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Isolation of the brain from other tissue types in magnetic resonance (MR) images is an
important step in many types of neuro-imaging research using both humans and animal
subjects. The importance of brain extraction is well appreciated—numerous approaches
have been published and the benefits of good extraction methods to subsequent
processing are well known. We describe a tool—the marker based watershed scalper
(MBWSS)—for isolating the brain in T1-weighted MR images built using filtering and
segmentation components from the Insight Toolkit (ITK) framework. The key elements
of MBWSS—the watershed transform from markers and aggressive filtering with large
kernels—are techniques that have rarely been used in neuroimaging segmentation
applications. MBWSS is able to reliably isolate the brain without expensive preprocessing
steps, such as registration to an atlas, and is therefore useful as the first stage of
processing pipelines. It is an informative example of the level of accuracy achievable
without using priors in the form of atlases, shape models or libraries of examples. We
validate the MBWSS using a publicly available dataset, a paediatric cohort, an adolescent
cohort, intra-surgical scans and demonstrate flexibility of the approach by modifying the
method to extract macaque brains.
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1. INTRODUCTION
Isolation of the brain from surrounding tissues in magnetic reso-
nance (MR) images of the head, variously referred to as scalping,
skull stripping, brain extraction or brain segmentation, is a critical
step in many forms of analysis. In some cases the scalping step
is performed in conjunction with brain tissue classification while
in others it is a separate preprocessing step. Precise segementa-
tion of the brain from surrounding tissue makes many standard
processing steps much simpler and more accurate—widely used
software packages such as FreeSurfer (Dale and Fischl, 1999) and
FSL (Jenkinson et al., 2012) use explicit skull stripping steps early
in their procedures. An isolated brain is a much more useful target
for standard processing steps, such as registration, inhomogeneity
correction and tissue classification, than the raw MR image. The
wide variation in anatomy and tissue contrasts make scalping a
surprisingly difficult task to automate reliably and accurately. The
difficulty and importance of the skull stripping problem has lead
to a wide range of tools being developed to tackle it, for exam-
ple (Brummer et al., 1993; Tsai et al., 1995; Sijbers et al., 1997;
Lee et al., 1998; Dale et al., 1999; Lemieux et al., 1999; Hahn
and Peitgen, 2000; Huh et al., 2002; Shan et al., 2002; Smith,
2002; Rehm et al., 2004; Rex et al., 2004; Segonne et al., 2004;

Zhuang et al., 2006; Chiverton et al., 2007; Sadananthan et al.,
2010; Eskildsen et al., 2011; Leung et al., 2011; Galdames et al.,
2012), and a number of studies assessing accuracy (Lee et al.,
2003; Boesen et al., 2004; Fennema-Notestine et al., 2006;
Shattuck et al., 2009).

The similarity in brightness between brain tissue and nearby
non-brain tissue, such as dura, makes distinguishing between
such tissues on a local level very difficult, if not impossible.
Some form of high level knowledge about the structure of these
tissues is important in achieving high accuracy. The past few
years have seen methods that use large libraries of ground truth
data (Eskildsen et al., 2011; Leung et al., 2011), graph cuts
(Sadananthan et al., 2010; Dahnke et al., 2011) or increasingly
sophisticated combinations of local adaptation and atlas driven
refinement (Zhuang et al., 2006; Galdames et al., 2012) to deliver
improved accuracy. These methods are increasingly relying on
more accurate initialization to deliver the improved accuracy,
with typical strategies using combinations of iterative registration
to a template or library and inhomogeneity correction. In some
cases the results of tissue classification steps are used (Dahnke
et al., 2011). These preprocessing stages can be quite complex and
computationally intensive, and failure of preprocessing leads to

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 32 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00032/abstract
http://www.frontiersin.org/people/u/92268
http://www.frontiersin.org/people/u/7326
http://community.frontiersin.org/people/DeanneThompson/123248
http://www.frontiersin.org/people/u/7054
http://community.frontiersin.org/people/AmandaWood_1/123425
mailto:richard.beare@mcri.edu.au
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Beare et al. Marker watershed scalping

poor scalping results. Any improvement in accuracy is likely to
result from a combination of preprocessing characteristics and the
refinement step. In addition, it is difficult to make commonly used
preprocessing components, such as registration, perform reliably
in the presence of non-brain tissue or absence of prior infor-
mation such as brain landmarks (e.g., via origins set in image
headers). These are issues in large studies, where it can become
necessary to expend considerable effort selecting preprocessing
parameters, or provide some prior information manually.

There are also important tradeoffs between accuracy and reli-
ability to be considered. For example, the graph cut approach
introduced in Sadananthan et al. (2010) improved cortical thick-
ness measurement accuracy in FreeSurfer, however, the tendency
of the procedure to occasionally remove brain tissue has lead to
it being removed as a default option in the FreeSurfer pipeline
(Reuter, 2012). Finally there are also subtle differences in defini-
tion to consider, such as whether a scalping process is intended
to remove bone and scalp, leaving brain and cerebral spinal fluid
(CSF), or whether CSF is also removed. These differences cer-
tainly influence accuracy scores, but may be less significant in
some processing pipelines. For example, inclusion of CSF or bone
space (which are dark) is not likely to have a large impact on regis-
tration, while inclusion of brighter tissue may. Exclusion of CSF is
significant if the final goal is estimation of intra-cranial vault vol-
ume. These tradeoffs and design issues need to be considered on a
study by study basis and are raised here to highlight the difficulty
in providing definitive comparisons between methods.

In this article we revisit the scalping problem using a tech-
nique from the field of mathematical morphology that has not
been used previously for scalping—the watershed transform from
markers, combined with aggressive filtering using large kernels.
Other forms of the watershed transform have been used in brain
scalping (Sijbers et al., 1997; Hahn and Peitgen, 2000; Segonne
et al., 2004), but not the very useful marker-based approach. The
resulting tool, which we call the marker based watershed scalper
(MBWSS), is an example of a data-driven approach to segmenta-
tion, in which application knowledge is encoded in the sequence
of processing steps and choice of parameters, rather than in the
form of atlases or shape models derived from training data. This
approach is especially useful when ground truth data is not avail-
able or expensive to obtain (and may be a useful way of reducing
the cost of obtaining the ground truth data by providing reason-
able preliminary segmentation results for manual correction), or
when the problems is not well suited to model-based approaches.

MBWSS is designed to be applicable to a wide range of data,
fast (runtime <30 s), reliable and accurate without the require-
ment of an expensive preprocessing pipeline. We have constructed
the tool using standard computational classes distributed with the
Insight Toolkit (ITK). MBWSS does not depend on registration or
atlases. It is a preprocessing component that is likely to be useful
for many analysis procedures.

The MBWSS is an important illustration of the value of con-
structing segmentation tools using libraries such as ITK. The use
of established, optimized, and extensively tested components for
filtering and a well described approach to segmentation allowed
development of a fast and reliable segmentation tool, without
the need for new computational components. The segmentation

accuracy of MBWSS, assessed using a publicly accessible resource,
is high, illustrating the utility of the morphological approach to
segmentation. The fact that the level of accuracy was achieved
without resorting to atlases, complex priors or large libraries
of examples, can inform development of future segmentation
processes.

The flexibility of segmentation using the marker-based water-
shed transform is further demonstrated by applying the approach
to scalping of macaque MR scans. The robustness of the approach
is demonstrated using a range of paediatric datasets, including
surgical cases.

2. MATERIALS AND METHODS
The MBWSS uses a number of techniques that are not well
known in the neuroimaging community, namely the morpholog-
ical watershed transform from markers and a range of filtering
operations using large kernels with recursive and separable imple-
mentations leading to high efficiency. This section provides a
technical introduction to these techniques before describing their
application in brain extraction.

2.1. TECHNICAL BACKGROUND
2.1.1. Morphological watershed transform from markers
The watershed transform is a general purpose tool for image seg-
mentation inspired by the notion of the watershed in geography.
A geographical watershed is the line separating two catchment
basins—rain falling on one side of the line flows into one catch-
ment basin while rain falling on the other side flows into the
second catchment basin. In image segmentation the image bright-
ness forms a surface (commonly called a control surface) that
can be segmented into regions by finding watershed lines. The
watershed transform has been used in a number of previously
reported brain extraction tools (Sijbers et al., 1997; Hahn and
Peitgen, 2000). The traditional watershed transform introduced
by Beucher and Lantuejoul (1979) is known to be suscepti-
ble to over-segmentation—i.e., producing many more regions
than desired—and much of the effort in making useful algo-
rithms based on the traditional watershed transform is spent
developing pre-processing or post-processing steps to reduce
the over-segmentation problem to manageable levels. The best
known example in the brain extraction domain is pre-flooding
(Hahn and Peitgen, 2000). However, these approaches are less
than ideal, often being strongly data dependent or overly complex
and difficult to optimize for a particular application.

A general-purpose methodology called the watershed trans-
form from markers (WTM) that avoids over-segmentation was
introduced by Meyer and Beucher (1990). WTM has not previ-
ously been applied to skull stripping. This approach casts the seg-
mentation process as a series of steps: (a) find markers, (b) create
control surface, (c) topology transformation, and (d) watershed
transform, with steps (c) and (d) being implemented identically
in different applications.

The traditional and marker based watershed transforms are
used to segment a control surface (represented by an image) into
independent regions by modeling flooding of the surface with
fluid. Region boundaries fall on ridge lines in the control sur-
face. It is therefore common to use gradient operators, which
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transform contrast change (edges) into ridges (lines), in the con-
struction of the control surface. The choice of control surface
depends on the nature of the image and the form of regions.

Some algorithms model the process as rain falling on a terrain,
but a computationally simpler model, considers water flooding
through holes in the surface. In the latter approach each regional
minimum corresponds to a hole in the terrain and will produce an
independent region in the segmentation. Boundaries of a region
occur when flooding regions meet, which happens at ridges in the
control surface or at the midpoints of plateaus. These flooding
processes can be implemented simply and efficiently with prior-
ity queue based methods. By contrast, a rainfall model requires
explicit steps to identify and process plateaus or preprocessing
steps, such as lower completion to eliminate them. Plateaus are
a problem for a rainfall model as they trap gradient descent
propagation—the virtual raindrop stops on a plateau and cannot
reach the minimum of the catchment basin. In general, imple-
mentations that support a marker based approach will employ a
flooding model.

Noise or natural variations in image intensity will produce
additional regional minima, which lead to the classical over-
segmentation problem. Reducing the number of regional minima
by smoothing or thresholding (pre-flooding) reduces the degree
of over segmentation, but neither is a systematic approach.

The watershed transform from markers is a systematic
approach that eliminates the over segmentation problem. The
basic concept behind WTM is simple—introduce a regional mini-
mum inside each object that needs to be segmented, apply a trans-
formation to the control surface that eliminates other regional
minima, eliminate plateaus, and apply a watershed transform to
the resulting surface. The first two steps are collectively referred to
as imposing regional minima while eliminating plateaus is known
as lower completion. The imposed minima are known as mark-
ers. The advantage of this approach is that one region is produced
per minimum; so precise control over the number of regions is
possible. In addition the segmented regions are guaranteed, by
construction, to contain the markers. The markers, which are typ-
ically represented by a label image, are the a priori knowledge
about the segmentation task in the form of approximate object
position and number of objects.

It is possible to explicitly impose regional minima by setting
locations in the control image corresponding to marker voxels
to the minimum possible value and carrying out a reconstruc-
tion by erosion or recursive conditional erosion. This process is
illustrated in Figure 1 for a one-dimensional signal, where the
original signal is transformed to have regional minima only at
markers. A number of more common watershed algorithms, par-
ticularly those based on priority queues (Beucher and Meyer,
1992; Meyer, 1994), are able to avoid the need to perform the
preprocessing steps of imposition of minima and lower com-
pletion, via the nature of the flooding operation. This leads to
efficient implementations of the marker approach. A traditional
watershed transform can be computed using a marker-based
watershed algorithm by using regional minima as markers. Both
Meyer’s and Beucher’s algorithms are available in the ITKv4
itk::MorphologicalWatershedFromMarkersImageFilter class (Beare
and Lehmann, 2006). The difference between the two algorithms

FIGURE 1 | Reconstruction by erosion of 1D signal from markers.

Original signal in dashed black, marker signal in red, reconstructed signal in
green. The green signal only has regional minima where the marker signal
is zero.

is that Meyer’s marks the watershed line between regions with
a single voxel thick line or surface (in 3D) while Beucher’s
algorithm produces touching regions.

The WTM is a very stable algorithm and is parameter free—
the user does not need to set stopping conditions or parameters
controlling the flooding process. Both WTM and traditional
watershed are greedy algorithms in which a class is assigned to
every voxel, resulting in an algorithm that stops when all vox-
els are assigned to a class. The flooding process, which models
water flooding a terrain, is governed entirely by relative values
of voxels and topology in the control image. It is informative to
compare these characteristics to those of the level-set family of
methods (Sethian, 1999), which is currently popular. Level sets
are heavily dependent on image pre-filtering and terms describ-
ing energy functions and lack well defined stopping conditions.
Thus WTM approaches can be developed much more easily and
perform more reliably than level set approaches in many cir-
cumstances. The potential advantages of the level set family of
methods in some applications are that it is not necessary to define
the number of regions and they have some ability to cope with
broken boundaries.

2.1.2. Efficient filtering using large kernels
Most common image filtering operations replace an image voxel
with some function of voxels in a kernel around the voxel. The
execution time of direct implementations of such filters is there-
fore strongly dependent on the number of voxels in the kernel—in
three-dimensional images a doubling of kernel dimensions (from
n × n × n to 2n × 2n × 2n) will lead to an approximately eight-
fold increase in the execution time. This cost has traditionally
restricted users to small kernels, such as 3 × 3 × 3 voxels.

However, a number of approximations and/or optimizations
exist for a range of useful filter types that reduce the com-
plexity from O(nk), where k is the number of dimensions, to
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O(const) . Examples include separable and recursive algorithms
for Gaussian convolution (Deriche, 1990; Lindeberg, 1991) and
grayscale erosions and dilations (Van Herk, 1992; Adams, 1993;
Gil and Werman, 1993). Separable methods decompose a k
dimensional kernel into a cascade of k, one-dimensional oper-
ations, thereby reducing complexity to kO(n). Recursive opera-
tions exploit redundancy in the computation to further reduce
the complexity, often to constant time. A simple example of a
recursive algorithm is computation of the running mean along
a line by updating a sum—the sum can be updated by adding the
incoming value and subtracting the outgoing value and the mean
computed by dividing by the length of the kernel—requiring
three operations, no matter what the kernel size. Separable fil-
ters are also relatively simple to implement in parallel, leading to
higher performance on multi-core CPUs. In this application we
use gaussian smoothing operations, large grayscale morphology
operations (erosions/dilations) with 3D rectangular structuring
elements, and binary morphology using spherical structuring ele-
ments. Another option for improving the execution time relative
to direct implementation of large kernels is repeated applica-
tion of “unit” kernels, leading to complexity kO(const). A limited
range of kernel shapes and filtering functions can be decomposed
this way and performance is not as high as optimized approaches.

The grayscale morphology classes offered by ITKv4—
itk::GrayscaleDilateImageFilter, itk::GrayscaleErodeImageFilter,
itk::GrayscaleMorphologicalClosingImageFilter, itk::Grayscale
MorphologicalOpeningImageFilter—offer a range of algorithms.
Morphology using arbitarily shaped, flat, structuring elements
can be performed relatively efficiently using a sliding histogram
approach, which reduces complexity from O(nk) to approxi-
mately O(nk − 1). Morphology using structuring elements with a
restricted range of shapes—rectangles or polygons in 2D or boxes
in 3D—that can be composed using a cascade of line structuring
elements can be performed using recursive algorithms described
by Van Herk (1992) and Gil and Werman (1993). These classes
offer filtering times independent of structuring element size for
these shapes.

Binary morphology using spherical structuring elements is
offered by a series of ITKv4 classes available via the Insight Journal
(Beare, 2008a,b; Beare and Jackway, 2011). These classes use
operations based on parabolic structuring functions (van den
Boomgaard et al., 1996). Parabolic structuring functions are sep-
arable and a number of efficient algorithms exist for the 1D case
(van den Boomgaard et al., 1996; Felzenszwalb and Huttenlocher,
2004). These functions can be used to compute binary ero-
sions/dilations by exact discs or spheres efficiently.

Gaussian smoothing, another workhorse filtering opera-
tion, is also separable and efficient approximations via dig-
ital filters are available for the 1D case. ITKv4 offers a
series of classes for fast linear filtering using the meth-
ods described by Deriche (1990) and Lindeberg (1991).
These classes include itk::SmoothingRecursiveGaussianImageFilter,
itk::GradientMagnitudeRecursiveGaussianImageFilter, itk::Discrete
GaussianImageFilter, and itk::DiscreteGaussianDerivativeImage
Filter.

The difference in execution time between an efficient, special-
ized filter and a general purpose, direct implementation can be

dramatic, with an operation taking an infeasibly long time to
execute dropping to a small component of the total execution
time. This has an enormous impact on design of image filtering
algorithms. For example, consider two types of morphological
filtering operations applied to a typical 1 mm resolution brain
scan (258 × 258 × 182 voxels)—grayscale dilations using cubic
structuring elements and binary dilations using spherical struc-
turing elements. A cubic structuring element can be implemented
directly, using a brute force algorithm, a more efficient sliding
histogram, by repeated dilations using a unit cube structuring
element or by decomposition into orthogonal line structuring ele-
ments. The options for a spherical structuring element include
direct, sliding histogram or via parabolic structuring functions in
the case of binary images (there is no unit sphere available for the
repeated applications). Execution times for a range of sizes and
tools are illustrated in Table 1. In typical cases we see a speedup
of approximately two orders of magnitude over direct imple-
mentations using ITKv4 for moderately sized cubic structuring
elements. Speedup over a widely used, general purpose, neu-
roimaging arithmetic tool, fslmaths, is a factor of approximately
500 for grayscale operations. Timing tests performed using an
Intel(R) Core(TM) i7 CPU 920, 2.67 GHz, 4 core hyperthreaded,
running Ubuntu Linux. Other timing measures in this paper use
the same host.

2.1.3. Morphology on connected components
Binary images produced by thresholding and possibly sub-
sequent morphological filtering operations can be further
filtered based on the size and shape of connected components.
ITKv4 provides an extensive framework for shape-based
morphology on binary images (Lehmann, 2007). The
itk::BinaryShapeOpeningImageFilter and itk::BinaryShapeKeep
NObjectsImageFilter are used in this application. The first allows
connected components to be retained based on a number of

Table 1 | Execution times, in seconds, for morphological dilations

using a variety of structuring elements and tools with different

specialized implementations.

GS GS Bin Bin Bin sphere

cube 3 cube 11 cube 3 cube 11 radius 11

Fslmaths—direct 17 534 15 533 2528

Fslmaths—repeated
unit

17 78 15 73

ITKv4—direct 1.1 87 1.1 87 65

ITKv4—histogram 1.7 18 1.6 18 15

ITKv4—vanHerk/
GilWerman

0.917 0.9 0.9 0.9

ITKv4—parabolic 0.55

ITKv4—parabolic
(four threads)

0.15

GS and Bin refer to grayscale and binary images. Gaps in the table correspond to

operations that cannot be performed with some tools. Advantages of selecting

the appropriate specialized algorithm for large kernels is significant. The disparity

between general and specialized methods increases with structuring element

size.
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useful attributes, with volume being a widely used example. The
second allows the n objects with the highest (or lowest) attribute
(such as volume) to be retained.

2.1.4. Histogram-based threshold estimation
One of the most widely used tools in image segmentation is
thresholding, with thresholds determined via analysis of gray-
level histograms. A wide variety of techniques have been devel-
oped for different histogram characteristics. ITKv4 provides
classes implementing the more popular methods (Beare, 2011).
These classes also offer the facility to estimate the threshold in
a region defined by a mask. This application uses the method
introduced by Otsu (1979).

2.2. BRAIN EXTRACTION ALGORITHM FOR HUMAN SCANS
The MBWSS is a multistage process consisting of Stage
1—fast preprocessing, marker generation, and watershed
segmentation—and Stage 2—marker refinement and a second
watershed segmentation using a different control surface. The
basic strategy for each stage is to use a pair of markers—one
inside the brain and one outside—and to apply a WTM using
these markers and an appropriate control surface. Stage one uses
the inverted T1 as the control image, as was originally proposed
in Hahn and Peitgen (2000). Stage 2 uses a control surface derived
from the image gradient. This algorithmic structure transforms
the segmentation problem into one of finding markers and
developing the appropriate control surface, and is an example of
the classical morphological segmentation approach described by
Meyer and Beucher (1990). The process is illustrated in Figure 2.
We now describe these steps in detail.

2.2.1. Bias field inhomogeneity correction
Strong bias fields can influence many processing steps. However,
high quality bias correction is relatively slow and is best per-
formed either as part of the tissue classification process or with
the aid of a brain mask. The MBWSS is not particularly sensitive
to bias field inhomogeneities, but correction of strong inhomo-
geneities using very simple and fast methods can improve reliabil-
ity on low quality images. A method similar to that of Haselgrove
and Prammer (1986), in which a bias field is estimated using low
spatial frequency components has been developed using ITKv4 fil-
tering framework. Specifically the itk::BoxMeanImageFilter is used
to apply a large (radius = 30 mm) smoothing kernel, thus retain-
ing only the low spatial frequency components. This is a rough
estimate of the inhomogeneity field that provides sufficient cor-
rection for the MBWSS to function reliably in the presence of
quite strong brightness inhomogeneity. This step is optional.

2.2.2. Neck cropping
The field of view used in human imaging studies can vary con-
siderably. In many cases a significant length of neck is included,
which leads to large volumes of bright, non-brain tissue being vis-
ible. Presence of this tissue can make location of the brain using
simple methods more difficult. For example, the center of gravity
of the image, which is frequently used to provide an initialization
for brain extraction and tissue classification (Smith, 2002; Glaser,
2011), may not fall inside the brain.

Neck cropping is implemented as follows:

1. Threshold the input image using Otsu’s method (Otsu, 1979)
and keep the largest connected component.

2. Determine the superior-most slice of the largest connected
component.

3. Blank all slices more than 180 mm inferior to the superior-
most slice. No slices are blanked if the inferior-most image slice
is closer than 180 mm to the superior-most slice of the largest
connected component.

4. The center of mass of the most superior 35 mm of the largest
connected component is computed. This position, COMtop is
used in the marker generation process.

The size parameter used in neck cropping is deliberately conser-
vative to avoid cropping brain tissue if the head is imaged at an
unusual angle, but can be reduced for paediatric cohorts. The
neck cropping step is not optional, as the parameter COMtop is
required by subsequent steps. However, the step has no effect on
images that do not require it—i.e., when the bottom of the image
is less than 180 mm from the superior-most slice. Only a few slices
are blanked is the example show in Figure 2.

2.2.3. Stage 1 marker generation
The markers provide starting regions for the watershed trans-
form and must not cross the boundaries of regions that are to
be segmented separately—i.e., the marker for the brain must
fall entirely within the brain while the non-brain marker must
fall entirely outside the brain. The process described below uses
aggressive morphological filtering with large structuring elements
to achieve this. In the following notation images denoted Rn are
grayscale and derived from the original T1, with R0 referring to
the neck-cropped T1. Images denoted Mn and Nn are masks of
various forms derived from thresholded and filtered versions of
the original T1. N is used to denote masks of non-brain tissue.
The term “merge” refers to combining images using a voxel-wise
maximum operator. The process to produce the brain marker is:

1. A box, with sides length 40 mm is created 50 mm below
COMtop.

2. The 50% brightness level of the T1 image, R0, in the box is
computed, T1med.

3. A mask of T1 voxels between T1med and 1.25T1med is created,
a morphological opening by a sphere radius 2 mm applied
and the connected components touching the box retained, to
produce MA, Figure 3.

The marker for the non-brain tissue is created as follows and also
illustrated in Figure 3:

1. The brain marker (MA) is inverted and the resulting mask
eroded by a large sphere (radius = 10 mm) to produce NA.

2. NA is smoothed using an opening by large spherical struc-
turing element (radius = 30 mm) and the largest connected
component retained, to produce NB.

3. R0 is filtered using a morphological opening using 5 mm cubic
structuring element to produce RA.
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FIGURE 2 | Summary of processing steps used in MBWSS.

4. The Otsu threshold for the area defined by NB is computed
for the RA image. The previous filtering step reduces the num-
ber of possible classes and improves the reliability of Otsu
thresholding.

5. Voxels defined as bright by this threshold are removed from
NB to produce NC .

6. NC is eroded using a spherical structuring element (radius =
5 mm) and the largest connected component retained to pro-
duce ND.

7. ND is dilated by a spherical structuring (radius = 6 mm,
slightly larger than the erosion in Step 6), to
produce NE.
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FIGURE 3 | Processing steps for generating Stage 1 markers.

8. Any slices blanked during neck cropping are filled in NE to
produce NF .

NF is a mask with the background marker overlapping the scalp
by a small margin.

The brain and background markers are merged to create a
single image (MN1, Figure 3), with voxels in the brain marker
assigned a value of 1, those in the background marker assigned
a value of 2 and non-marker voxels assigned a value of 0.

2.2.4. Stage 1 brain extraction using the watershed transform
from markers

The marker image, MN1, created using the procedure described in
section 2.2.3 is used in conjunction with a control image to pro-
duce an initial brain/non-brain segmentation using a watershed
transform from markers. The control image is the inverted T1.

As discussed in section 2.1.1, the watershed transform segments
regions such that the region boundaries fall along bright ridge
lines. Bright ridge lines in the inverted T1 image correspond to the
bone and CSF between the brain and scalp. Given the control and
marker images, the watershed transform from markers is param-
eter free and requires no stopping conditions. The brain mask, B1

illustrated in Figure 4, produced by this first stage segmentation
process is created by selecting those voxels in the watershed out-
put with a value of 1 (the brain label). The brain mask is intended
to be a conservative one, including all brain tissue while clipping
none, at the cost of including some non-brain tissue.

2.2.5. Stage 2 marker generation
For some applications it is useful to refine the Stage 1 segmen-
tation results further. This is especially useful when dural layers
or cancellous bone (marrow) are included in the segmentation.
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FIGURE 4 | Stage 1 segmentation result.

We approach the problem by using a new control image and a
more detailed marker generation process. These methods rely on
the first stage segmentation to define a region in which the new
markers will be placed—within a small distance (10 mm) of the
Stage 1 boundary. The marker generation for Stage 2 produces
small non-brain markers in very bright or very dark areas close to
the Stage 1 boundary.

A new brain marker is created as follows:

1. Compute the median, t50, of R0 in the region defined by B1.
2. Create a border zone, Bbz1, of B1 by subtracting an eroded ver-

sion (B1e) of B1 from the original. A border zone with 10 mm
thickness is appropriate, meaning B1e is created by eroding B1

using a spherical structuring element with 10 mm radius.
3. Bright voxels that are definitely brain tissue are selected to

create a new brain maker: M2 = (R0 ≥ t50) ∗ B1e.

The process for computing markers for dark areas is:

1. Apply a small (1 mm) erosion to the T1 scan to produce RA.
This removes fine structure typical of dural layers.

2. Mask the eroded RA with B1, to produce RB.
3. Compute a large, masked mean filter to estimate the local

brightness of the raw T1 scan. A masked mean filter ignores
voxels outside the mask when computing the mean. B1 is the
mask and a 30 × 30 × 30 mm kernel is used to produce the
local brightness image, Rlb.

4. An image adjusted for local brightness is computed: Rladj =
RB/Rlb.

5. Dark voxels are defined as those less than 60% of the local
mean brightness. Those within the border zone are retained
to produce a marker image: Ndark = (Rladj < 0.6) × Bbz1.

Very bright T1 signal produced by cancellous bone (marrow) does
not occur in all scans, but are not uncommon. If such signal
is present it is likely to be included within the Stage 1 mask. It
is therefore useful to produce markers on regions correspond-
ing to such signal to indicate that they should be segmented
as background in Stage 2. The process for producing bright
markers is:

1. Compute the median, t50, of R0 in the region defined by M2.
2. Create a border zone, Bbz2, of B1 by subtracting an eroded ver-

sion (B2e) of B1 from the original. This border zone is 1/2 the
thickness of Bbz1 and is created by eroding with a spherical
structuring element radius 3.3 mm.

3. Compute the bounding box of B1e, in order to approximately
define the superior-inferior extent of the brain. Superior brain
regions are defined as those 90 mm or more above the inferior
extent of the bounding box. A mask defining this zone, Bsup, is
created.

4. A mask of bright voxels is created by thresholding and masking
by the border zone: Nbright = (R0 > 1.25 ∗ t50) × Bbz2 × Bsup.

Dark and light markers are merged and connected compo-
nents smaller than 10 mm3 discarded, to produce a new set of
border zone markers, Nbz. The Stage 1 segmentation of non-
brain tissue is merged with Nbz to create the final background
marker, N2.

M2 and N2 are merged to create a single marker image, MN2

for Stage 2 segmentation. The steps are illustrated in Figure 5.

2.2.6. Stage 2 control image generation
The new control image is derived from a combination of the T1
gradient and the raw T1 values. The latter is necessary as not
all brain boundaries correspond to regions with high gradients.
This strategy ensures that boundaries that are already correct after
Stage 1 are retained. The control surface is generated as follows:

1. Set all voxels in RB brighter than T50 to T50, to produce
RC . This reduces the strength of white matter-gray matter
transitions and has been used previously in Smith (2002).

2. The border voxels of the Stage 1 segmentation are extracted
from RC , and the median intensity subtracted, to produce
RD. Bright voxels in this image correspond to boundaries in
the Stage 1 segmentation that fall on brighter tissue, such
as the cranial nerves and vessels in the vicinity of the brain
stem.

3. A smoothed morphological gradient image, RE, is computed
using convolution with a Gaussian kernel. A kernel with a
1 mm standard deviation is used. A morphological gradient
operation is used as it is easy to deal with mask boundaries.

4. The final control image, R2 is created using a voxel-wise
maximum of RD and RE: R2 = max(RD, RE) (Figure 5).

2.2.7. Stage 2 brain extraction using the watershed transform
from markers

A second watershed transform from markers is applied using
MN2 as the marker image and R2 as the control. The resulting
brain segmentation is dilated by 1 mm, to account for the ero-
sion applied to create RA in Step 1, and voxels from the bright
marker image, Nbright are removed, as the dilation may result in
these voxels being included (Figure 6).

2.2.8. Mask smoothing
The resulting mask may be smoothed using morphologi-
cal opening and closings with spherical structuring elements.
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FIGURE 5 | Stage 2 marker generation phases. Ndark and Nbright are overlaid on RB. N2, the final stage 2 marker image, is overlaid on RD .

FIGURE 6 | Segmentation produced by Stage 2—raw (top) and

smoothed (bottom).

We smooth the Stage 1 segmentation using a opening
(radius = 5 mm) followed by a closing (radius = 6.5 mm) and
the Stage 2 segmentation using a closing (radius = 6.5 mm)
(Figure 6).

2.3. BRAIN EXTRACTION FOR MACAQUE SCANS
Macaque skulls and brains have different geometry to humans,
with large muscles attached to the skull and smaller brains,
and the MRI scans have different characteristics, notably much
stronger brightness inhomogeneity. This leads to changes in the
marker generation details, although the basic strategy of creat-
ing markers for brain and non-brain tissue is the same. In this
case we use knowledge of approximate brain size more directly,
rather than via filtering operations, as the similarity in dimen-
sions of the macaque brain to some of the surrounding muscles
makes selection via kernel filter size unreliable. This approach is
informative, and illustrates an alternative mechanism to including
prior information.

Notation for images is as previously described.

2.3.1. Bias correction
Brightness inhomogeneity can be very severe in macaque scans.
The simple bias correction procedure outlined in section 2.2.1 is
used to reduce severity.

2.3.2. Neck cropping
The process is almost identical to that described in section 2.2.2,
with the most obvious difference being the distance below the
top of the skull that blanking starts. A value of 80 mm is used for
macaques instead of the 180 mm used for humans.

In addition, COMtop is computed using the most superior
15 mm, rather than 35 mm.

2.3.3. Stage 1 marker generation
The marker for non-brain tissue involves simple geometric oper-
ations and filtering to locate markers in structures such as eyes,
and is generated as follows:
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1. Initial marker for non-brain tissue, NA includes the entire
image, filled with label 2.

2. A box, size (left → right) × (anterior → posterior) ×
(superior → inferior) = 70 mm × 90 mm × 65 mm,
centered at 35 mm below COMtop, is blanked, to produce NB.

3. A grayscale closing, using rectangular box structuring element,
8 × 8 × 8 mm is applied to create RA. This removes narrow
dark regions such as the brain-scalp space, while retaining
large dark regions (Figure 7).

4. The 1% quantile of RA is computed to define a mask of voxels
above background intensity, BA.

5. The 25% quantile of voxels in mask BA in RA is used as
a threshold to create a binary image BB, which selects dark
regions in RA. The dark regions include the interior of large
spaces such as eyes (which remain dark following the closing
in Step 3).

6. BB is combined with the inverse of BA to create BC (Figure 7).
7. The region in BC , extending from posteriorly from 20 mm

anterior to COMtop, is blanked. This restricts new markers
generated following the closing to dark anterior spaces, namely
the eyes.

8. Connected components in BC smaller than 100 mm3 are
discarded and the result dilated by 3 mm to produce BD.

9. BD and NB are merged to form NC (Figure 7).

FIGURE 7 | Processing steps producing stage 1 marker, MN1.

This produces a roughly boxed brain, with no background marker
in the brain, and markers in large, dark, anterior regions, such as
the eyes.

The brain marker is generated as follows:

1. A box, size 10 mm × 10 mm × 15 mm, centered at 35 mm
below COMtop, in NC , is filled with label 1, to produce a final
marker image, MN1.

2.3.4. Stage 1 brain extraction using the watershed transform
from markers

This stage is identical to the Stage 1 segmentation step described
in section 2.2.4, with a watershed transform from markers, using
an inverted T1 image as the control image and MN1 as the marker.
The Stage 1 segmentation is generated by selecting watershed out-
put voxels with value of 1 (Figure 8). This is also a conservative
segmentation. However, the inferior boundaries are often very
inaccurate due to the severity of brightness inhomogeneity, and
correcting this drives stage 2.

2.3.5. Stage 2 marker generation
The segmentation of non-brain tissue produced by Stage 1, ND is
used as the non-brain marker for Stage 2. The new brain marker is
constructed from the Stage 1 brain segmentation, MB as follows:

1. MB is eroded using a spherical structuring element, radius
5 mm, to produce BE.

2. The median, t50, of the raw T1 in the region defined by MB is
computed.

3. A new brain marker, MC, corresponding to bright parts of the
Stage 1 segmentation, is created: MC = (RA > t50) × BE.

MC and ND are merged to create MN2, the Stage 2 marker
(Figure 9). This procedure is simpler than Stage 2 for humans as
we are doing less fine tuning of markers.

2.3.6. Stage 2 control image
The control image is constructed using the method described in
section 2.2.6, to produce R2, without the initial erosion applied in
Step 1 as there are fewer fine dural structures (Figure 9).

FIGURE 8 | Stage 1 segmentation for macaque.
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2.3.7. Stage 2 brain extraction using the watershed transform
from markers

A second watershed transform from markers is applied using
MN2 as the marker image and R2 as the control. There is no
additional dilation step as the control image was not eroded
(Figure 9).

2.4. VALIDATION
2.4.1. Accuracy
Accuracy of the method described above for human brains was
assessed using the publicly accessible Segmentation Validation
Engine (SVE) (Shattuck et al., 2009). This service provides 40
raw T1 scans and allows segmentation results to be uploaded
and compared to a manually generated ground truth using Dice,
Jaccard, sensitivity and specificity scores. An additional final pro-
cess step was applied to clip the brain stem segmentation prior to
upload to the SVE, as the MBWSS typically segments a portion
of brain stem while other methods do not. The MNI brain mask
was registered to the segmentation mask using FLIRT (Jenkinson
et al., 2001) and the inferior face of the MNI space used to clip the
brain stem.

Brain masks created from five macaque scans were compared
with manually created brain masks intended for registration

FIGURE 9 | Stage 2 marker for macaque on gradient control image

(top) and resulting stage 2 segmentation (bottom).

purposes using Dice and Jaccard scores. The masks were con-
structed by manually editing the output of BET applied to
macaque scans. The boundaries of these manual masks were
not particularly accurate, especially in dark areas, as they were
intended to remove tissue that would interfere with registration.

2.4.2. Robustness
MBWSS is designed to be a fast, first stage extraction tool run at
the beginning of a processing pipeline, with the goal of making
subsequent steps simpler and more accurate. It is useful to con-
sider how robust the approach is. Robust in this context refers to
the frequency of “significant” errors, with the precise definition of
significant being dependent on the specific processing pipeline.
We compared brain masks generated by MBWSS to those gen-
erated by more computationally intensive tools in a paediatric
cohort and an adolescent cohort. The paediatric cohort consisted
of 29 participants randomly selected from the Victorian Infant
Brain Study (VIBeS), mean age 7.57 ± 0.21 while the adoles-
cent cohort consisted of 14 participants from 2 year followup
in a traumatic brain injury study, mean age 13.25 ± 1.95. The
VIBeS cohort is 85% very preterm (≤30 weeks gestation). All
scans performed on a 3T Siemens Trio. Brain masks were created
using MBWSS, FreeSurfer version 5.3.0’s preprocessing pipeline
(autorecon1), the graph cut method in VBM8 (Dahnke et al.,
2011), standard BET (Smith, 2002), BET with robust brain center
estimation (BET -R) and BET with bias field and neck cleanup
(BET -S). Dice coefficients and false positive and false negative
rates were computed to compare VBM8’s graph-cut method to
all other methods.

Finally, the application to intra-surgical scans was tested using
two cases scanned on a 3T high field movable intra-operative
MR Siemens scanner (IMRIS, Manitoba, Canada) placed in an
operating room with radiofrequency shielding.

3. RESULTS
Segmentation accuracy scores from the Segmentation Validation
Engine and macaque datasets are listed in Table 2. Scores for the
robustness tests sre listed in Tables 3, 4.

3.1. INTRA-SURGICAL EXAMPLES
MR acquisition during surgery is possible with in-theatre scan-
ners. The examples in Figure 10 have open skulls and con-
trast agents have been injected. An open skull breaks one of
the assumptions of the Stage 1 marker generation process, so
a minor modification (reducing the size of dilation in Step 7
in section 2.2.3) is necessary to prevent brain tissue being
included in the background marker, resulting in a less than
ideal marker generation process and a larger amount of non-
brain tissue being included in the final segmentation. Despite
this the brain extraction results are useful for further analysis.

Table 2 | MBWSS segmentation accuracy measures from SVE and macaque datasets.

Jaccard Dice Sensitivity Specificity

SVE 0.9436 ± 0.0057 0.9710 ± 0.0030 0.9662 ± 0.0081 0.9957 ± 0.0014

Macaque 0.86 ± 0.018 0.92 ± 0.011 0.88 ± 0.015 0.994 ± 0.004
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Table 3 | Dice coefficients, mean false positive and false negative and worst false positive and false negative scores for all methods compared

to graph-cut for the paediatric cohort.

Paediatric

Dice Mean false Pos Mean false Neg Worst false Pos Worst false Neg

MBWSS 0.962 ± 0.005 0.02 ± 0.008 0.05 ± 0.011 0.04 0.09

FreeSurfer 0.964 ± 0.005 0.064 ± 0.012 0.006 ± 0.003 0.09 0.01

BET 0.943 ± 0.002 0.03 ± 0.03 0.079 ± 0.020 0.13 0.14

Robust BET 0.964 ± 0.0055 0.010 ± 0.007 0.06 ± 0.010 0.031 0.0867

BC NC BET 0.934 ± 0.023 0.0025 ± 0.002 0.12 ± 0.039 0.012 0.252

BC NC BET refers to BET with bias correction and neck cleanup.

Table 4 | Dice coefficients, mean false positive and false negative and worst false positive and false negative scores for all methods compared

to graph-cut for the adolescent cohort.

Adolescent

Dice Mean false Pos Mean false Neg Worst false Pos Worst false Neg

MBWSS 0.958 ± 0.004 0.021 ± 0.011 0.06 ± 0.011 0.05 0.09

FreeSurfer 0.953 ± 0.010 0.086 ± 0.020 0.004 ± 0.003 0.01 0.11

BET 0.720 ± 0.096 0.41 ± 0.14 0.044 ± 0.013 0.5 0.06

Robust BET 0.738 ± 0.123 0.379 ± 0.183 0.055 ± 0.021 0.54 0.086

BC NC BET 0.960 ± 0.012 0.013 ± 0.004 0.064 ± 0.024 0.023 0.135

BC NC BET refers to BET with bias correction and neck cleanup.

An example of failures observed with graph cut is illustrated in
Figure 11.

3.2. EXECUTION TIME
Execution time for the different methods is summarized in
Table 5. The MBWSS execution time includes 2.4 s for bias cor-
rection, 9.6 s for stage 1 marker generation and segmentation and
7 s for stage 2 marker generation and segmentation

4. DISCUSSION
4.1. SEGMENTATION PERFORMANCE
At the time of writing MBWSS was at position 21 on the SVE
table, with eight different methods ahead by generally small mar-
gins. In fact, the top 85 entries (note that there are many repeats of
the same methods in this list) have Dice scores of 0.96 or better,
with the top method scoring 0.981. By this metric, many meth-
ods are doing very well. It is therefore informative to consider
what the differences in scores mean—the Dice similarity coeffi-
cient between a brain mask and a single voxel dilation of the same
mask is 0.959. This is lower than the mean scores produced by the
top 85 entries on the SVE website. Differences between all of these
methods is therefore likely to be very subtle.

The top performing methods, such as BEaST (Eskildsen et al.,
2011), MAPS (Leung et al., 2011), gain high performance based
on combinations of ground truth training data, careful prepro-
cessing and registration techniques. Others, such as the graph cut
method in VBM8 (Dahnke et al., 2011) employ an initial tissue
classification and bias correction step in addition to careful noise
filtering.

It is interesting that MBWSS—a data driven segmentation
method, built using standard, general purpose, image segmen-
tation and filtering components—is able to perform at a level
close to the state of the art. It is especially interesting that MBWSS
functions with only the most basic preprocessing—optional and
very cheap bias correction and no registration to any form of
template. It is therefore an ideal starting point for many refine-
ment approaches that may be able to function more efficiently if
a reasonably scalped brain is available.

Application to other cohorts—paediatric, adolescent and intra
surgical scans—illustrates the flexibility and of the approach.
MBWSS showed quite close correspondence with the graph cut
method. The highest level of disagreement between the two meth-
ods occurred in scans with atrophied brains, in which the graph
cut method included more dark (non-brain) voxels, leading to a
high false negative scores. The difference between the methods in
these cases was unlikely to be significant for most applications.

FreeSurfer’s performance on the two cohorts illustrates a dif-
ferent design approach—the segmentation is deliberately con-
servative, with a very low false negative rate, but moderate false
positive rate. The segmentations produced by FreeSurfer are quite
similar to those produced by the first stage of MBWSS, which is
not surprising considering the use of watershed transform steps
in both.

BET, in three forms, had variable performance on the test
cohorts. Standard BET had poor mean Dice coefficients for the
adolescent cohort. BET with robust brain centering performed
well on the paediatric cohort and poorly on the adolescent cohort.
BET with bias correction and neck cleanup performed well on the
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FIGURE 10 | Brain extraction (Stage 1), for two intra-surgical scans

with open skull. Top image shows a contrast enhancing tumor. Acquisition
on IMRIS surgical scanner.

adolescent cohort but not as well on the paediatric cohort. In all
cases the masks with the highest rates of false negative voxels had
obvious regions of misclassified brain voxels.

Illustrations of the segmentations produced by the methods
are provided in supplementary material.

4.2. SEGMENTATION PERFORMANCE—MACAQUES
The similarity coefficients for macaque brain masks were lower
than those achieved for human scans, however, the difference
was largely due to the lower quality manual segmentation results
available. The manual masks were generated purely for the pur-
poses of registration and included large areas of dark voxels.

Illustrations of the macaque manual segmentations are pro-
vided in supplementary material.

4.3. PARAMETER SELECTION
MBWSS has a lot of parameters which could, in principle, be
individually tuned. All results for human scans in this paper,
apart from the surgical cases, were obtained using the same set
of default parameters. Surgical cases required one preprocessing
step to be modified, as discussed. The macaque scans were also
processed with identical parameters.

Tuning is possible and can be targeted based on the steps that
fail. For example, a poor stage 1 segmentation may be caused by
incorrect marker generation, which suggests tuning parameters
relating to that part of the process.

FIGURE 11 | Brain extraction (Stage 1, in green) and corresponding

graph cut segmentation (in cyan), which has a incorrectly removed

brain tissue in the vicinity of the open skull.

Table 5 | Execution times for methods on 256 × 124 × 256 images

provided by the SVE, and a 170 × 190 × 127 macaque scan.

Human scan Macaque scan

MBWSS 19 11

FreeSurfer 2640

VBM8 graph cut 420

BET 3.4

Robust BET 12

BC NC BET 495

4.4. SEGMENTATION ERROR TYPES
The most common form of error observed in MBWSS results was
inclusion of non-brain tissue in the form of thick cancellous bone.
In some cases the tissue has very similar contrast to brain tissue,
so there is minimal gradient between the brain and non-brain tis-
sue. This is a situation where a data driven approach is typically
likely to perform badly, as higher level knowledge is necessary to
correctly solve the segmentation problem.

4.5. EXECUTION TIME
The execution time for MBWSS was less than 20 s for all steps on
the SVE images. Standard BET and BET with robust brain center
estimation are the only faster methods, while BET with bias cor-
rection and neck cleanup is much slower (8 min). Standard BET
is rarely used due to the high rates of poor segmentation. The
graph cut method in VBM requires initial tissue classification and
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image smoothing and takes 7 min. FreeSurfer, which uses an itera-
tive approach involving registration, takes 43 min. It is not always
meaningful to compare execution times directly—some of the
methods discussed here were designed to take advantage of tools
that were already available, or are part of processing pipelines
that produce data used later for other purposes. However, it is
interesting to observe that MBWSS does achieve the relatively
low execution time while offering good reliability, yet it has not
been optimized for speed. The execution time was achieved by
using specialized components that were available in the ITKv4
library. In many cases these filters implement state of the art
algorithms and are able to take advantage of multi-core CPUs.
MBWSS is therefore an example of what can be achieved via the
good software engineering practice of resusable software com-
ponents. Significant further improvements in speed would be
possible by careful use of cropping to reduce image size (current
neck cropping only blanks regions, rather than removing them).

4.6. SOURCE CODE AVAILABILITY
The source code implementing the MBWSS algorithm for
humans and macaques is freely available from Beare (2013).
There are two, command line based, applications which have been
tested under various linux distributions and Apple OSX. Build
instructions are included with the source code.

5. CONCLUSION
This article has described the application of a classical morpho-
logical segmentation approach to the problem of brain extraction
in human and macaque MRI scans. The methods for both human
and macaque scans are very similar and are entirely data driven.
The methods do not employ computationally intensive prepro-
cessing steps and are intended to be used early in processing
analysis procedures. The use of established software components
from the ITK facilitated the development of a high speed and
efficient tool.
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