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Background: Many recent studies have separately investigated functional and white
matter (WM) based structural connectivity, yet their relationship remains less understood.
In this paper, we proposed the functional-by-structural hierarchical (FSH) mapping to
integrate multimodal connectome data from resting state fMRI (rsfMRI) and the whole
brain tractography-derived connectome.

Methods: FSH first observes that the level of resting-state functional correlation between
any two regions in general decreases as the graph distance of the corresponding structural
connectivity matrix between them increases. As not all white matter tracts are actively
in use (i.e., “utilized”) during resting state, FSH thus models the rsfMRI correlation as
an exponential decay function of the graph distance of the rsfMRI-informed structural
connectivity or rsSC. rsSC is mathematically computed by multiplying entry-by-entry the
tractography-derived structural connectivity matrix with a binary white matter “utilization
matrix” U. U thus encodes whether any specific WM tract is being utilized during rsFMRI,
and is estimated using simulated annealing. We applied this technique and investigated
the hierarchical modular structure of rsSC from 7 depressed subjects and 7 age/gender
matched controls.

Results: No significant group differences were detected in the modular structures of
either the resting state functional connectome or the whole brain tractography-derived
connectome. By contrast, FSH results revealed significantly different patterns of
association in the bilateral posterior cingulate cortex and right precuneus, with
the depressed group exhibiting stronger associations among regions instrumental in
self-referential operations.

Discussion: The results of this study support that enhanced sensitivity can be obtained
by integrating multimodal imaging data using FSH, a novel computational technique that
may increase power to detect group differences in brain connectomes.
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INTRODUCTION
Modern imaging techniques have allowed us to study the human
brain as a complex system by modeling it as a network. A brain
connectivity network, also called a connectome (Sporns et al.,
2005), consists of nodes (gray matter regions) and edges. Edges
can represent white matter tracts in structural networks or corre-
lations between two BOLD time series in functional networks.

In recent years, substantial research efforts have been directed
toward understanding the brain at rest using resting state func-
tional MRI (rs-fMRI). Several studies have utilized sophisticated
mathematical and statistical tools to investigate the functional
connectome from rs-fMRI data (Biswal et al., 1997). The “default
mode network” (DMN) is a resting-state network theorized to
reflect an individual’s focus on internal tasks such as daydream-
ing, envisioning the future, retrieving memories, and gauging

others’ perspectives. The DMN tends to negatively correlate with
brain systems responsive to external signals. Anatomical regions
involved include the medial temporal lobe, the medial prefrontal
cortex, and the posterior cingulate cortex (Buckner et al., 2008),
along with the adjacent precuneus (Zhang and Li, 2012) and the
parietal cortex.

The DMN is an example of one relatively well-characterized
network, among many overlapping networks that subserve
different functions. Delineating these functional connections
may therefore be challenging, based on the complexity of
the brain. Structural white matter connectivity patterns, how-
ever, may provide a framework for understanding relevant
functional relationships between regions in a network, based
on direct and indirect anatomical connections. This may
aid in determining information available as outputs from
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certain regions and its inputs and potential influence on other
regions (Saygin et al., 2011). An approach using structural
to functional mapping could utilize a combination of DTI-
tractography to estimate brain white matter connectivity and
fMRI to estimate the neuronal activity coupled to blood flow
changes in anatomical regions that comprise nodes of the
network.

There have been several structural to functional mapping
approaches described in the literature. While some have focused
on specific but limited regional activation patterns (Johansen-
Berg et al., 2004; Saygin et al., 2011), other models describe
functional connections within regions comprising larger net-
works or systems (Passingham et al., 2002; Honey et al., 2009;
Deligianni et al., 2010; Skudlarski et al., 2010; Chulwoo et al.,
2011; Varkuti et al., 2011; Ng et al., 2012). Of note, these stud-
ies reviewed here all considered structural connectivity to be
static, unlike their functional counterparts. However, it is highly
unlikely that white matter tracts are static in relation to the
brain’s different functional states. Indeed, white matter tracts
can be in use or engaged when the brain is performing certain
tasks but disengaged during other tasks (e.g., the white mat-
ter structure subserving the DMN will be relatively disengaged
when the brain is responding to external signals). In addition,
some of these previously published techniques rely on statisti-
cal methods based on linear modeling, however the relationship
between structural and functional connectivity may be non-linear
(Deligianni et al., 2010). In other studies, sparse Gaussian graph-
ical modeling (SGGM) is used for multimodal integration (Ng
et al., 2012). There, the authors proposed to merge functional
and tractography-derived structural data by casting functional
connectivity estimation as a sparse inverse covariance learning
problem. As functional connections with less anatomical sup-
port (i.e., fewer streamlines or fiber tracts) were more penalized
via an L1 type penalty term, the resulting functional connec-
tion patterns could thus be considered structural connectivity-
informed.

Here, in contrast to such SGGM models, we reversely con-
sider functional connectivity-informed structural connectivity,
thus arguing that information from fMRI can be used to infer
the underlying pattern of white matter engagement specific to
the brain’s state at the moment of the fMRI. To address that
not all white matter tracts are in use or engaged during fMRI,
we will extend and adapt the functional by structural hierar-
chical mapping (FSH) technique, a novel framework recently
proposed by our group (Leow et al., 2012) in order to estimate
white matter engagement or utilization patterns that generate
the functional connectome from rs-fMRI data, using struc-
tural networks derived from DTI-tractography. The resulting
connectome, which we term the resting-state informed struc-
tural connectome (rsSC), encodes the structural network that
underlies and facilitates the observed rs-fMRI correlation con-
nectome. Moreover, we may detect group differences in rsSC by
investigating and comparing their community or modular struc-
tures. To this end, we utilized PLACE (path length associated
community estimation) (GadElkarim et al., 2013) and detected
altered rsSC community structure in depressed subjects relative
to controls.

MATERIALS AND METHODS
SUBJECT SELECTION
7 healthy comparison (HC, age: 65.6 ± 8.12, 4 males) and 7 late-
life depressed (LLD, age: 60.7 ± 2.92, 4 males) subjects, were
recruited via community outreach (e.g., newspaper, radio, and
television advertisements) and relevant outpatient clinics. The
inclusion criteria for all subjects were 55 years of age and older,
medication-naive or anti-depressant free for at least 2 weeks (in
the case of our depressed subjects) and no history of unstable
cardiac or neurological diseases. The exclusion criteria included:
schizophrenia, bipolar or any psychotic disorders; history of anx-
iety disorder outside of major depressive episodes; history of
head trauma; history of substance abuse; contraindications to
MRI such as metal implants. This study was approved by the
University of Illinois-Chicago Institutional Review Board, and
written informed consent was obtained from each participant.
There were no significant differences in age (t = 1.49, p = 0.18)
and gender distribution (χ2 = 0, p = 1) between subject groups.
LLD subjects had a mean HAM-D score of 20 ± 3.7.

All eligible subjects were assessed by a trained research
assistant with the Structured Clinical Interview for Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV). The severity of depression was quantified by a
board-certified/board-eligible psychiatrist (AK or OA) using the
17-item Hamilton Depression Rating Scale (Hamilton, 1960).
At the time of enrollment, depressed subjects met DSM-IV cri-
teria for MDD and required a score of 15 or greater on the
HAM-D.

MRI ACQUISITION
Brain MRI were acquired on a Philips 3.0T Achieva scanner
(Philips Medical Systems, Best, The Netherlands) using an 8-
channel SENSE (Sensitivity Encoding) head coil. Participants
were positioned comfortably on the scanner bed and fitted with
soft ear plugs; foam pads were used to minimize head move-
ment. Participants were instructed to remain still throughout
the scan. High resolution three-dimensional T1-weighted images
were acquired with a MPRAGE (Magnetization Prepared Rapid
Acquisition Gradient Echo) sequence (field of view: FOV =
240 mm; 134 contiguous axial slices; TR/TE = 8.4/3.9 ms; flip
angle = 8◦; voxel size = 1.1 × 1.1 × 1.1 mm). Resting-state
data were acquired with the following parameters: Single-shot
gradient-echo EPI sequence, TR/TE = 2000/30 ms, Flip angle =
80◦C, EPI factor = 47, FOV = 23 × 23 × 15 cm3, in-plane res-
olution = 3x3 mm2, slice thickness/gap = 5/0 mm, slice num-
ber = 30, SENSE reduction factor = 1.8, NEX = 200, total
scan time = 6:52. Subjects were instructed to keep their eyes
close and “not think of anything in particular”. DTI images
were acquired using single-shot spin-echo echo-planar imag-
ing (EPI) sequence (FOV = 240 mm; voxel size= 0.83 × 0.83 ×
2.2 mm; TR/TE = 6,994/71ms; Flip angle = 90◦C). Sixty seven
contiguous axial slices aligned to the anterior commissure–
posterior commissure (AC-PC) line were collected in 32 gradient
directions with b = 700 s/mm2 and one acquisition without
diffusion sensitization (B0 image). Parallel imaging technique
was utilized with factor at 2.5 to reduce scanning time to
approximately 4 min.
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DATA PREPROCESSING
Structural connectomes were generated using a pipeline which
integrates multiple image analysis techniques and has been
reported elsewhere (GadElkarim et al., 2012; Leow et al., 2012).
In brief, DW images were eddy current corrected using the auto-
matic image registration (AIR) tool embedded in DTIStudio soft-
ware (http://www.mristudio.org) by registering all DW images to
their corresponding b0 images with 12-parameter affine trans-
formations. This was followed by the computation of diffusion
tensors and deterministic tractography using the DTIStudio pro-
gram. T1-weighted images were used to generate label maps
using the Freesurfer software (http://surfer.nmr.mgh.harvard.

edu). Brain networks formed by the 82 cortical/subcortical gray
matter regions were generated using an in-house program in
Matlab by counting the number of fibers connecting each pair of
nodes.

Functional connectomes were generated using the resting-
state fMRI toolbox, CONN (http://www.nitrc.org/projects/
conn; ). In brief,
raw EPI images were realigned, co-registered, normalized, and
smoothed before analyses. Confound effects from motion arti-
fact, white matter, and CSF were regressed out of the signal. Using
the same 82 labels as the structural brain networks, functional
brain networks were derived using pairwise BOLD signal correla-
tions, which were then converted to z scores using Fisher’s r-to-z
transformation.

FUNCTIONAL BY STRUCTURAL HIERARCHICAL (FSH) MAPPING FOR
CONSTRUCTING rsSC
Several assumptions and simplifications are needed in order to
perform FSH mapping (Leow et al., 2013). However, in order
to generalize FSH to construct rsSC, several modifications are
necessary, which we outlined step-by-step as follows:

(1) Higher level of rs-fMRI correlations will be considered evi-
dence of strong structural interactions between two regions
(either through direct or indirect structural connections in
the corresponding DTI-derived structural network)

(2) We observe that in general the level of rs-fMRI correla-
tion between two regions decreases as the graph distance
of the DTI-derived structural connectivity matrix increases
between them. FSH further assumes that such a relationship
is mathematically an exponential decay:

level of rsfMRI correlation between i and j ≈ e−kfi, j(D) (1)

Here, k a rate constant to be estimated, D the DTI-derived struc-
tural connectivity matrix for the same subject, and functional f
denotes the mapping of a brain connectivity matrix to its graph
distance matrix (i.e., each entry denotes the shortest graph dis-
tance between node pairs). Here, f is numerically obtained by
applying the Dijkstra algorithm to the entry-wise inverse of D
(since stronger structural connectivity translates to shorter dis-
tance, edge lengths are then usually assumed to be the inverse of
connectivity strengths).

(3) As in the original formulation of FSH, the presence of an
edge connecting any node pair in the structural connectiv-
ity matrix predicts the existence of neuroanatomical white
matter connections between regions, which may or may not
be actively utilized when the brain is in the resting state. In
order to reduce the mathematical complexity in modeling
and parameter fitting, FSH assumes an all-or-nothing edge
utilization (i.e., an edge is either utilized or not at all). A
connection between node m and n is considered “utilized”
if including the anatomical connection between them bet-
ter predicts the overall resting state fMRI correlation. This
is thus mathematically represented by a binary utilization
matrix U (i.e., if U(i, j) = 1, then the WM structural connec-
tion between nodes i and j are utilized in the resting state;
zero otherwise)

(4) FSH now hypothesizes that a direct mathematical relation-
ship can be established, for each node pair, between the level
of rs-fMRI correlation and the modulated graph distance
between the two nodes for the DTI-derived structural net-
work according to the utilization matrix, via the following
modified exponential decay equation:

level of rsfMRI correlation between i and j = e−kfi, j(U◦D) + ε (2)

Here U is the utilization matrix (same dimension is D), ◦ the
Hardamard entry-by-entry multiplication operator between two
matrices of the same dimensions, ε the fitting error (assumed to
be normally distributed).

Note the above exponential functional dictates that rsfMRI
correlations exponentially decay with increasing modulated
graph distance, and that when the modulated graph distance
between two nodes approaches infinity (i.e., the nodes are far
away from each other), the corresponding rsfMRI correlation as
expected approaches zero (by contrast, if two nodes are infinites-
imally close, the rsfMRI correlation is 1).

(5) For subjects in the same diagnostic group, we fit on
the group level, by minimizing the sum of squared dif-
ferences between the observed and the predicted rsfMRI
correlations for all node pairs (both are z-transformed),
such that the group utilization matrix U is assumed to
capture certain characteristics unique to this group. To
this end, the resting state informed structural connectome
is mathematicallyU◦D. Mathematically, the minimization
problem for solving group-wise U is as follows (the super-
script n denotes subjects in the same diagnostic group; in this
study n ranges from 1–7).

U = argmin
∑

n

∑
i, j

(∣∣∣rsfMRI correlationn
i, j

∣∣∣ − e−knfi, j(U◦Dn)
)2

(3)

(6) To solve k (unique to each subject) and the utilization U
(shared for each diagnostic group), we closely follow the orig-
inal FSH formulation by alternating between the estimation
of k and U. When fitting U, we used simulated annealing by
randomly picking one element in U and changing its value
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(between 0 and 1; the initial value of U was set to one for all
its entries, thus indicating all edges were utilized and U◦D
simply returned the original structural connectivity matrix
D). The acceptance criterion determined whether the new
state was accepted from the current state by applying the
following decision rule with respect to an artificial cooling
temperature (c).

probability of accepting a proposed new state =
⎧⎨
⎩

1 if the new state yields a lower fitting residual

exp

(
−fitting residual increase

c

)
if the new state yields a higher fitting residual

(4)

This perturbation was repeated and the temperature gradually
decreased until the solution space was adequately sampled and
the global minimum reached.

To assess the goodness of fit of FSH mapping, we calculated the
correlation between the observed rs-fMRI z-scores and the pre-
dicted rs-fMRI z-scores according to the exponential decay func-
tion, both without (Equation 1) and with the utilization matrix
(Equation 2). The effect of fitting utilization matrix was then
tested by comparing the two groups of correlation coefficients
using the Fisher’s r-to-z transform.

MODULAR STRUCTURE USING PLACE (PATH LENGTH ASSOCIATED
COMMUNITY ESTIMATION)
After FSH mapping, we constructed the rsSC separately for
the depressed and the control group, by forming the product
U◦D using group-specific utilization matrix and group-average
structural connectivity matrix. We then used the PLACE (path

length associated community estimation) framework presented
in (GadElkarim et al., 2012, 2013) to assess potential group
differences for structural connectome (DTI-derived) alone,
the functional connectome (rs-fMRI-derived) alone, and the
resting state informed structural connectome. PLACE is a
novel technique designed to detect and compare hierarchi-
cal modular or community structure alterations between two
groups of brain networks based on shortest path lengths, and
has been shown to be advantageous when compared to the

FIGURE 1 | (A–D) This shows the FSH mapping results for all node pairs,
collected from all subjects in the HC group for region pairs with direct
structural connections (A and B) versus those without direct structural
connections (C and D). Left panels display the model fitting without the

utilization matrix U and the right panels show fitting with the utilization matrix
in the proposed exponential decay model. The y axis indicates observed
resting state fMRI correlation values and the x axis the predicted resting
state fMRI correlation values.
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modularity metric Q (Newman and Girvan, 2004; Blondel et al.,
2008).

To summarize, in PLACE community structures are first
extracted in the form of top-down hierarchical binary trees via
the maximization of a path-length dependent metric �PL, defined
as the difference between the average inter-community path-
length (interPL) and the average intra-community path-length
(intraPL), for two communities C1 and C2, �PL is mathematically
defined as:

�PL = interC1, C2
PL − 1

2

(
intraC1

PL + intraC2
PL

)
(5)

Where

inter
Ci, Cj

PL =
∑

n, ∈ Ci;m ∈ Cj
dnm

Ni Nj
intraCi

PL =
∑

n, m ∈ Ci;n > m dnm(
N2

i − Ni
)
/2

(6)

where Ni is the number of nodes in community Ci, dnm is
the shortest path length (i.e., graph distance) connecting nodes
n and m.

To quantify node-level community differences, PLACE uses
the scaled inclusivity metric V (Steen et al., 2011) in which a nodal
consistency vector of length equal to the number of nodes in the
network (82 in our case) is generated to compare nodes in a test
tree (i.e., an individual subject’s tree) to nodes in a reference tree.
Mathematically, for each node k belonging to communities Cp

and Cq in the test and reference trees respectively, V is defined as;
V(k) = (Nc)

2/NpNq, where Nc is the number of common nodes
between Cp and Cq.

In order to examine group differences in community struc-
tures at the nodal level, one group of networks is chosen as the
reference and PLACE generates the reference tree by extracting
the community structure corresponding to the reference group’s
mean connectivity matrices (using node-wise averaging). Next,

FIGURE 2 | (A) The following three regions (in gray) exhibit significant group
differences after FDR correction:. 1. Left posterior cingulate. 2. Right posterior
cingulate. 3. Right precuneus. The frequency of shared community membership

for these regionsin HC and LLD. 100% indicates all seven subjects from the
same diagnostic group have this region assigned to the same community as
the gray region. 2B:. The mean consistency values (V) for each region.
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all individual subjects’ trees are compared to the reference tree,
yielding the node-level scaled inclusivity metric, V. For each node,
2-sample t-tests for V are then used to detect differences in the
community structure on the nodal level (relative to the reference
group), followed by multiple comparisons correction conducted
using the false discovery rate (FDR) (Benjamini and Hochberg,
1995).

RESULTS
Figure 1 shows the FSH mapping results, which confirmed
improved fitting with the additional inclusion of the utiliza-
tion matrix U in the exponential decay function, in the HC
group (Figures 1A–D) by plotting the observed rsfMRI cor-
relations values against the predicted values. Here, we break
down the results for HC subjects into two groups: region
pairs with direct structural connections between them (1A and
1B) versus pairs without direct structural connections (i.e.,
only indirect structural connections; 1C and 1D). Overall, the
proposed FSH-exponential decay model significantly improved
the correlation between rsfMRI and structural connectivity
as all data points moved toward the line x = y after fit-
ting (direct: z = − 8.7, p < 0.0001; indirect z = −10.3, p <

0.0001). The pattern also occurred for LLD subjects (direct:
r = 0.246 (without fitting U), r = 0.509 (with U), z = −12.3,
p < 0.0001;indirect: r = 0.188 (without fitting U), r = 0.267
(with U), z = −4.8, p < 0.0001). Unsurprisingly, node pairs
with direct structural connections exhibited stronger associations
with rsfMRI correlations compared to those with only indirect
connections.

In order to understand the implications of utilization differ-
ences between groups, we examined the global modular structure
of the rsSC. To this end, we compared the community structure of
the rsSC between groups by applying PLACE (with the mean rsSC
of the HC group as the reference tree). We also applied PLACE to
connectomes derived using data from a single imaging modality
of either DTI alone or rs-fMRI alone. For functional connec-
tome PLACE results, we followed the technique of (Schwarz
and McGonigle, 2011) and analyzed the functional networks
formed by positive (right-tail), negative (left-tail), and absolute
correlation strengths across a range of thresholds (in increments
of 0.05 until one or more of the functional networks become
disconnected). Results revealed that there were no significant
differences in modular structure when examining connectomes
from a single modality. By contrast, after applying FDR correc-
tion (with a total of 82 comparisons), rsSC community structure
was significantly altered for three regions with reduced consis-
tency in LLD subjects: bilateral posterior cingulate, and the right
precuneus (Figure 2). Visually, the bilateral posterior cingulate
was more affiliated with posterior regions such as the precuneus
in HC subjects, whereas in LLD bilateral posterior cingulate was
more commonly associated with the anterior cingulate. With the
right precuneus, results demonstrate a strong association with a
limbic lobe module in HC subjects and a parietal lobe module
in LLD subjects. Figure 3 visualizes the differential patterns of
community affiliation and connectivity in the bilateral posterior
cingulate and the right precuneus.

To determine whether standard community detection meth-
ods could yield similar results, we applied the modularity metric,

FIGURE 3 | Communities and connectivities for the resting-state

structural connectome (rsSC), structural connectome, and functional

connectome in healthy control (HC) and late-life depressed subjects

(LLD), for nodes exhibiting significant group differences in the

modular structure of rsSC shown in Figure 2. The left posterior
cingulate (circled in panels indicated “L”), right posterior cingulate (circled
in panels indicated “R”) and the right precuneus (caudal and posterior to
the right posterior cingulate in panels indicated “R”, also circled). For each
diagnostic group, nodes that are coded the same color (either red or blue)
form a community or module in the average tree for that group (computed
by applying PLACE to the edge-wise average of all subjects’ connectivity

matrices in the same group, see methods section). Edges linked to the
bilateral posterior cingulate are indicated in red, while edges linked to the
right precuneus are in blue. For the functional connectome, edges were
thresholded for the level of correlation >0.25. Of note, only the rsSC
demonstrated significant differences in community structure. Visually, the
pattern of associations in the rsSC are similar to those in Figure 2A for
the left and right posterior cingulate (in that for HC there is a stronger
association with ipsilateral precuneus), and for the right precuneus (in LLD
there is a stronger association with occipital and posterior parietal cortices,
consistent with a pattern of dorsal and anterior precuneus functional
connectivity; also see discussion section).
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Q to our sample. Again, there was no significant difference
between groups using only structural or functional connectomes.
However, there was a difference in community membership of the
right fusiform gyrus using the rsSC with a significantly reduced
V in LLD subjects compared to HC subjects (HC:0.801 ± 0.129,
LLD:0.135 ± 0.209, p < 0.0001).

DISCUSSION
In this study, we adapted the recently-developed FSH mapping
to construct the rsSC by projecting rsfMRI time series corre-
lation information onto the whole brain tractography-derived
structural connectome. To this end, we assumed that the rsfMRI
correlation exhibits an exponential decay, subject to a rate con-
stant, with respect to the “modulated” graph distance of the
structural connectivity matrix. This allowed us to compute, as in
the original FSH framework, a utilization matrix in order to deter-
mine whether the inclusion of a specific structural connection
better explains the relationship between rsfMRI and the structural
connectivity.

As expected, including the utilization matrix significantly
increased the goodness of fit of the exponential decay model in
both HC and LLD subjects. Network community structure of the
rsSC using PLACE was altered in LLD subjects, particularly for
regions associated with the posterior DMN comprising part of the
limbic lobe and sub-regions of the parietal lobe. It is important to
note that in contrast to our results with the rsSC, applying PLACE
to the structural connectome or the functional connectome alone
failed to yield any significant group differences (the same con-
clusion holds even when we used more conventional community
detection methods, e.g., maximizing the Q modularity). This
is suggestive of enhanced sensitivity to network modular struc-
ture differences in the integrated rsSC compared to connectomes
derived from a single imaging modality.

The rsSC demonstrated altered community structure in a sub-
network of nodes that belong to the posterior DMN and the
limbic lobe. These nodes are notable for being associated with
altered structural and functional connectivity in depression. The
posterior cingulate is a part of the DMN which has been shown to
be altered in depression (Greicius et al., 2007; Sheline et al., 2009),
while as part of the posterior medial parietal cortex, the precuneus
in recent years has been shown to play a central role in wide-
ranging tasks including visuospatial imagery, episodic memory
retrieval, and self-referential operations. Current evidence from
functional studies supports a functional partition of the pre-
cuneus into an anterior division responsible for self-referential
imagery, and a posterior division related to episodic memory
retrieval (Cavanna and Trimble, 2006). Recent structural brain
network studies using whole-brain tractography have also consis-
tently established the precuneus as one of the many “hub” regions
in the brain (i.e., regions with the most wide-spread connections
to the rest of the brain; hub regions usually exhibit high degree
centrality, i.e., serving as relay centers for information transfer
across the brain) (van den Heuvel and Sporns, 2011; GadElkarim
et al., 2012). Tracer studies in recent years have also established
cortical connections between the precuneus and the frontal, the
medial parietal, and the lateral parietal cortices (Cavanna and
Trimble, 2006).

The findings of higher-degree associations between the pre-
cuneus and the lateral parietal cortex, and to some extent the sen-
sorimotor regions have two main parallels with the known litera-
ture. First, the medial parietal cortex (including the precuneus)
and lateral parietal cortex (especially the inferior parietal lob-
ule) along with the medial prefrontal cortex have been shown
to be primary regions activated during first person perspective
tasks (Cavanna and Trimble, 2006). Secondly, a recent resting-
state functional connectivity study of the precuneus has demon-
strated a transitioning pattern of functional connectivity from
the posterior and most ventral part of precuneus (greater con-
nectivity with the medial superior frontal gyrus, orbitofrontal
gyrus, anterior cingulate cortex, and parahippocampus) to the
more dorsal and anterior part (greater connectivity with occipital
and posterior parietal cortices and somatomotor cortex, among
other regions) (Zhang and Li, 2012). Thus our observed rsSC
community structure group differences suggest a pattern of pos-
terior/ventral precuneus connectivity in the control group vs. a
pattern of anterior/dorsal precuneus connectivity in the depressed
group.

To conclude, using our novel multimodal integration tech-
nique FSH combined with PLACE, we detected a differential pat-
tern of functional-structural connectome integration in late-life
depressed subjects relative to controls.
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