentation and/or bias correction (Section 2.3), and (4) 17 tissue
priors (as opposed to three tissue priors) are employed to further
stabilize the tissue classification algorithm and to address severe
intra-scan bias (Section 2.4). The following section describes each
enhancement in detail.

2.1. A COLLECTIVE SET OF INPUT: MULTI-MODAL MR IMAGES WITH
REPETITION

A collective set of multi-modal MR images including repetitions
from a single scan session are utilized. It is well established that
multi-modal MR images can provide complementary informa-
tion that can improve brain tissue classification (Rubin, 1999).
We further employed repeated scans, where they are available, to
compensate inherent noise in the measurements. Careful study
design and scanning protocols can limit the occurrence artifacts,
but some are unavoidable.

2.2. INTEGRATING HIGH-DEFORMABLE REGISTRATION [SyN (AVANTS
etal., 2011b)]

High deformable registration is integrated for accurate esti-
mation of deformation mapping of atlas priors to subject
subject specific space. We hypothesize that improved corre-
spondence mapping of the atlas to the subject benefits tis-
sue classification procedure as well as bias-field correction as
compared to previously employed affine or B-Spline registra-
tions. Symmetric image normalization (SyN) based registra-
tion (Avants et al, 2011b) provided from ANTS package is
extensively tested and has been shown to perform well at
preserving image topology. With the high deformable regis-
tration, our subject specific spatial priors are now further
refined:

FIGURE 2 | 17 Spatial priors. (Denote gray [gr], green [gn], and red [r] ). (A)
Air [gr], accumben [gn], and cerebellum GM [r], (B) Not GM [gr], globus
pallidus [gn], and CSF [r], (C) Not CSF [gr], hippocampus [gn], and cerebellum

WM [r], (D) Not venous blood [gr], thalamus [gn], and venous blood [r], (E)
Not WM [gr], caudate [gn], and cerebral WM [r], and (F) Putamen [gn] and
surface cerebral GM [r].

Table 1| Atlas definition of 17 region-specific intensity-context prior.

Tissue Name Weight Bias correction arl . qlper az, ., alper
Gray matter Accumben 1 False 0.05 0.95 0.15 0.97
Caudate 1 False 0.05 0.95 0.15 0.97
Crbl Gm 1 True 0.03 0.9 0.02 0.99
Hippocampus 1 False 0.05 0.95 0.15 0.97
Putamen 1 False 0.05 0.95 0.15 0.97
Surf Gm 1 True 0.04 0.75 0.25 0.96
White matter Wm 1 True 0.5 1 0.05 0.7
Crbl Wm 1.5 True 0.1 1 0.03 0.9
Csf Csf 1 True 0 0.6 0.2 1
Wm & Gm Thalamus 1 False 0.05 0.95 0.15 0.97
Globus 1 False 0.05 0.95 0.15 0.97
Venous blood Vb 1 False 0.04 0.75 0 0.2
Background Not Csf 1 False 0 0.6 0.2 1
Not Gm 1 False 0.15 0.9 0.35 1
Not Vb 1 False 0.15 0.9 0 0.3
Not Wm 1 False 0.4 1 0.1 0.85
Air 1 False 0 0.1 0 0.1

Each Tissue type sub-divided into regions of interest with given Name.
Weight and whether it is used for bias correction computation are also shown.

Intensity-context prior definitions are their valid range according to quantized percentile of intensity, Quantiles (C//vaer Jupper’ q/ff/ve, /upper), to take account MR’s relative

intensity and outliers. (Crbl = cerebellum).

Frontiers in Neuroinformatics

www.frontiersin.org

November 2013 | Volume 7 | Article 29 | 3


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kim and Johnson

Robust multi-site MR data processing

2.3. EXTENDED PRIOR DEFINITION

Extended spatial tissue priors are employed for the robustness of
large-scale MR data processing. Traditionally, spatial priors prop-
agate tissue-specific spatial knowledge to a MR image-processing
algorithm. One of the big assumptions behind utilization of tis-
sue spatial priors is the homogeneous intensity profile of identical
tissue type across images. In a large-scale study setting, how-
ever, the degree of inhomogeneity is vastly different from scan
to scan. Rather than adjusting algorithmic parameterization for
each problematic case, the pragmatic way to deal with the situa-
tion is to break down biological tissue definitions further by their
unique image properties. We designed 17 extended tissue specific
priors based on their spatial location, intensity profiles, and bio-
logical definitions (Figure 2). These priors are constructed to have
intrinsic hierarchical tissue definitions with respect to each other
(See Table 1 and Figure 2)

The most prominent regions of interest include gray mat-
ter (GM), white matter (WM), and cerebrospinal fluid (CSF).
Those prominent regions of interest are now partitioned fur-
ther based on their spatial property, depending on whether it
is located in cortical/subcortical (peripheral/central) of brain.
The distinction of priors between cortical and subcortical tis-
sues is practically useful since they often present heterogeneous
MR intensity characteristics across different imaging modalities.
In addition, the background region of image is also partitioned
based on intensity profiles. Tissues in the background are named
as ‘Not-tissue’ regions, which demonstrate similar MR-image

profiles to the tissues of interest, but are spatially located outside
of the brain/biological region of interest, such as bone, skin, or fat.
Designation of each spatial tissue priors is summarized in Table 1.

2.4. MULTI-MODAL REGION-SPECIFIC INTENSITY-CONTEXT PRIORS
Intensity-context priors are devised for algorithmic robustness of
large-data processing. Since MR intensities are are not a stan-
dardized quantitative measurement, the threshold parameters for
each tissue type are designated by quantiles of each image’s his-
togram. The multi-modal quantile threshold value of each tissue
type are conservatively chosen to ensure that each tissue regions
is completely included (i.e., no false negatives). These thresh-
old identified regions are used as an additional constraint in
conjunction with their corresponding spatial priors. The set of
multi-model threshold parameters that are used globally for our
studies are shown in Table 1. By incorporating a priori knowl-
edge B, multi-modal intensity constraints of each tissue type, the
initial estimates of tissue statistics are made more robust across
a wide range of imaging protocols. Therefore, for multi-modal
intensity model y with a indicator function, defined 1g(7;;), then
Equation 2 and Equation 4 can be further refined,

U (ti) - 1g (7ir)

pTi=Dh = ——, 5)
S ¥ (t5) - Tp ()
if 3. — o AM m m 3
1sGa) = 1, ify; € B = {y|qlower < y™ < qppper for all image m}
0, otherwise
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FIGURE 3 | Tissue classification agreement comparison to without one (blue). SyN registration (pink, black) also improved tissue
three-tissue based ground truth with BrainWeb Data. Two bias-fields, = segmentation agreement further comparing to the affine (yellow, blue).
rf = 20 (solid line) and rf =40 (dotted line), are shown with six noise Note that the performance with SyN registration utilizing only three
levels along x-axis. Two independent measures of Dice Index (upper) tissue types outperformed any affine registration method. Multi-modal
and average Hausdorff Distance (bottom) are shown. With affine input trial, T1 and T2, (black) comparing to T7 Only (green) seems
registration, Intensity-context prior (yellow) has better accuracy than one  helpful when there is more noise.
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The software implementation and usage is explained in
Appendix A .

3. EVALUATION

The accuracy and effectiveness of our proposed enhancements
are evaluated from multiple perspectives: (1) compare similarity

Table 2 | Sample results are shown in this paper for visual
comparison.

Scan Site MR Vendor Field Tissue Collected
strength ratio modality(#)

A Site_180 SIEMENS TrioTim 3T >0.88 T1(2), T2(2)

B Site_024 GE 1.5T <0.78 T1(1)

C Site_039  PHILIPS 3T <0.78 T1(4), T2(2)

Processing results from three subjects that are collected at different sites with
various characteristics in MR vendors, rough tissue ratios, field strengths, and
number of repeats.

against known ground truth by using simulated MR data, (2)
visual inspection results by experts, and (3) a visual com-
parison of sample results to the well-established techniques (
FreeSurfer (Fischl et al., 2002; Reuter and Fischl, 2011) and
Atropos from ANTS package (Avants et al., 2011a)).

3.1. EVALUATION ON SIMULATED DATA
A series of evaluation experiments with BrainWeb data are sum-
marized in the Figure 3.

Two independent measures, Dice index (larger is better) and
average Hausdorff distance (Dubuisson et al., 1994) (smaller is
better), are reported to underscore the validity of our process-
ing between the automated delineation and the ground truth. The
visualization of results makes it clear there is a difference between
with and without enhancements. Along the six noise levels with
two degrees of bias-field, the most agreeable result to the ground
truth was obtained by utilizing all of our proposed enhancements:
high-deformable registration (SyN) with intensity-context priors
(Figure 3:black).

A: T2

BRAINSABC

FIGURE 4 | Visual Comparison of Scan A in Table 2. Tissue classification
results from three applications, BRAINSABC, Atropos of ANTS Tools, and
FreeSurfer on top of T1- and T2-weighted images, multi-modal repeated scan
processing. This subject present relatively normal tissue ratio, reflecting
minimal, if exists, atrophy in brain tissues. Red and blue boxes highlight
where tissue classification is more differentiated from each other.

Atropos FreeSurfer

BRAINSABC were highly agreeable to Atropos and FreeSurfer in cortical area
in general. For subcortical area (blue box), however, BRAINSABC produced
more agreeable to FreeSurfer than Atropos. Atropos were the most
conservative in the subcortical GM identification among three methods. For
CSF (or ventricle) region, which is more distinguishable from T2-weighted
modality, BRAINSABC produced very robust results across scans.
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The series of BRAINWeb experiments demonstrate the benefit
of each individual enhancement, and also the combined ben-
efit of using all enhancements together. First, high deformable
registration (SyN) improves tissue classification results as com-
pared to affine registration (blue vs. black). Second, multi-modal
intensity constraints benefit the procedure, especially when reg-
istration is less optimal due to large morphological differences
that often present in degenerative diseases (Figure 3: contrasting
yellow vs. blue). Third, the extended definition of tissue pri-
ors helps to increase accuracy of segmentation (Figure 3:purple
vs. black). Those three improvements were valid for all six
levels of noise and two bias-field levels. Finally, using multi-
modal input is beneficial especially when MR scan is cor-
rupted with noise and/or inhomogeneity bias (Figure 3: black vs.
green).

3.2. EVALUATION ON /n-vivo DATA

The proposed pipeline was applied on the in vivo MR
data, collected from the multi-site international PREDICT-
HD (PREDICT-HD, 2001) project. The PREDICT-HD
data (PREDICT-HD, 2001) was highly heterogeneous. The
inhomogeneity of the data was due to a multi-site natural
history observational study design that employed all the avail-
able resources including multiple MR vendors (GE, Phillips,
and Siemens), field strengths (1.5T7 and 3T), and over 20
different MR acquisition protocols (i.e., due to transmission
and receive hardware). All the processed images (n = 3751)
are visually inspected by three independent experts and only
< 2% scans were classified as obvious failure to produce
bias-corrected T1 images. Note that our proposed method
achieved a higher process completion rate without error than
FreeSurfer for the large-scale MR data collected at PREDICT-
HD study. Processing time varied approximately between 3
and 5 h per scan (related to the number of modalities and

repeats) for the entire bias correction, registration, and tissue
classification.

Three subjects were sampled for a retrospective result com-
parison with regard to (1) MR vendors and (2) rough esti-
mate of tissue ratio, volume of WM and GM over intracranial
volume, to reflect morphological variations in our large-scale
multi-site study. Characteristic of the sample data is summa-
rized in Table2. The smaller tissue ratio means more atro-
phy in brain tissue, which generally caused either by disease
progression or aging. To facilitate visual comparison to other
works, tissue classification results from Avants et al. (2011a)
and Fischl et al. (2002); Reuter and Fischl (2011) are displayed
as well. To be fair, multi-modal approaches (where applica-
ble) are applied and their results are visually investigated for
all three processing pipelines. In this study, we did not use
-T2 option for FreeSurfer. As Figures4, 5, 6 show, tissue
boundaries in cortical area (peripheral region of brain) from
our proposed approach (BRAINSABC) were more agreeable to
other two methods than subcortical area (central area of brain).
For the subcortical GM, however, three approaches resulted
in noticeable differences. BRAINSABC’s results were closer to
FreeSurfer while Atropos exhibited the most conservative sub-
cortical GM delineation. Note that globus pallidium was treated
as independent tissue type in BRAINSABC and FreeSurfer while
there was no special consideration for globus pallidium in the
Atropos.

4. DISCUSSION

Summary: We propose a method to advance the automatic bias-
field correction algorithm for large-scale heterogeneous MR data
processing. Our proposed method is evaluated via application
to both simulated brain MR images as well as in vivo MRI
collected from a large multi-center study. The series of experi-
ments on simulated MR data revealed the improved robustness

BRAINSABC

FIGURE 5 | Visual Comparison of Scan B in Table 2. Tissue

classification results from three applications, BRAINSABC, Atropos
of ANTS Tools, and FreeSurfer on top of TI1-weighted images,
uni-modal processing. This subject present relatively small tissue
ratio, reflecting brain atrophy progression to some extent. Again,

Atropos FreeSurfer

Atropos were more parsimonious in the subcortical (yellow box)
GM identification than others. Red box also underlines differences
of tissue classifications on the cortical area. Note that without T2
modality, CSF classification results of BRAINSABC were more
agreeable to the other two.
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of our proposed enhancements in the presence of varying lev-
els of noise, inhomogeneity. In addition, application to in vivo
MRI, collected for multi-site study, also showed good generaliz-
ability as demonstrated by the very low failure rate across a wide
spectrum of input image protocols. Sample results are also pre-
sented in comparison to the well-established tools of Atropos and
FreeSurfer.

With the evaluation with simulated data in Section 3.1, Dice
index goes up at first and then down as the noise level increases.
One possible explanation for the slight DSC increment as a bit
of noise/bias added to a simulated MR], is that a simulated MR
image without noise/bias may be dissimilar to an in vivo MRL
A patient MRI in vivo is usually corrupted by noise to some
extent. (Figure7 shows differences between simulated and in-
vivo MRIs). Since our techniques are highly optimized for in
vivo MRIs, testing the method on simulated MR images without
realistic noise corruption, may be a less than ideal validation.

The key contributions of this work are three fold: (1) pipeline
enhancements for large-scale heterogeneous MR data process-
ing, (2) empirically showing advantages of utilizing multiple
scans including multi-modal or repeated MRIs, and (3) dis-
tributing all the tools of the open source pipeline including all
parameter sets.

Additional advantages of our proposed enhancements are
revealed from in vivo application. First, BRAINSABC requires no
pre-alignment between scans because the process incorporates
both intra-subject and atlas-to-subject registration with refine-
ments in the iterative process. Second, as shown in Figure 6,
the brain extraction of BRAINSABC produces very high quality
brain region estimate as compared to other two approaches. A
robust brain region estimation is important because it is often
employed in normalizing sub-volumetric data to compensate
for overall brain size differences between subjects. In addition,
we found empirically that the visual inspection failure rate of

C: T2

BRAINSABC

FIGURE 6 | Visual Comparison of Scan C in Table 2. Tissue classification
results from three applications, BRAINSABC, Atropos of ANTS Tools, and
FreeSurfer on top of T1- and T2-weighted images, multi-modal processing.
This subject present relatively small tissue ratio, reflecting brain atrophy
progression to some extent. BRAINSABC and other two methods produced
very similar results in this scan. Differences between methodologies are also
observed as highlighted in red, yellow, and green boxes. Red box contrasts

FreeSurfer

FreeSurfer

Atropos

classification on the cortical region, where BRAINSCut draws a nice
borderline for surface CSF in regarding to both T1- and T2-weighted images.
Green box magnified CSF and GM border on the subject with enlarged
ventricles where T1-weighted image shows artifacts. Last, yellow box also
shows different classification results between tools. Again, CSF classification
present some disagreement between FreeSurfer and BRAINSABC (green
box).
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BrainWeb-T1 Real-T1

FIGURE 7 | Distinguishable intensity profile differences between
BrainWeb and real MR data. Difference is more obvious for the globus
pallidus (orange) region, where Brain\WWeb data appears medium gray both in

BrainWeb-T2 Real-T2

T1 and T2. Real data, however, presents the globus pallidus (orange) with
medium gray in T1 and dark gray in T2. (A) Simulated T1; (B) /n-vivo T1; (C)
Simulated T2; (D) /n-vivo T2.

FreeSurfer on the raw MRI scans was approximately 20%, on
large-scale heterogeneous MR data, but when FreeSurfer was
provided the BRAINSABC tissue classified pre-aligned and bias-
corrected images the visual inspection failure rate dropped to
approximately 8%.

A more comprehensive evaluation and validation of all avail-
able tissue classification tools to see how our proposed tool
performs in comparison would have been ideal, but this task was
determined beyond the scope of this paper. However, in this study,
we have provided a formal validation study of our proposed tool
as well as a formal comparative study against well-established
tools. In addition, the results of our study has undergone a
rigorous qualitative assessment that involved visual inspections
by three independent experts who have been trained on a
large number of scan sessions from various sites and scanning
protocols.

The software implementation is written based on the
InsightToolkit libraries and conforms to the coding style, test-
ing, and software license guidelines specified by the National
Alliance for Medical Image Computing group. Our implemen-
tation, BRAINSABGC, is publicly available at https://github.com/
BRAINSia/BRAINSTools via BRAINSTool package. Our imple-
mentation is optimized for, but not limited to, large-scale MR
data analysis. The implementation has successfully applied over
3000 scans from the large-scale longitudinal study (PREDICT-
HD, 2001) and visually inspected their validity. Advantages
of our tool come primarily from its demonstrated gener-
alizability to a wide number of scanning protocols, varia-
tions in the number and type of modalities, and number of
repeated scans. As a part of larger image processing frame-
work, this iterative automatic bias-field correction module pro-
vides very robust and consistent results for further MR image
analysis.
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APPENDIX A: IMPLEMENTATION AND USAGE

The software implementation is written based on the InsightToolkit libraries and conforms with the coding style, testing, and software
license guidelines specified by the National Alliance for Medical Image Computing group. Our implementation, BRAINSABC, is
publicly available at https://github.com/BRAINSia/BRAINSTools via BRAINSTools package:

git://github.com/BRAINSia/BRAINSTools.qgit
0e461691b9%9a8520107431c£39d2835a939£fe398¢c

that recursively includes:

ANTS GIT_REPOSITORY "git://github.com/stnava/ANTs.git"
ANTS GIT_TAG "6cb624225fe99047b562acblalcb053dc98dbc50"

DCMTK REPOSITORY git://github.com/commontk/DCMTK.git
DCMTK GIT_TAG "d06e2b7d9%afb23df4e969482a68b50fc75aaaad"

DoubleConvert REPOSITORY git://github.com/BRAINSia/double-conversion.git
DoubleConvert GIT_TAG 9014759697ed334753a8334e09ec8c01£9c53830

ITKv4 REPOSITORY git://itk.org/ITK.git
ITKv4 GIT_TAG 0a5e0992cf46a9199c6078£3939b8c2d56149cc8

NIPYPE GIT_REPOSITORY "git://github.com/BRAINSia/nipype.git"
NIPYPE GIT_TAG "4461db214feb97fc6995£6694c133298ef13fe97"

OpenCV OPENCV_GIT_REPO "git://github.com/BRAINSia/opencv.git"
OpenCV OPENCV_GIT_TAG "20121015_UpdateForTesting"

SimpleITK REPOSITORY http://itk.org/SimpleITK.git
SimpleITK GIT_TAG 32f32ce22bce6721c93a528al6e53ddele75a511

SlicerExecutionModel REPOSITORY
"git://github.com/Slicer/SlicerExecutionModel.git"
SlicerExecutionModel GIT_TAG "7365853e2b88b832831fc0e9p90f1720ecOedbbb"

VIK REPOSITORY git://vtk.org/VTK.git
VTK GIT_TAG "v5.10.0"

ghull QHULL_GIT_REPO "git://gitorious.org/ghull/ghull.git"
ghull QHULL_GIT_TAG "master"

Once downloaded and built the BRAINSTools package, the standard help manual is available via —help command, or -k in short. Note
that required inputs are written in blud bold letters.

$ BRAINSABC -help

USAGE:
. /BRAINSABC
[-—returnparameterfile <std::string>]
—--processinformationaddress <std::string>] [--xml] [--echo]
—-numpberOfThreads <int>]

[

[

[-—writeLess] [-—-debuglevel <int>]
[-—implicitOutputs <std::vector<std::string>>]
[

-s <std::string>]
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-gridSize <std::vector<int>>]
——atlasWarpingOff]

—--maxBiasDegree <int>]
——filterMethod <None|CurvatureFlow|GradientAnisotropicDiffusion|Median>]
——filterTimeStep <float>]

——filterIteration <int>]
[--medianFilterSize <std::vector<int>>]

(-
[
[
[
[
[

[-—maxIterations <int>]

[-—interpolationMode <BSpline|NearestNeighbor |WindowedSinc|
Linear|ResampleInPlace|Hamming|Cosine |
Welch|Lanczos |Blackman>]

——outputFormat <NIFTI|Meta|Nrrd>]

-posteriorTemplate <std::string>]

——outputDirtyLabels <std::string>]

——outputLabels <std::string>]

——outputVolumes <std::vector<std::string>>]

—--subjectIntermodeTransformType <Identity|Rigid|Affine|BSpline>]

——atlasToSubjectInitialTransform <std::string>]

——atlasToSubjectTransform <std::string>]

——atlasToSubjectTransformType <Identity|Rigid|Affine|BSpline|SyN>]

——outputDir <std::string>]

——inputVolumeTypes <std::vector<std::string>>]

—--atlasDefinition <std::string>]

i, —--inputVolumes <std::vector <std::string>>]

[
[-
[
[
[
[
[
[
[
[
[
[
[-
[-

-] [--version] [-h]

Multi-modal repeated scan processing can be applied as following command: Note that the presented parameter set is used for
entire this paper. Again, a set of required inputs are written in blue bold letters, and the file “ExtendedAtlasDefinition.xml”
of —atlasDefinition is provided in the BRAINSTools package along with all the altases. The only adjustment we have made is the Affine
and SyN of the —atlasToSubject TransformType option, which can be chosen from five different options: Identity, Rigid, Affine, BSpline,
and SyN

./BRAINSABC \
—-atlasDefinition ExtendedAtlasDefinition.xml \

——atlasToSubjectTransform atlas_to_subject.h5 \
-—atlasToSubjectTransformType SyN\
——debuglevel 10 \

——filterIteration 3 \

——filterMethod GradientAnisotropicDiffusion \
-—gridSize 10,10,10 \

——inputVolumeTypes T1,T1,T2 \

——inputVolumes scan_tl_1l.nii.gz \
——inputVolumes scan_tl_2.nii.gz \
——inputVolumes scan_t2.nii.gz \
-—interpolationMode Linear \

--maxBiasDegree 4 \

-—-maxIterations 3 \

——outputDir ./ \

——outputDirtyLabels volume_label_seg.nii.gz \
—-—outputFormat NIFTI \

—-—outputlLabels brain_label_seg.nii.gz \
—-—outputVolumes scan_tl_1_corrected.nii.gz \
—-—outputVolumes scan_tl_2_corrected.nii.gz \
—-—outputVolumes scan_t2_corrected.nii.gz \
——posteriorTemplate POSTERIOR_%s.nii.gz
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