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This paper describes neuroinformatics technologies at 1 mm anatomical scale based on
high-throughput 3D functional and structural imaging technologies of the human brain.
The core is an abstract pipeline for converting functional and structural imagery into
their high-dimensional neuroinformatic representation index containing O(1000–10,000)
discriminating dimensions. The pipeline is based on advanced image analysis coupled
to digital knowledge representations in the form of dense atlases of the human
brain at gross anatomical scale. We demonstrate the integration of these high-
dimensional representations with machine learning methods, which have become the
mainstay of other fields of science including genomics as well as social networks.
Such high-throughput facilities have the potential to alter the way medical images are
stored and utilized in radiological workflows. The neuroinformatics pipeline is used to
examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical
applications as well as longitudinal studies. We demonstrate the use of high-throughput
machine learning methods for supporting (i) cross-sectional image analysis to evaluate the
health status of individual subjects with respect to the population data, (ii) integration of
image and personal medical record non-image information for diagnosis and prognosis.
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INTRODUCTION
Imaging is one of the most powerful medical tools for moni-
toring human health. In the era of personalized medicine, peri-
odic checkups via whole body imaging, combined with routine
medical screening, genetic information, and comparison with
population data is expected to be key information for monitor-
ing health status, pathological condition, and therapeutic effect.
High-throughput imaging technologies are becoming ubiquitous,
driven by the deployment of whole body high resolution MR,
CT, and PET imaging devices. While huge personal MR/CT based
data records are routinely being collected for cross-sectional and
longitudinal examination of the progression of diseases as man-
ifest via tumor growth or atrophic neurodegeneration, currently
while this information is stored in the medical PACS, usually only
linguistic diagnostic encoding from the physician is stored in the
searchable patient record. Such a lack of direct feature representa-
tion of the dense structural and functional phenotype precludes
its use for systematic medical analysis such as population statistics
or cross-modality correlation. Contrast this to what is emerging
in high-throughput genomics.

There are several reasons. Clearly, utilizing the information
from dense imagery from a longitudinal study, for example,
presents daunting challenges. High-resolution whole body CT
scans at 0.5 mm resolution for full body coverage would gen-
erate gigabytes of data. Visual inspection by a radiologist is
overwhelming at the original resolution. Most often the images
are down-sampled or low-resolution images are acquired to
accommodate the storage and retrieval challenges. Constructing

a parsimonious encoding of the discriminating information
presents a fundamental challenge. In high-dimensional spaces
such as that represented by the millions of measurements gen-
erated by 3D imagers, parsimonious representation of the mea-
surable structural and functional phenotype is essential.

Exploiting the maximum potential of the imagers or the asso-
ciated scans appears impractical without some form of encod-
ing, or extreme data reduction. Reduction of high-dimensional
imagery to symbolic knowledge representations encoded via the
informative discriminating dimensions is one of the holy-grails
of image analysis, a field which has advanced dramatically in the
past several decades. From our own school of Grenander’s metric
pattern (Grenander, 1993) has emerged the field of computa-
tional anatomy (CA) for medical image analysis (Grenander and
Miller, 1998, 2007; Toga and Thompson, 2001; Miller et al., 2002;
Thompson and Toga, 2002; Ardekani et al., 2009; Ashburner,
2009; Pennec, 2009). The organizing principle in CA is that while
there are variations in human structure and function, represen-
tation of the evolutionarily stable organization of processing in
human beings are to a great extent organized around the struc-
tural manifestation of the genotype, throughout what we term
the structural or anatomical phenotype. The evolutionary pro-
cess has been masterful in its conservation of neural processing
and its apparent organization around the macroscopic scales of
human anatomy. We assume throughout that while functional
layout is highly variable and ultimately associated with cellular
architecture, it is manifest at the macroscopic scale of the topo-
logical organization of human anatomy and is preserved in large
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part cross-sectionally. Striking examples include the tonotopic
organization of the auditory system for representing the axes of
complex spectral representation, the somatosensory and motor
homunculus in sensory and motor cortex, and the conformal like
representation of visual space in the visual field. In each case the
spatial axis encodes the functional axis representation.

The fact that functional topography is supported via dense
topologic correspondence to the anatomical coordinates is the
basis of our personalization of atlas based neuroinformatics.
The personalization step is accomplished via the construction of
a positioning system for neuroinformatics termed DiffeoMaps.
This is an infinite dimensional positioning system which we term
a Geodesic Positioning System (GPS) (Miller et al., 2013b) trans-
ferring information between atlas or world coordinate systems
and individualized coordinate systems. We term it geodesic posi-
tioning since the metric is constructed based on the shortest
(geodesic) flow of diffeomorphisms which connect the coordi-
nates (Miller et al., 2013b). Such a transfer of the atlas rep-
resentation to the coordinates of the individual allows for the
organization of the high-throughput medical image record into
a high-dimensional “feature vector” or an “index.” Indexing via
DiffeoMaps is the essential reduction or parsing of the individual
into metadata representations upon which the machine learn-
ing phase of high-throughput neuroinformatics may be applied.
Shown in Figure 1 is our overall solution for high-throughput
neuroinformatics, which includes atlases, diffeomorphic map-
ping for position (GPS), reduction to a high-dimensional feature
vector or index encoding the anatomical and functional phe-
notypes, and machine learning via supervised clustering. This
paper examines (i) cross-sectional image analysis to evaluate the
health status of individual subjects with respect to the population
data, (ii) integration of image and non-image information for
diagnosis and prognosis.

RELATED WORKS
The high-throughput Neuro-Imaging Informatics introduced in
this article is based on three core technologies; deformable
multi-modal brain atlases, geodesic positioning of meta-data or
semantic labels via diffeomorphic image transformation, and
machine learning algorithms, as detailed in the Materials and
Methods below. The deformable multi-modal brain atlases have
been developed in both the coordinate systems provided by
Montreal Neurological Institute (MNI) and the International
Consortium of Brain Mapping (ICBM), which is a multicen-
ter effort known for the MRI database and various brain atlases
(http://loni.usc.edu/ICBM/). The atlases developed through this
consortium have been implemented in leading software pack-
ages for the functional and anatomical brain analyses, such as
Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.
uk/spm/), FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), MRICron
(http://www.mccauslandcenter.sc.edu/mricro/mricron/), as well
as our own MRIstudio (https://www.mristudio.org/). The pri-
mary uses of the MNI or ICBM atlases are to be a reference
space for the voxel-based image analysis, in which statistical anal-
yses are performed on each voxel after all images are normalized
to the atlas space. This voxel-based approach has been widely
used since it enables researchers to statistically analyze the whole
brain with very high spatial specificity, and to report their find-
ings on a standardized coordinate system. This approach also
allows users to apply various types of anatomical parcellation
maps, such as the automatic anatomical labeling atlas (AAL)
(Tzourio-Mazoyer et al., 2002) and the LONI Probabilistic Brain
Atlas (LPBA) (Shattuck et al., 2008) for quantifying gray mat-
ter functions and anatomy. Our deformable multi-modal brain
atlases are extensions of these attempting to group voxels based
on anatomical or functional units, through which features of each
brain are preserved at 1 mm scale. While most of the “atlas-based”

FIGURE 1 | Showing the core components of the high-throughput neuroinformatics pipeline including content (the atlas family), the personalization

technology (GPS DiffeoMapping), and machine learning on the index or high-dimensional feature vector.
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approaches previously have targeted the gray matter areas of
single contrast images, the atlas used in our approach is multi-
modal, which means that the atlas consists of a set of images with
different contrasts [e.g., T1- and T2-weighted images, Diffusion
Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), and
Susceptibility Weighted Image (SWI) contrasts] to allow multi-
modal image analysis of both gray and white matter structures
in the common anatomical framework. The multimodal capabil-
ity is supported by the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) methods that employ single and multi-
channel algorithms (Beg et al., 2005; Ceritoglu, 2008; Ceritoglu
et al., 2009; Djamanakova et al., 2013), allowing for the incorpora-
tion of multiple imaging modalities while performing simultane-
ous mapping that maximally satisfies registration of the multiple
modalities.

Another distinction we have made is to explicitly model both
the geometric component of the atlas and associate to that the
anatomical phenotype, simultaneously with the contrast compo-
nent of the atlas which we generally associate to the function.
This we do by providing a direct model in which the anatom-
ical geometry carries the function, and demonstrate explicitly
how to code via informatics both the anatomical geometry simul-
taneously with the functional contrasts. This forms the heart
of our personalization via DiffeoMaps below. This allows us to
directly generate classifiers and perform hypothesis generation
about disease groups by both the anatomical phenotype as well as
the contrast or function phenotype, and index them to different
atlases. This can be contrasted to alternative approaches which use
normalization viewing the geometric or anatomical phenotype
as a nuisance parameter which is normalized out, like the affine
group is removed rather than explicitly modeled.

Since the robustness of the machine learning framework to
detect disease related anatomical and functional features of the
brain has been demonstrated (Teipel et al., 2007; Hinrichs et al.,
2011; Zhang et al., 2011), our approach is the generalizable exten-
sion toward high-throughput whole-brain multimodality analysis
of heterogeneous brain conditions.

MATERIALS AND METHODS
ATLAS REPRESENTATION OF 1 mm STRUCTURAL—FUNCTIONAL
CONTRASTS
The core of our high-throughput neuroinformatics technology
is the conversion of the raw images into a structured, quantita-
tive, and searchable high-dimensional feature vector. The basis
for reduction to the numerical knowledge representation are the
evolutionarily stable categorizations which neuroscientists have
defined over the past decade. Our starting point is dense atlases
of neuroanatomical structure and function indexed against age
and group. We model the individual’s imagery as an orbit under
transformation of 1 mm scale coordinatized atlas information.
Figure 2 depicts our coordinatized human atlases demonstrat-
ing 3D anatomical information at different developmental stages
(multi-dimensional) (Oishi et al., 2011c), different MR contrasts
(multi-contrast) (Oishi et al., 2009), and varying coordinatized
structural and functional definitions (Mori et al., 2013). The coor-
dinate systems support MNI (Mazziotta et al., 1995, 2001) and
Talairach (Talairach and Tournoux, 1988) coordinates as well as
parcellations into different cortical areas as well as approximately

20 deep gray matter and 100 deep white matter structures all
based on anatomical parcellation. The cortical partition includes
structures such as parietal gyrus, frontal gyrus, pre-central gyrus,
cuneus, lingual and others; the subcortical structures include
amygdala, caudate, globus pallidus, hippocampus, putamen, tha-
lamus, red nucleus, substantia nigra, hypothalamus, nucleus
accumbens; the white matter structures include corticospinal,
internal capsule, thalamic radiation, corona radiate, fornix, lon-
gitudinal fasciculus, corpus callosum, and others. Such a modern
atlas also includes parcellations based on different anatomical and
functional criteria such as cytoarchitecture, vascular territories,
and anatomical and functional connectivity. This type of effort to
parcellate the brain has been a subject of research based on histol-
ogy (von Economo and Koskinas, 1925; Sarkisov et al., 1955; Mai
et al., 1997; Schleicher et al., 1999; Tzourio-Mazoyer et al., 2002;
Zilles et al., 2002) or MRI for the cortex (Lancaster et al., 2000;
Mazziotta et al., 2001; Tzourio-Mazoyer et al., 2002; Hammers
et al., 2003; Maldjian et al., 2003; Shattuck et al., 2008), white mat-
ter (Meyer et al., 1999; Mori et al., 2008; Oishi et al., 2008) and the
whole brain (Fischl et al., 2002; Desikan et al., 2006; Oishi et al.,
2009, 2011c, 2013).

PERSONALIZATION VIA DIFFEOMAPS AS A GEODESIC POSITIONING
SYSTEM
Reduction to a high-dimensional feature vector which can be
indexed requires us to model the high-throughput imagery. The
underlying assumption of our model is that the meta-data rep-
resenting the individual’s structure and function is carried by the
individual’s coordinate systems, and there exists a structure pre-
serving mapping which transforms the individual’s coordinates
into the stereotypical atlases. We term these transformations mor-
phisms, these transformations form a group φ ∈ G. The structure
preserving morphisms provide correspondence between “charts”
of the human brain as contained within atlas and the individual’s
coordinates. In this sense the morphisms provide a position-
ing system through their algebraic group action. Our group has
come to call this the metamorphism model (Miller and Younes,
2001; Trouvé and Younes, 2005), organizing the structural and
functional informatics, the images I ∈ � into the transformation
–image pair [φ(x), I(x)] , x ∈ X related via the algebraic pairing

• : (φ, I) �→ I′ .= φ • I ∈ �. (1)

In this model the morphisms denoted by φ(x), x ∈ X carries the
coordinatized contrast metadata imagery denoted by I(x), x ∈ X.

Personalization occurs via smooth transformation of the atlas
meta-data φ · Iatlas. For this we define a distance infφd(I,φ · Iatlas)

between the individual’s representation and transformed atlas
solving a variational problem for the coordinate (Dupuis et al.,
1998; Beg et al., 2005; Ceritoglu et al., 2009) transformation. The
correspondence between the individual and atlas is termed the
“DiffeoMap,” which provides an infinite dimensional positioning
between atlas and world coordinates. This is in sharp contrast to
the 7-dimensional similarity maps used in geographic position-
ing. To see this, the Eulerian velocities of Equation (2) below,
while spatially smooth are a high-dimensional field, implying the
Jacobian expressing first order transformation of coordinates in
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FIGURE 2 | Panels show a current brain atlas, including 3D

anatomical information at different developmental stages

(multi-dimension), different MR contrasts (multi-contrast), and

different structural definitions. The coordinate systems include
MNI and Talairach coordinates with the brain depicted as

parcellated into multiple cortical and subcortical areas including
deep gray and white matter structures based on anatomical
features (anatomical parcellation) as well as functional parcellation
based on cytoarchitecture, vascular territories, and anatomical and
functional connectivity.

space allows the tissue to locally scale and twist while at the same
time preserving relative organization.

Shown in Figure 3 are instantiations of our structure-function
metamorphosis model, including structural contrast imagery T1,
orientation vector imagery such as DTI, metabolic contrast as
measured via magnetic resonance spectroscopy and functional
connectivity via resting-state fMRI (Faria et al., 2012).

Each of the modalities has its own definition of the mor-
phism acting on the meta-data of the contrast imagery expli-
cating the algebra represented by •, specifically (i) for the
submanifolds of subcortical structures, gyral curves and cor-
tical surfaces the morphism acts φ · x = φ(x), (ii) for scalar
imagery such as T1 the morphism acts via the inverse φ · I =
I ◦ φ−1, and (iii) for symmetric matrix-valued DTI (color in
Figure 1) with eigen elements {λi,φi}, the morphism acts to pre-
serve the eigenvalues and determinant, rotating the eigenvectors

φ · I =̇ (
λ1 ê1 êt

1 +λ2 ê2 êt
2 +λ3 ê3 êt

3

) ◦ φ−1 with ê1 = (dφ)ê1‖(dφ)ê1‖ ,

ê2 = (dφ)ê2−〈ê1,(dφ)ê2〉 ê1√
‖(dφ)e2‖2−〈ê1,(dφ)ê2〉2

, ê3 = ê1 × ê2, and dφ =
(

∂φi
∂xj

)
the 3

by 3 Jacobian matrix, with x denoting the vector cross-product.

THE HIGH-DIMENSIONAL FEATURE VECTOR AND MACHINE LEARNING
The scanners are the high-throughput devices generating the
high-dimensional raw images of O(10,000,000) in complexity,

and the pipeline converts it into a quantitative searchable fea-
ture vector {f = X1, X2, X3, . . .} representing the individual at
O(1000–10,000) complexity. Diffeomorphic GPS (Miller et al.,
2013b) provides the basis for data reduction, since the anatomical
structure phenotype is encoded by the morphisms and the meta-
data of structure-function are encoded by the contrast imagery
represented in atlas coordinates. The metamorphism model orga-
nizes the structural and functional informatics into the pair
[φ(x), I(x)], x ∈ X.

The GPS correspondences are diffeomorphisms, one-to-one
and smooth mappings between coordinate systems φ : X ↔Y,
φ(x), x ∈ X providing correspondences φ : I ↔ Iatlas between the
individuals in the population and the atlas. The correspon-
dences are generated as solutions of the classical Lagrangian flow
equations, φ̇t = vt(φt), t ∈ [0, 1] the time derivative of the flow
vt is termed the Eulerian velocity (Christensen et al., 1996).
Constructing the DiffeoMaps occurs via the geodesic connection
of one coordinate system to the other (Miller et al., 2006), solv-
ing for the geodesic connection between individual I and atlas
φ · Iatlas according to

infvt, t∈[0, 1]:φ̇ = v(φ), φ0·Iatlas = Iatlas

1∫

0

‖vt‖V dt subject to I = φ1 · Iatlas.

(2)

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 31 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Miller et al. High-throughput neuro-imaging informatics

FIGURE 3 | Multiple image contrasts obtained from an individual

using different MR pulse sequences. These multiple images are
simultaneously parcellated into multiple structures, linking their coordinate
systems (Parcellation Map). This procedure reduces the vast anatomical
information into a parcellated series of approximately 200 structures and

a series of MR contrast values that are the signature of each individual.
DTI: Diffusion Tensor Image, T1-WI: T1 weighted images, rsfc: resting
state functional connectivity, MRSI: Magnetic Resonance Spectroscopy
Images. This pipeline is available at http://www.mricloud.org/
implementing multi-atlas parcellation (Tang et al., 2013b).

The geodesic connections are encoded via their initial tangent
vector at the identity, denoted as ν = vt = 0 ∈ V . This forms the
natural coordinate system of our GPS (Miller et al., 2013b). We
have reduced the anatomical phenotype to a set of coordinates
ν = vt = 0 ∈ V centered at the atlas.

This is a natural representation of the anatomical or shape
phenotype since the norm of the coordinates preserves the met-
ric structure on the space of anatomies using this framework
(Miller et al., 2006). The shortest flows connecting the template
and individual coordinate systems define the metric in this space,
the metric of Equation (2) is given by the integrated norm of
the vector fields generating the morphisms. The reduction of the
shape phenotype to these diffeomorphic connections we call dif-
feomorphometry (Miller et al., 2013b). At the 1 mm scale of MR
imagery the anatomical phenotype is extremely sparse relative to
the high-dimension of the initial data. For smooth imagery such
as MRI linear functions of the vector fields, termed the shape

momentum, are concentrated to the boundaries of the homoge-
neous subcomponents of the object (Miller et al., 2006; Qiu and
Miller, 2008). At places in the image that are constant the shape
is coded as zero. Plainly put, at the 1 mm scale gyral and subcor-
tical regions of the MRI contrasts do not discriminate the cellular
architecture.

Shown in Figure 4 is an instantiation of our pipeline, depict-
ing the personalization phase via DiffeoMap. The generation of
the geodesic of Equation (2) for image matching via the solu-
tion of a quadratic variation problem on the vector field we
call large deformation diffeomorphic metric mapping (LDDMM)
(Beg et al., 2005). The modalities are shown in the top row
in atlas coordinates with the DiffeoMap applied to the target
showing the parcellation of target modalities shown in the bot-
tom row.

Figure 5 shows a depiction of the subcortical neuronanatomy
atlas as measured in 1 mm scale MR. The left panel shows
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FIGURE 4 | Showing the pipeline starting with the modalities in atlas coordinates (top row) with the DiffeoMap applied to the target showing the

parcellation of target modalities (bottom row). The algorithm used for solving for the multi-modality DiffeoMap is multi-modality LDDMM.

the atlas of 14 subcortical structures, amygdala (A, light blue),
caudate (C), hippocampus (H, green), globus pallidus (PAL),
putamen (PUT), ventricle (VL), thalamus (TH), each sur-
face in the atlas containing order 1000 vertices. The set of
structures correspond to an atlas generated from the popula-
tion of healthy controls (HC) and Alzheimer’s disease (AD)
computed using the surface template estimation algorithm
described in Ma et al. (2010). To demonstrate the sparcity
of the anatomical phenotype at 1 mm scale, the geodesic cor-
respondence between the atlas and a database of 250 sub-
cortical brains were generated giving a coordinate identifica-
tion of each element in the population, I ∼ v, where v is
the geodesic coordinate representation of the anatomy to the
atlas. To understand the variation over the population, they
were expanded via principle component analysis into a basis
v(f1, f2 . . .) = ∑

i
fiUi; the f ’s are reduction of the anatomical

phenotypes to the basis of eigenfunctions U. The sparsity of
the anatomical phenotype was calculated across the popula-
tion calculating the dimension required for encompassing 95%
of the energy of subcortical variation. Generally each struc-
ture requires between 20 and 40 dimensions, with hippocam-
pus and thalamus having the greatest shape variation within

the population in terms of number of dimensions. The 95%
variance cutoff as a function of dimensions for each structure is
A20<PAL22<C25<PUT27,VL27<H30<THA40, the sparse sub-
cortical shape phenotype at 1 mm scale is O(1000). The right
panel shows the layout in the geodesic coordinate system of 250
of the anatomies (blue dots) in the first two geodesic dimensions
with 20 of the brains shown explicitly.

This huge data reduction is noteworthy as it is the direct
generalization of the sparsity of rigid body momentum which
itself encodes translation and angular momentum to single 3-
vectors, even though the inertia is extended over the entire object.
Taking the midbrain as roughly 1/3 of the total brain volume of
2–4 Million voxels implies a data reduction of three orders of
magnitude to O(1000).

CORTICAL, SUBCORTICAL AND WHITE MATTER PARCELLATION
FEATURE VECTOR
The global positioning solution provides registered coor-
dinates for the encoding of the target coordinates system
into a parcellation corresponding to the anatomically
defined partition of atlas coordinates in the 200 white
and gray matter parcels. Denoting the atlas partition
pi, and since there can be as many as 7 MR contrast
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FIGURE 5 | Top row: Panel shows the left-right subcortical structures for
human at 1 mm including amygdala (A, light blue), caudate (C), hippocampus
(H, green), globus pallidus (PAL), putamen (PUT), ventricle (VL), thalamus
(TH). The right panels shows the layout in the geodesic coordinate system of
250 of the anatomies (blue dots) in the first two dimensions with 20 of the
brains shown explicitly with the basis dimensions on the order of 20–40
dimensions for each subcortical structure occupying 95% of the variatiance of
anatomical variation with ordering A20<PAL22<C25<PUT27,VL27<H30<

THA40. Bottom row: Shows the geodesic coordinates of the population (top
right) relative to the atlas (top left) shown as a shape statistic computed by
averaging over all geodesic mappings and computing the Jacobian of the

tangent vector at the identity representing the anatomy. Bottom left shows
the difference in the means μHC − μAD superimposed on the template. The
log-determinant of the Jacobian is shown, with red corresponding to
shrinking and blue expansion. The bottom left panel depicts the hippocampus
and amygdala are significantly red means large shrinkage relative to the
contols, with the blue signaling the expansion of the ventricles. Bottom right
panel shows a classifier based on three structures using only volume (left
hand) and all the 20–40 dimensions of the anatomical phenotype encoded by
the geodesic coordinates for hippocampus, amygdala, and ventricle. The
images used for this analysis are a portion of a dataset published with the
methodological detail (Tang et al., 2013a).

values including T1, T2, B0, trace, FA, spectroscopy, gives
O(1000) features

f c
Pi

=
∫

Pi

Ic(x)dx, i = 1, . . . , 200, c = 1, .., 7. (3)

Shown in Figure 6 are examples of the neuroinformatics par-
cellation which is transported via the personalization phase.
Figure 6A shows the DiffeoMap personalization of the atlas
into the coordinates of a spastic cerebral palsy patient with
visually appreciable anatomical abnormalities (the color high-
lights the volume change larger than two standard deviations).
The three rows show measurement results for volume, FA, and
MD. Each column is an entry for one of the 200 anatomi-
cal structures. The top row represents anatomical information
of each parcellated structure. In feature space, the neuro-
informatics atlas supports both empirical means as well as empir-
ical variances. Only features which demonstrate as outliers are
depicted.

The bottom part, Figure 6B, shows an example of pop-
ulation data, in which the atlas partition of the anatomi-
cal phenotype for the listed structures (the bottom row in
Figure 6A) are presented for 10 cerebral palsy patients (P3 is
the individual shown in Figure 6A). All patients shared the
same spastic phenotype with varying degree of motor impair-
ment indicated by GMFCS scores. Abnormal parcellation vol-
ume values are presented by z-scores. At a glance, even though
the patients were selected by similar clinical manifestations, a
marked degree of anatomical variability can be recognized imply-
ing the importance of clustering on the spectrum of anatomical
phenotype.

FUNCTIONAL MRI AND CONNECTIVITY MAPS IN ATLAS COORDINATES
Functional magnetic resonance imagery (fMRI) also provides
ideal measurements for studying pairs of interactions in the
brains. fMRI connectivity is based on empirical correlations of
temporal responses between pairs of elements in the representa-
tion. Figure 7 shows an example of empirical correlation of fMRI
at lag-0 using the common atlas coordinate system to parcelate
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FIGURE 6 | (A) Feature vector from the personalization DiffeoMap
correspondence between the atlas and an individual’s coordinate system
associated with focal disease category. Informatics partition with 200
structures including, volume, FA and MD values into peripheral white and
gray matter, and deep white and gray matter structures. The features are
color coded according to the statistics to depict color-coded outliers: WM:

white matter, GM: gray matter. (B) Example of population data including 10
cerebral palsy patients with different prognoses in their motor disability.
Informatics partition with 200 structures of volume for each patient is shown
as 10 rows. The features are color coded according to z scores calculated
based on normal control population. CP: cerebral palsy, GMFCS: gross motor
function classification system.

symmetrically associated motor cortex areas plotting the resting-
state MRI functions (rs-fMRI) (Tzourio-Mazoyer et al., 2002;
Eickhoff et al., 2005; Achard et al., 2006; Hagmann et al., 2008;
He et al., 2009; Wang et al., 2009).

Shown is the time series of the fMRI image modal-
ity IfMRI(x, t) integrated over the right and left motor
cortex parcels. Notice the strong correlation depicted via the
superposition of the red-blue time sequences. These highly
correlated patches of tissue has resulted in the widely used

ICA model in which the measured functional signal is the
superposition of “networks,”

IfMRI(x, t) =
∑

i

f (t)
i U(x)

i (4)

the U ’s playing the role of the resting-state networks. Working in
the registered coordinates of the atlas allows for the construction
of these resting state networks in the parcellations of the atlas by
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FIGURE 7 | fMRI parcellation based on resting state correlations. The top panel shows the overlap of the resting state functional signals integrated over
the right-left motor parcellation; the bottom panel shows the value of blue and red time series over the 210 time points.

simply replacing the functional MR signal by it’s parcellated rep-
resentation IPi(t) = ∫

Pi

IfMRI(x, t)dx, Pi = 1, . . . 200. The f ’s are

the dimensions of the functional MRI signal representing 10–20
resting state dimensions added to the feature vector.

MACHINE LEARNING INVESTIGATION OF DISEASE-SPECIFIC
PHENOTYPES
High spatial resolution is one of the most significant advantages of
clinical MRI and its usefulness in studying pathological condition
and detecting abnormalities. It seems clear from many studies
that because of the noise versus signal tradeoff most detectable
pathologies from MRI are signaled via small groups of spatially
correlated voxel contrasts. Dimensionality reduction becomes the
central methodology for MRI analysis in clinical applications.
Combining unsupervised principal component analysis (PCA)
along with supervised training, on the supervised group means
under the common covariance model gives linear discriminant
analysis (LDA).

Given m-length feature vectors, a collection n of them
{

fj
}

,
then PCA calculates the singular value decomposition (SVD) of
the m × n matrix F = (

f1, f2, . . . , fn
) = U�Vt , where U is an

m × m orthonormal matrix of vectors with
∑

diagonal with
entries the singular values. The connection to least-squares and
covariance modeling of Gaussian processes is that the left singular
vectors U = (U1, . . . , Um) are the eigenfunctions of the empiri-
cal covariance FFt ; the set of diagonal entries squared of

∑
are the

variances in the rotated independent representation of the left sin-
gular vectors. LDA then is the supervised version. Given groups of

labeled feature vectors
{

f
g
j

}
, g = 1, . . . then each labeled group

has a mean and covariance:

μg =
∑ng

j = 1
f

g
j /ng, Kg =

∑ng

j = 1
(f

g
j − μg)(f

g
j − μg)

t
/ng . (5)

Then LDA is PCA on the group means μg using the com-
mon covariance K = ∑

g Kg . Quadratic discriminant analysis
is a particular non-linear discriminant analysis (QDA) relaxing
the common across groups covariance assumption. The high-
dimensional structural and functional phenotypes are encoded
via high-dimensional feature vectors. The classifiers are con-
structed from the cohorts of neuropsychiatric illnesses collected
via the supervised training component. The crucial advantage of
this approach is that the anatomical and structural phenotypes
are indexed to the coordinates of the template. For the subcortical
structures, for example, the anatomical phenotype is immediately
reduced from a feature vector of dimension O(10,000,000), to
the dimension of the surfaces which is O(10,000). Similarly, the
functional feature is indexed over the anatomical substructures.
This of course requires the notion of a template coordinate system
which is centered in the population. Unlike other methods since
we have explicitly modeled the anatomical and functional pheno-
types, we can perform classification on both rather than viewing
coordinate system transformation as a nuisance variable.
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RESULTS
THE ANATOMICAL PHENOTYPE: IMAGE RETRIEVAL AND CLUSTERING
With an estimated 100 million scans every year in radiology, a
huge amount of imaging data are generated every day, with these
data stored in clinical Picture Archiving and Communication
Systems (PACS) and are rarely used to support medical decision-
making in cross-sectional examination of patient populations.
Similar to the role of genomic and proteomic information
for personalized medicine, anatomical phenotypes are funda-
mentally important for medical decision-making, yet often not
systematically utilized in daily medical practice. While text-
based patient records for retrieval of disease cohorts is com-
monly used, to utilize the anatomical phenotype for medical
decision-making for individual patients we need to be able
to use the patient image as the search key with the diag-
nostic label being the retrieved information. Using the high-
dimensional feature vector without any diagnostic supervised
labeling allows us to group and retrieve based on the structural
phenotype.

Figure 8 shows an example of retrieval based on the anatomi-
cal phenotype, essentially delivering previously supervised cases
with clinical information already in the data base. There are
two types of information delivered in this analysis. For this
we represent the anatomical variance of the population as
shown in Figure 5 for the subcortical structures to represent
the coordinates of the anatomical position of the patient with
respect to the atlas coordinate system relative to the popu-
lation. This can be highly illustrative. For example, Figure 8
shows healthy individuals as controls (green dots in the PCA
plot of the structural volumes) and patients with two variants
of Primary Progressive Aphasis (PPA), a neurodegenerative

disease characterized by predominant and progressive deteri-
oration in language in the absence of major change in per-
sonality, behavior or cognition other than praxis for at least
two years. The z-score map in patient #3 reveals atrophy at
the temporal left side that could be dubious at visual inspec-
tion only. In the addition, this subject is closer to other PPA
patients than to the controls in the PCA plot, evidencing that
the anatomical phenotype identified agrees with the clinical
label.

Defining cohorts of similar patients is commonly done based
on a host of features, including clinical behavioral and structural
and functional phenotypes as measured in the functional and
structural imagery. Figure 8 examines clusters of cohorts based
solely on the anatomical phenotype feature vector. The first prin-
cipal component (PC1) accounts for global cortico-subcortical
atrophy and ventricle enlargement, and mainly segregates age-
matched controls from the PPA population. The segregation
between two PPA variants (Semantic-SvPPA and Logopenic-
LvPPA) is driven by severe and global atrophy of deep areas
in SvPPA (PC2) and the predominant fronto-parietal atrophy
in LvPPA, with relative preservation of temporal areas, particu-
larly left, when compared with SvPPA (PC3). This agrees with
past anatomical qualitative description of these populations. The
existence of “outliers” corresponding to patients or controls sur-
rounded by subjects of different labels are due to the singular
anatomical features of these subjects. This type of analysis pro-
vides a platform for hypothesis-free comprehensive characteriza-
tion of anatomical phenotype. Such quantitative analysis allows
the investigation of various anatomy-associating factors, such
as disease progression and functional outcomes, in a systematic
manner.

FIGURE 8 | Representation of degrees of regional atrophy as z-scores to

support diagnosis (left panel). In cross-sectional studies on patients with
similar diagnostic criteria, the patterns of atrophy from populations can be
integrated with clinical information providing diagnostic and prognostic

information. Clustering on the dimensions of the anatomical phenotype (right

panel). The PCA plot contains the volumes of 200 brain structures in 24
healthy controls and 28 PPA patients. Shown are groupings according to the
anatomical features associated to the clinical labels (controls, SvPPA, LvPPA).
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DISEASE QUANTIFICATION OF ANATOMICAL PHENOTYPE VIA
GEOODESIC COORDINATES
The GPS provides geodesic coordinates for representing every ele-
ment in the population relative to the templates. We have exam-
ined machine learning on the subcortical structure coordinates
shown in Figure 5. In the ADNI (Mueller et al., 2005) project
there is extensive diagnostic supervised labeling enabling group
based discriminations such as LDA/QDA for cross-sectional
study of cohorts in dementia. A total of 385 subjects were seg-
mented into their subcortical structures and lateral ventricle using
FreeSurfer (Fischl et al., 2002) based on the analyses published by
the Dale group (Fennema-Notestine et al., 2009). There were a
total of 210 HC and 175 subjects with AD. To illustrate the average
differences between the healthy control and Alzheimer’s disease
populations a HC-template surface and an AD-template surface
was generated representing the center of each of the populations.
We compared these two, HC-only and AD-only, template surfaces
from the two different populations, and which are represented in
geodesic coordinates relative to the overal template representing
both HA-AD populations via the two class means μHC , μAD. To
visualize these as shapes we calculated a scalar field correspond-
ing to the log-determinant of the Jacobian of the map between the
two averages, and visualized it on the template surface generated
from the HC population generated using the algorithm described
in Ma et al. (2008, 2010). This scalar field measures how much
expansion/atrophy at each vertex of averaged surface from AD
compared to that from HC in the logarithmic scale: i.e., positive
value corresponds to surface expansion in the AD averaged sur-
face at a particular location, while negative value denotes surface
atrophying. The bottom left panel of Figure 5 shows the mean
differences between the two populations (bottom left), and is a
visualization of one of the direction vectors in the Fischer dis-
criminant the difference between the means μHC − μAD, shown
as a plot of the Jacobian determinant. The color red represents the
determinant being less then one, corresponding to shrinkage. The
blue color corresponds to expansion. We see most of the shape
change occurring at the ventricle expansion and the hippocampus
and amygdala shrinkage.

The bottom right panel of Figure 5 shows the result of building
classifiers via machine learning whose discriminating dimensions
are encoded in the picture in the lower left panel. We con-
structed the LDA and quadratic QDA classifiers using one of the
Leave-One-Out Cross-Validation resampling method generating
385 LDA classifiers, testing on one of the subjects treating them as
the testing data, and constructing the LDA class means μHC,μAD

from the other 384 subjects (Tang et al., 2013a). For the two
class problem the discriminating direction resulting from LDA
on the geodesic coordinates is the projection of the differences
in the means according to K−1(μHC − μAD) on the common
covariance. The Bayes classifier for the two class problem becomes
a comparison to a threshold of the inner product of the feature
vector on the discrimating direction:

f tK−1 (
μHC − μAD) HC ≥

AD <
θ. (6)

As shown in Figure 5 we find uniformly, as depicted by the
blue bars in the classifier diagram, that the shape dimensions

associated with the subcortical structures are significantly more
discriminating then the volumes, generally reducing the errors
in discrimination by more than 10%. The significant dimen-
sions in volume and shape are associated with hippocampus and
amygdala agreeing with previous results (Qiu et al., 2009). The
specificity and sensitivity based on using the PCA shape dimen-
sions in the feature vector for these three subcortical structure
phenotypes is 90 and 81%, respectively. This is consistent with
recent findings in another preclinical dementia study (Miller
et al., 2013a) in which the shape of the temporal lobe subcortical
structures is more discriminating then volume measures as well as
in a Huntingdon’s disease study tracking caudate, putamen, and
globus pallidus (Younes et al., 2012).

PERSONALIZED ANALYSES: PREDICTING FUTURE CONVERSION
BASED ON WHITE MATTER STRUCTURAL REPRESENTATIONS
While most research studies are based on cross-sectional
population-based analyses, clinical diagnosis is always based on
single individuals. This is performed by visual inspection in daily
radiological diagnosis, in which images are most likely analyzed
in a structure-by-structure basis, not in a voxel-by-voxel basis.
Atlas-based neuroinformatic analyses in terms of their aggregate
scale of the feature vector is compatible with many current diag-
nostic practices. Interestingly, histopathological studies indicate
that white matter is an excellent target for both the early diag-
nosis of AD and for monitoring disease progression, motivating
the use of DTI for studying patients with AD (Brun and Englund,
1986; Englund et al., 1988; Meier-Ruge et al., 1992; Gunawardena
and Goldstein, 2001; Pigino et al., 2003; Sjobeck et al., 2005;
Stokin et al., 2005; Chevalier-larsen and Holzbaur, 2006; Oishi
et al., 2011b). There are already a large number of cross-sectional
group comparison studies reporting significant differences in
DTI derived measurements between the patients and controls,
suggesting that white matter damage may exist in the pre-
symptomatic phase of AD (Rose et al., 2000; Kantarci et al., 2001;
Medina et al., 2006; Ringman et al., 2007; Stahl et al., 2007; Zhou
et al., 2008; Damoiseaux et al., 2009; Salat et al., 2010; Sexton
et al., 2011). One of the important questions after group analy-
ses is whether these findings can be applicable to each individual
to predict future conversion from memory impairment without
other cognitive deficits (amnestic mild cognitive impairment) to
dementia caused by AD. This is important because the amnestic
mild cognitive impairment is a clinical category including multi-
ple diseases or conditions with different pathological background,
and not all of them develop AD (Albert et al., 2011).

Figure 9 shows results of personalizing the cross-sectional
atlas statistics to several patients. A weighted feature vector,
which could separate AD from cognitively normal population,
was created from training datasets including groups of patients
and cognitively normal age-matched individuals using dimen-
sionality reduction applied to the atlas feature vector, and then
DiffeoMapped to each individual to calculate the projection
onto each patient. Shown in Figure 9 are examples of the pre-
diction of the conversion to Alzheimer’s dementia in succes-
sive followup. Notice this projection doesn’t predict conver-
sion from amnestic mild cognitive impairment to the dementia
with Lewy body, which is another type of neurodegenerative
dementia. This type of analysis requires a large database with
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FIGURE 9 | (A) shows the result of PCA of the DTI derived measurements
(FA = fractional anisotropy and MD = mean diffusivity) from 136 white matter
areas and 12 deep gray matter structures. The first component was used as a
diagnostic feature vector; the brighter area indicates more weighting to a
degree of FA reduction and the cold brighter area indicate more weighting to
a degree of MD increase to separate the AD group from the control group.

(B) For individual images, the atlas was DiffeoMapped and projection to the
feature vector was calculated. The projection well predicted early conversion
from amnestic mild cognitive impairment (MCI) to Alzheimer’s disease (AD),
but did not predict conversion from MCI to the dementia with Lewy body
(DLB). The DTIs used for this analysis are a portion of a dataset published in
Oishi et al. (2011a).

longitudinal follow up which is an important current focus of
our efforts.

DISCRIMINATING BETWEEN MULTIPLE DISEASES
The concept of group analysis in research studies assumes con-
sistent locations of abnormalities, which does not hold for
clinical situations, with heterogeneous patient populations and
lack of an age-matched control group. The atlas-based neu-
roinformatics is compatible with the analysis of multiple dis-
eases with different anatomical features. Figure 10 shows the
applicability of atlas-based neuroinformatics to capture anatom-
ical features of multiple neurodegenerative diseases with known
macroscopic anatomical alterations. To appropriately integrate
diagnostic information to characterize the anatomical features
related to each disease category, PCA and LDA were applied
sequentially to a dataset consisting of 102 T1-weighted images
from AD, primary progressive aphasia, Huntington’s disease,
hereditary spinocerebellar ataxia and normal control participants.
These were parcellated based on the JHU-atlas [the images used
for this analysis are a portion of a dataset published with the
methodological detail (Qin et al., 2013)]. The weighted feature
vectors efficiently captured known disease-specific anatomical
alterations. For example, the medial temporal lobe and the pari-
etal lobe were negatively weighted in the feature vector of AD

to give a higher discriminant score for AD compared with other
diseases and the control group. It should be noted that ven-
tricular enlargement was not emphasized in the feature vector,
although it was seen in most of the AD patients. Ventricular
enlargement has been regarded as one of the disease-related
features in past studies based on a cross-sectional comparison
between AD and a control group, but seems to contain less
information for separating AD from other neurodegenerative
diseases.

FUNCTIONAL MRI PHENOTYPES IN ATLAS COORDINATES
Shown in Figure 11 are results from functional magnetic reso-
nance imaging done in registered atlas coordinates. Given the
accompanying structural T1 images the functional responses
can be examined in atlas coordinates with hypotheses formed
at the scale of the partition of the atlas. Shown is a com-
parison between 7 patients with stroke at deep gray mat-
ter (cortex is preserved) and age-paired HC. The inten-
sity plot shows the average of Fisher-transformed correla-
tions between the rs- fMRI time courses of each pair of
42 cortical regions in controls (bottom) and individuals with
stroke (top). In general, correlations between temporal and
frontal areas are the main source of differences between
the groups.
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FIGURE 10 | Showing four clinically labeled disease categories of

Alzheimer’s Disease, aphasia, Huntington’s, hereditary ataxia, and

one control group upon which the anatomical features were

learned including 60 PCA dimensions followed by supervised LDA

delivering 4 loading vectors for discrimination. The clustering
features in the high-dimensional index on the right are shown to
correspond to anatomically meaningful shape representation shown in
the left panel.

FIGURE 11 | The intensity plot shows average of Fisher-transformed

84 × 84 correlations of rs-fMRI response in atlas partition in individuals

with subcortical stroke (superior to the diagonal) and controls (inferior

to the diagonal). The diagram shows the connections that are different
between groups (p < 0.001); the thickness of the lines is proportional to the
ratio of the correlations (stroke/controls); blue are correlations with opposite

signal between groups (positive—negative); red are those with same signal.
R: right hemisphere, L: left hemisphere, IFG_orbitalis and IFG_triangularis:
pars orbitalis and triangularis of the inferior frontal gyrus, MFG_DPFC: dorsal
prefrontal pars of middle frontal cortex, PSTG and STG: posterior and medial
pars of the superior temporal gyrus, rostral_ACC: rostral pars of the anterior
cingulate gyrus, PrCG: pre-central gyrus, Ent: entorhinal area.
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CLINICAL INFORMATICS AND BEHAVIOR PHENOTYPES AND
FUNCTIONAL PHENOTYPES
Shown in Figure 12 are results of demonstrating high-throughput
informatics used to classify individuals into clinical pheno-
types based on functional MRI coupled to clinical behaviors.
The 3 clinical variants of PPA (logopenic—Lv, semantic—Sv,
and non-fluent—NFv) may differ in terms of disease pro-
gression and response to therapeutics. In the early stages of
the disease, when some therapeutics are being tested and will
hopefully be effective, the clinical tests are not always able
to classify all the patients. In addition, although anatomi-
cal differences among these variants are reported at group
level, the individual classification based on qualitative evalua-
tion is not usually possible. High-throughput imaging informat-
ics can contribute for individual classification. Figure 12 con-
tains the volumetric data of 120 parcellated areas from 37 PPA
patients that were scanned when, in their majority, the variant
diagnosis wasn’t completely clear, based on clinical informa-
tion only. Our classification model, created using partial least
squares—discriminant analysis (PLS-DA) and volumetric fea-
tures (120 areas) demonstrated reasonable accuracy on pre-
dicting the variant diagnosis with a significant (higher than
“by-chance”) p-value, both when tested by bootstrapping or by
external testing sample. The detection prevalence is low, partic-
ularly in the smallest group (NFv) with the sample size needed
to be increased.

High-throughput informatics is also an effective tool to scruti-
nize anatomical-functional/ behavioral correlations. Much of the
mapping of brain functions has been via lesion based studies,
by relating regions affected by a stroke or trauma, for example,
with the functional deficit. Lesion-based studies, however, have
significant limitations such as (i) areas most strongly associated
with the deficit depend on the vulnerability to ischemia/trauma
(ii) determining the part of the lesion which is responsible for
the deficit is difficult, or whether it represents a reorganiza-
tion of cognitive networks that are less efficient, and (iii) the
challenge of determining the proportion of changes leading to
functional recovery, more than functional loss, (iv) the lack of
multiple parameters, local or widespread, that might be con-
comitantly affected and whose interaction might correlate with
the deficit.

Shown in the Figure 13 is the application of quantitative
analysis to assess anatomical-functional correlations in progres-
sive disease models that affect specific functions (such as PPA,
that affects primarily language) carried out by investigating the
pattern of errors and their relationship to cortical impairment. It
shows correlations between regional volumes and PPA patients’
performance in a Naming test (Race et al., 2013). This type of
anatomical-behavioral analysis provides a better understanding
of the relationship between cognitive processes and regions neces-
sary for particular aspects of processing. In more practical terms,
we can use this information to monitor the disease progression,

FIGURE 12 | Showing partial least squares—discriminant analysis (PLS-DA) for classifying 37 individuals into PPA variants based on volumetric data

of 120 parcellated areas.
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FIGURE 13 | Correlations between regional atlas anatomy (z-scores of

volumes in y axis) and behavior (scores at Boston Naming Test—% of

correctness in x axis) in individuals with Primary Progressive

Aphasia—PPA. Regions with significant correlations are colored and the
color scale represents the degree of correlation. These data includes part of
the dataset used in Race et al. (2013).

or to categorize a clinical entity into more homogeneous groups,
which can be meaningful if such subgroups express differences in
prognosis or response to various treatments.

DISCUSSION
We have described neuroinformatics technologies at 1 mm
anatomical scale based on high-throughput 3D functional and
structural imaging technologies of the human brain. The core
is the conversion of functional and structural imagery into
their high-dimensional neuroinformatic representations index
containing O(1000–10,000) discriminating dimensions. The
pipeline is based on advanced image analysis coupled to digi-
tal knowledge representations in the form of dense atlases of the
human brain at gross anatomical scale. We demonstrate the inte-
gration of these high-dimensional representations with machine
learning methods.

The neuroinformatics pipeline is used to examine
cross-sectional and personalized analyses of neuropsychi-
atric illnesses in clinical applications as well as longitudinal
studies. We have demonstrated the use of high-throughput
machine learning methods for supporting (i) cross-sectional
image analysis to evaluate the health status of individual subjects
with respect to the population data, (ii) integration of image and
non-image information for diagnosis and prognosis.
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