
ORIGINAL RESEARCH ARTICLE
published: 19 December 2013
doi: 10.3389/fninf.2013.00036

Hardware-accelerated interactive data visualization for
neuroscience in Python
Cyrille Rossant* and Kenneth D. Harris

Cortical Processing Laboratory, University College London, London, UK

Edited by:

Fernando Perez, University of
California at Berkeley, USA

Reviewed by:

Werner Van Geit, École
Polytechnique Fédérale de
Lausanne, Switzerland
Michael G. Droettboom, Space
Telescope Science Institute, USA

*Correspondence:

Cyrille Rossant, Cortical Processing
Laboratory, University College
London, Rockefeller Building, 21
University Street, London WC1E
6DE, UK
e-mail: cyrille.rossant@gmail.com

Large datasets are becoming more and more common in science, particularly in
neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable
results from raw data can sometimes be done automatically; however, there are numerous
situations where there is a need, at all processing stages, to visualize the data in an
interactive way. This enables the scientist to gain intuition, discover unexpected patterns,
and find guidance about subsequent analysis steps. Existing visualization tools mostly
focus on static publication-quality figures and do not support interactive visualization of
large datasets. While working on Python software for visualization of neurophysiological
data, we developed techniques to leverage the computational power of modern graphics
cards for high-performance interactive data visualization. We were able to achieve very
high performance despite the interpreted and dynamic nature of Python, by using
state-of-the-art, fast libraries such as NumPy, PyOpenGL, and PyTables. We present
applications of these methods to visualization of neurophysiological data. We believe our
tools will be useful in a broad range of domains, in neuroscience and beyond, where there
is an increasing need for scalable and fast interactive visualization.

Keywords: data visualization, graphics card, OpenGL, Python, electrophysiology

1. INTRODUCTION
In many scientific fields, the amount of data generated by
modern experiments is growing at an increasing pace. Notable
data-driven neuroscientific areas and technologies include brain
imaging (Basser et al., 1994; Huettel et al., 2004), scanning elec-
tron microscopy (Denk and Horstmann, 2004; Horstmann et al.,
2012), next-generation DNA sequencing (Shendure and Ji, 2008),
high-channel-count electrophysiology (Buzsáki, 2004), amongst
others. This trend is confirmed by ongoing large-scale projects
such as the Human Connectome Project (Van Essen et al., 2012),
the Allen Human Brain Atlas (Shen et al., 2012), the Human Brain
Project (Markram, 2012), the Brain Initiative (Insel et al., 2013),
whose specific aims entail generating massive amounts of data.
Getting the data, while technically highly challenging, is only the
first step in the scientific process. For useful information to be
inferred, effective data analysis and visualization is necessary.

It is often extremely useful to visualize raw data right after
they have been obtained, as this allows scientists to make intu-
itive inferences about the data, or find unexpected patterns, etc.
Yet, most existing visualization tools (such as matplotlib,1 Chaco,2

PyQwt,3 Bokeh,4 to name only a few Python libraries) are either
focused on statistical quantities, or they do not scale well to very
large datasets (i.e., containing more than one million points).
With the increasing amount of scientific data comes a more and
more pressing need for scalable and fast visualization tools.

1http://matplotlib.org/
2http://code.enthought.com/projects/chaco/
3http://pyqwt.sourceforge.net/
4https://github.com/ContinuumIO/Bokeh

The Python scientific ecosystem is highly popular in sci-
ence (Oliphant, 2007), notably in neuroscience (Koetter et al.,
2008), as it is a solid and open scientific computing and visu-
alization framework. In particular, matplotlib is a rich, flexible
and highly powerful software for scientific visualization (Hunter,
2007). However, it does not scale well to very large datasets. The
same limitation applies to most existing visualization libraries.

One of the main reasons behind these limitations stems from
the fact that these tools are traditionally written for central
processing units (CPUs). All modern computers include a dedi-
cated electronic circuit for graphics called a graphics processing
unit (GPU) (Owens et al., 2008). GPUs are routinely used in
video games and 3D modeling, but rarely in traditional scien-
tific visualization applications (except in domains involving 3D
models). Yet, not only are GPUs far more powerful than CPUs in
terms of computational performance, but they are also specifically
designed for real-time visualization applications.

In this paper, we describe how to use OpenGL (Woo et al.,
1999), an open standard for hardware-accelerated interactive
graphics, for scientific visualization in Python, and note the role
of the programmable pipeline and shaders for this purpose. We
also give some techniques which allow very high performance
despite the interpreted nature of Python. Finally, we present an
experimental open-source Python toolkit for interactive visu-
alization, which we name Galry, and we give examples of its
applications in visualizing neurophysiological data.

2. MATERIALS AND METHODS
In this section, we describe techniques for creating hardware-
accelerated interactive data visualization applications in Python

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00036/abstract
http://www.frontiersin.org/people/u/8013
http://community.frontiersin.org/people/KennethHarris/11687
mailto:cyrille.rossant@gmail.com
http://matplotlib.org/
http://code.enthought.com/projects/chaco/
http://pyqwt.sourceforge.net/
https://github.com/ContinuumIO/Bokeh
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

and OpenGL. We give a brief high-level overview of the OpenGL
pipeline before describing how programmable shaders, originally
designed for custom 3D rendering effects, can be highly advanta-
geous for data visualization (Bailey, 2009). Finally, we apply these
techniques to the visualization of neurophysiological data.

2.1. THE OPENGL PIPELINE
A GPU contains a large number (hundreds to thousands) of exe-
cution units specialized in parallel arithmetic operations (Hong
and Kim, 2009). This architecture is well adapted to realtime
graphics processing. Very often, the same mathematical operation
is applied on all vertices or pixels; for example, when the cam-
era moves in a three-dimensional scene, the same transformation
matrix is applied on all points. This massively parallel architecture
explains the very high computational power of GPUs.

OpenGL is the industry standard for real-time hardware-
accelerated graphics rendering, commonly used in video games
and 3D modeling software (Woo et al., 1999). This open specifi-
cation is supported on every major operating system 5 and most
devices from the three major GPU vendors (NVIDIA, AMD,
Intel) (Jon Peddie Research, 2013). This is a strong advantage of
OpenGL over other graphical APIs such as DirectX (a proprietary
technology maintained by Microsoft), or general-purpose GPU
programming frameworks such as CUDA (a proprietary tech-
nology maintained by NVIDIA Corporation). Scientists tend to
favor open standard to proprietary solutions for reasons of vendor
lock-in and concerns about the longevity of the technology.

OpenGL defines a complex pipeline that describes how 2D/3D
data is processed in parallel on the GPU before the final image is
rendered on screen. We give a simplified overview of this pipeline
here (see Figure 1). In the first step, raw data (typically, points in
the original data coordinate system) are transformed by the vertex
processor into 3D vertices. Then, the primitive assembly creates
points, lines and triangles from these data. During rasterization,
these primitives are converted into pixels (also called fragments).
Finally, those fragments are transformed by the fragment proces-
sor to form the final image.

An OpenGL Python wrapper called PyOpenGL allows the
creation of OpenGL-based applications in Python (Fletcher and
Liebscher, 2005). A critical issue is performance, as there is a slight
overhead with any OpenGL API call, especially from Python. This
problem can be solved by minimizing the number of OpenGL
API calls using different techniques. First, multiple primitives of
the same type can be displayed efficiently via batched rendering.
Also, PyOpenGL allows the transfer of potentially large NumPy
arrays (Van Der Walt et al., 2011) from host memory to GPU
memory with minimal overhead. Another technique concerns
shaders as discussed below.

2.2. OPENGL PROGRAMMABLE SHADERS
Prior to OpenGL 2.0 (Segal and Akeley, 2004), released in 2004,
vertex and fragment processing were implemented in the fixed-
function pipeline. Data and image processing algorithms were
described in terms of predefined stages implemented on non-
programmable dedicated hardware on the GPU. This architecture

5http://www.opengl.org/documentation/implementations/

FIGURE 1 | Simplified OpenGL pipeline. Graphical commands and data
go through multiple stages from the application code in Python to the
screen. The code calls OpenGL commands and sends data on the GPU
through PyOpenGL, a Python-OpenGL binding library. Vertex shaders
process data vertices in parallel, and return points in homogeneous
coordinates. During rasterization, a bitmap image is created from the vector
primitives. The fragment shader processes pixels in parallel, and assigns a
color and depth to every drawn pixel. The image is finally rendered on
screen.

resulted in limited customization and high complexity; as a result,
a programmable pipeline was proposed in the core specification
of OpenGL 2.0. This made it possible to implement entirely cus-
tomized stages of the pipeline in a language close to C called the

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 2

http://www.opengl.org/documentation/implementations/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

OpenGL Shading Language (GLSL) (Kessenich et al., 2004). These
stages encompass most notably vertex processing, implemented
in the vertex shader, and fragment processing, implemented in the
fragment shader. Other types of shaders exist, like the geometry
shader, but they are currently less widely supported on standard
hardware. The fixed-function pipeline has been deprecated since
OpenGL 3.0.

The main purpose of programmable shaders is to offer high
flexibility in transformation, lighting, or post-processing effects
in 3D real-time scenes. However, being fully programmable,
shaders can also be used to implement arbitrary data transfor-
mations on the GPU in 2D or 3D scenes. In particular, shaders
can be immensely useful for high-performance interactive 2D/3D
data visualization.

The principles of shaders are illustrated in Figure 2, sketch-
ing a toy example where three connected line segments forming
a triangle are rendered from three vertices (Figure 2A). A data
item with an arbitrary data type is provided for every vertex. In
this example, there are two values for the 2D position, and three
values for the point’s color. The data buffer containing the items
for all points is generally stored on the GPU in a vertex buffer
object (VBO). PyOpenGL can transfer a NumPy array with the
appropriate data type to a VBO with minimal overhead.

OpenGL lets us choose the mapping between a data item
and variables in the shader program. These variables are called
attributes. Here, the a_position attribute contains the first
two values in the data item, and a_color contains the last three
values. The inputs of a vertex shader program consist mainly of
attributes, global variables called uniforms, and textures. A partic-
ularity of a shader program is that there is one execution thread
per data item, so that the actual input of a vertex shader con-
cerns a single vertex. This is an example of the Single Instruction,
Multiple Data (SIMD) paradigm in parallel computing, where
one program is executed simultaneously over multiple cores and
multiple bits of data (Almasi and Gottlieb, 1988). This pipeline
leverages the massively parallel architecture of GPUs. Besides,
GLSL supports conditional branching so that different transfor-
mations can be applied to different parts of the data. In Figure 2A,
the vertex shader applies the same linear transformation (rotation
and scaling) on all vertices.

The vertex shader returns an OpenGL variable called
gl_Position that contains the final position of the current
vertex in homogeneous space coordinates. The vertex shader
can return additional variables called varying variables (here,
v_color), which are passed to the next programmable stage in
the pipeline: the fragment shader.

After the vertex shader, the transformed vertices are passed
to the primitive assembly and the rasterizer, where points, lines
and triangles are formed out of them. One can choose the mode
describing how primitives are assembled. In particular, indexing
rendering (not used in this toy example) allows a given vertex to
be reused multiple times in different primitives to optimize mem-
ory usage. Here, the GL_LINE_LOOP mode is chosen, where
lines connecting two consecutive points are rendered, the last
vertex being connected to the first.

Finally, once rasterization is done, the scene is described in
terms of pixels instead of vector data (Figure 2B). The fragment

shader executes on all rendered pixels (pixels of the primitives
rather than pixels of the screen). It accepts as inputs varying
variables that have been interpolated between the closest vertices
around the current pixel. The fragment shader returns the pixel’s
color.

Together, the vertex shader and the fragment shader offer
great flexibility and very high performance in the way data are
transformed and rendered on screen. Being implemented in a
syntax very close to C, they allow for an unlimited variety of
processing algorithms. Their main limitation is the fact that
they execute independently. Therefore, implementing interac-
tions between vertices or pixels is difficult without resorting to
more powerful frameworks for general-purpose computing on
GPUs such as OpenCL (Stone et al., 2010) or CUDA (Nvidia,
2008). These libraries support OpenGL interoperability, meaning
that data buffers residing in GPU memory can be shared between
OpenGL and OpenCL/CUDA.

2.3. INTERACTIVE VISUALIZATION OF NEUROPHYSIOLOGICAL DATA
In this section, we apply the techniques described above to visual-
ization of scientific data, and notably neurophysiological signals.

2.3.1. Interactive visualization of 2D data
Although designed primarily for 3D rendering, the OpenGL pro-
grammable pipeline can be easily adapted for 2D data processing
(using an orthographic projection, for example). Standard plots
can be naturally described in terms of OpenGL primitives: scat-
ter points are 2D points, curves consist of multiple line segments,
histograms are made of consecutive filled triangles, images are
rendered with textures, and so on. However, special care needs
to be taken in order to render a large amount of data efficiently.

Firstly, data transfers between main memory and GPU mem-
ory are a well-known performance bottleneck, particularly when
they occur at every frame (Gregg and Hazelwood, 2011). When
it comes to visualization of static datasets, the data points
can be loaded into GPU memory at initialization time only.
Interactivity (panning and zooming), critical in visualization of
big datasets (Shneiderman, 1996), can occur directly on the GPU
with no data transfers. Visualization of dynamic (e.g., real-time)
datasets is also possible with good performance, as the mem-
ory bandwidth of the GPU and the bus is typically sufficient in
scientific applications (see also the Results section).

The vertex shader is the most adequate place for the imple-
mentation of linear transformations such as panning and zoom-
ing. Two uniform 2D variables, a scaling factor and a translation
factor, are updated according to user actions involving the mouse
and the keyboard. This implementation of interactive visualiza-
tion of 2D datasets is extremely efficient, as it not only leverages
the massively parallel architecture of GPUs to compute data
transformations, but it also overcomes the main performance
bottleneck of this architecture which concerns CPU-GPU data
transfers.

The fragment shader is also useful in specific situations where
the color of visual objects need to change in response to user
input. For instance, the color of points in a scatter plot can be
changed dynamically when they are selected by the user. In addi-
tion, the fragment shader is essential for antialiased rendering.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

A

B

FIGURE 2 | Toy example illustrating shader processing. Three
connected line segments forming a triangle are rendered from three
vertices. The triangle is linearly transformed, and color gradients are
applied to the segments. (A) Three 5D data points are stored in a
GPU vertex buffer object. Each point is composed of two scalar
coordinates x and y (2D space), and three scalar RGB color
components. The vertex shader processes these points in parallel on
the graphics card. For each point, the vertex shader returns a point in
homogeneous coordinates (here, two coordinates x′ and y′), along with

varying variables (here, the point’s color) that are passed to the
fragment shader. The vertex shader implements linear or non-linear
transformations (here, a rotation and a scaling) and is written in GLSL.
Primitives (here, three line segments) are constructed in the primitive
assembly. (B) During rasterization, a bitmap image is created out of
these primitives. The fragment shader assigns a color to every drawn
pixel in parallel. Varying variables passed by the vertex shader to the
fragment shader are interpolated between vertices, which permits, for
example, color gradients.

2.3.2. Time-dependent neurophysiological signals
The techniques described above allow for fast visualization
of time-dependent neurophysiological signals. An intracellular
recording, such as one stored in a binary file, can be loaded into
system memory very efficiently with NumPy’s fromfile func-
tion. Then, it is loaded into GPU memory and it stays there
as long as the application is running. When the user interacts
with the data, the vertex shader translates and scales the vertices
accordingly.

A problem may occur when the data becomes too large to
reside entirely in GPU memory, which is currently limited to
a few gigabytes on high-end models. Other objects residing in
the OpenGL context or other applications running simultane-
ously on the computer may need to allocate memory on the
GPU as well. For these reasons, it may be necessary to down-
sample the data so that only the relevant part of interest is
loaded at any time. Such downsampling can be done dynami-
cally during interactive visualization, i.e., the temporal resolu-
tion can be adapted according to the current zoom level. There
is a trade-off between the amount of data to transfer during
downsampling (and thereby the amount of data that resides
in GPU memory), and the frequency of these relatively slow
transfers.

A B

FIGURE 3 | Screenshots of KwikSkope and KlustaViewa. (A) Raw
32-channel extracellular recordings visualized in KwikSkope. (B) In
KlustaViewa, spike waveforms, extracted from (A), are displayed in a layout
depending on the probe geometry. Channels where waveforms are not
detected (amplitude below a threshold), also called masked channels, are
shown in gray. Two clusters (groups of spikes) are shown here in red and
greed.

This technique is implemented in a program which we devel-
oped for the visualization of extracellular multielectrode record-
ings (“KwikSkope,”6 Figure 3A). These recordings are sampled at

6https://github.com/klusta-team/klustaviewa

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 4

https://github.com/klusta-team/klustaviewa
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

high resolution, can last for several hours, and contain tens to
hundreds of channels on high-density silicon probes (Buzsáki,
2004). The maximum number of points to display at once is
fixed, and multiscale downsampling is done automatically as a
function of the zoom level. Downsampling is achieved by slic-
ing the NumPy array containing the data as follows: data_gpu
= data_original[start:end:step,:] where start
and end delimit the chunk of data that is currently visible
on-screen, and step is the downsampling step. More com-
plex methods, involving interpolation for example, would result
in aesthetically more appealing graphics, but in much slower
performance as well.

A further difficulty is that the full recordings can be too large
to fit in host memory. We implemented a memory mapping tech-
nique in KwikSkope based on the HDF5 file format (Folk et al.,
1999) and the PyTables library (Alted and Fernández-Alonso,
2003), where data is loaded directly from the hard drive during
downsampling. As disk reads are particularly slow [they are much
faster on solid-state drives (SDD) than hard disk drives (HDD)],
this operation is done in a background thread to avoid blocking
the user interface during interactivity. Downsampling is imple-
mented as described above in a polymorphic fashion, as slicing
PyTables’ Array objects leads to highly efficient HDF5 hyperslab
selections.7

Another difficulty is the fact that support for double-precision
floating point numbers is limited in OpenGL. Therefore, a naive
implementation may lead to loss of precision at high trans-
lation and zoom levels on the x-axis. A classic solution to
this well-known problem consists in implementing a floating
origin (Thome, 2005). This solution is currently not imple-
mented in Galry nor KwikSkope, but we intend to do so in the
future.

2.3.3. Extracellular action potentials
Another example is in the visualization of extracellular action
potentials. The process of recovering single-neuron spiking activ-
ity from raw multielectrode extracellular recordings is known as
“spike sorting” (Lewicki, 1998). Existing algorithmic solutions
to this inverse problem are imperfect, so that a manual post-
processing stage is often necessary (Harris et al., 2000). The prob-
lem is yet harder with new high-density silicon probes containing
tens to hundreds of channels (Buzsáki, 2004). We developed a
graphical Python software named “KlustaViewa” 8 for this pur-
pose. The experimenter loads a dataset after it has been processed
automatically, and looks at groups of spikes (“clusters”) puta-
tively belonging to individual neurons. The experimenter needs to
refine the output of the automatic clustering algorithm. Human
decisions include merging or splitting clusters and classifying
clusters according to their sorting quality. These decisions are
based on the visual shapes of the waveforms of spikes across chan-
nels, the automatically-extracted features of these waveforms, and
the pairwise cross-correlograms between clusters. The software
includes a semi-automatic assistant that guides the experimenter
through the process.

7http://www.hdfgroup.org/HDF5/doc/UG/12Dataspaces.html
8https://github.com/klusta-team/klustaviewa

FIGURE 4 | Dynamic representation of multielectrode extracellular

spike wavefoms with the probe geometry. This example illustrates how
a complex arrangement of spike waveforms can be efficiently implemented
on the GPU with a vertex shader. The user can smoothly change the local
and global scaling of the waveforms. The normalized waveforms, as well as
the probe geometry, are loaded into GPU memory at the beginning of the
session. The vertex shader applies translation, local and global scaling
transformation on the waveform vertices, depending on user-controlled
scaling parameters.

We now describe how we implemented the visualization of
waveforms across spikes and channels. The waveforms are stored
internally as 3D NumPy arrays (Nspikes ∗ Nsamples ∗
Nchannels). As we also know the 2D layout of the probe
with the coordinates of every channel, we created a view where
the waveforms are organized geometrically according to this lay-
out. In Figure 3B, the waveforms of two clusters (in red and
green) are shown across the 32 channels of the probe. This
makes it easier for the experimenter to work out the posi-
tion of the neuronal sources responsible for the recorded spikes
intuitively. We needed the experimenter to be able to change
the scale of the layout dynamically, as the most visually clear
scale depends on the particular dataset and on the selected
clusters.

When the experimenter selects a cluster, the corresponding
waveforms are first normalized on the CPU (linear mapping to
[−1, 1]), before being loaded into GPU memory. The geomet-
rical layout of the probe is also loaded as a uniform variable,
and a custom vertex shader computes the final position of the
waveforms. The scaling of the probe and of the waveforms is
determined by four scalar parameters (uniform variables) that
are controlled by specific user actions (Figure 4). The GLSL code
snippet below (slightly simplified) shows how a point belonging
to a waveform is transformed in the vertex shader by taking into
account the probe layout, the scaling, and the amount of panning
and zooming set by the user.

// Probe layout and waveform scaling.
// wave is a vertex belonging to a
// waveform.
vec2 wave_tr = wave ∗ wave_scale +
channel_pos ∗ probe_scale;
// Interactive panning and zooming.
// gl_Position is the final vertex
// position.
gl_Position = zoom ∗ (wave_tr + pan);

Interactive visualization of these waveforms is fast and fluid,
since waveforms are loaded into GPU memory at initialization

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 5

http://www.hdfgroup.org/HDF5/doc/UG/12_Dataspaces.html
https://github.com/klusta-team/klustaviewa
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

A B C

D E F

FIGURE 5 | Performance comparison between matplotlib and Galry. Ten
line plots (white noise time-dependent signals) containing N points in total
are rendered in matplotlib 1.3.0 with a Qt4Agg backend (dashed and crosses)
and Galry 0.2.0 (solid and discs). All benchmarks are executed three times
with different seeds (error bars sometimes imperceptible on the plots). The
benchmarks are executed on two different PCs (see details below): PC1
(high-end desktop PC) in (A–C), PC2 (low-end laptop) in (D–F). (A,D) First
frame rendering time as a function of the total number of points in the plots.
(B,E) Average memory consumption over time of the Python interpreter
rendering the plot. (C,F) Median number of frames per second with
continuous scaling in the x direction (automatic zooming). Frame updates are

requested at 1000 Hz up to a maximum zoom level for a maximum total
rendering duration of 10 s. In all panels, some values corresponding to large N
could not be obtained because the system ran out of memory. In particular,
on PC1, the values corresponding to N = 108 could be obtained with Galry
but not matplotlib (the system crashed due to RAM usage reaching 100%).
PC1: 2012 Dell XPS desktop computer with an Intel Core i7-3770 CPU
(8-core) at 3.40 GHz, 8 GB RAM, a Radeon HD 7870 2 GB graphics card,
Windows 8 64-bit, and Python 2.7.5 64-bit. PC2: 2012 ASUS VivoBook laptop
with an Intel Core i3 CPU (4-core) at 1.4 GHz, 4 GB RAM, an Intel HD 3000
integrated GPU (video memory is shared with system memory), Windows
8.1 64-bit, and Python 2.7.5 64-bit.

time only, and the geometrical layout is computed on
the GPU.

3. RESULTS
We implemented the methods described in this paper in an exper-
imental project called “Galry”9 (BSD-licensed, cross-platform,
and for Python 2.7 only). This library facilitates the development
of OpenGL-based data visualization applications in Python. We
focused on performance and designed the library’s architecture
for our particular needs, which were related to visualization of
neurophysiological recordings. The external API and the internal
implementation will be improved in the context of a larger-scale
project named “Vispy” (see the Discussion).

In this section, we assess Galry’s relative performance against
matplotlib using a simple dynamic visualization task (Figure 5,
showing the results on a high-end desktop computer, and a low-
end laptop). We created identical plots in Galry and matplotlib,
which contain ten random time-dependent signals for a total of N
points. The code for these benchmarks is freely available online.10

The results are saved in a human-readable JSON file and the plots
in Figure 5 can be generated automatically.

9https://github.com/rossant/galry
10https://github.com/rossant/galry-benchmarks

First, we estimated the first frame rendering time of these
plots in Galry and matplotlib, for different values of N. An
entirely automatic script creates a plot, displays it, and closes it
as soon as the first frame has been rendered. Whereas the first
frame rendering times are comparable for medium-sized datasets
(10,000–100,000 points), Galry is several times faster than mat-
plotlib with plots containing more than one million points. This
is because matplotlib/Agg implement all transformation steps on
the CPU (in Python and C). By contrast, Galry directly trans-
fers data from host memory to GPU memory, and delegates
rasterization to the GPU through the OpenGL pipeline.

Next, we assessed the memory consumption of Galry and mat-
plotlib on the same examples (using the memory_profiler
package11). Memory usage is comparable, except with datasets
containing more than a few million points where Galry is a few
times more memory-efficient than matplotlib. We were not able
to render 100 million points with matplotlib without reaching the
memory limits of our machine. We did not particularly focus on
memory efficiency during the implementation of Galry; an even
more efficient implementation would be possible by reducing
unnecessary NumPy array copies during data transformation and
loading.

11https://pypi.python.org/pypi/memory_profiler

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 6

https://github.com/rossant/galry
https://github.com/rossant/galry-benchmarks
https://pypi.python.org/pypi/memory_profiler
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

Finally, we evaluated the rendering performance of both
libraries by automatically zooming in the same plots at a
requested frame rate of 1000 frames per second (FPS). This is the
aspect where the benefit of GPUs for interactive visualization is
the most obvious, as Galry is several orders of magnitude faster
than matplotlib, particularly on plots containing more than one
million points. Here, the performance of Galry is directly related
to the computational power of the GPU (notably the number of
cores).

In the benchmark results presented in Figure 5, matplotlib
uses the Qt4Agg backend. We also ran the same benchmarks with
a non-Agg backend (Wx). We obtained very similar results for the
FPS and memory, but the first frame rendering time is equivalent
or better than Galry up to N = 106 (data not shown).

Whereas we mostly focused on static datasets in this paper,
our methods as well as our implementation support efficient
visualization of dynamic datasets. This is useful, for exam-
ple, when visualizing real-time data during online experiments
(e.g., data acquisition systems). With PyOpenGL, transferring
a large NumPy array from system RAM to GPU memory is
fast (negligible Python overhead in this case). Performance can
be measured in terms of memory bandwidth between system
and GPU memory. The order of magnitude of this bandwidth
is roughly 1 GB/s at least, both by theoretical (e.g., memory
bandwidth of a PCI-Express 2.0 bus) and experimental (bench-
marks with PyOpenGL, data not shown) considerations. Such
bandwidth is generally sufficiently high to allow for real-time
visualization of multi-channel digital data sampled at tens of
kilohertz.

4. DISCUSSION
In this paper, we demonstrated that OpenGL, a widely known
standard for hardware-accelerated graphics, can be used for fast
interactive visualization of large datasets in scientific applications.
We described how high performance can be achieved in Python,
by transferring static data on the GPU at initialization time only,
and using custom shaders for data transformation and render-
ing. These techniques minimize the overhead due to Python, the
OpenGL API calls, and CPU-GPU data transfers. Finally, we pre-
sented applications to visualization of neurophysiological data
(notably extracellular multielectrode recordings).

Whereas graphics cards are routinely used for 3D scientific
visualization (Lefohn et al., 2003; Rößler et al., 2006; Petrovic
et al., 2007), they are much less common in 2D visualization
applications (Bailey, 2009). Previous uses of shaders in such
applications mainly center around mapping (McCormick et al.,
2004; Liu et al., 2013), images or videos (Farrugia et al., 2006).
OpenVG12 (managed by the Khronos Group) is an open specifi-
cation for hardware-accelerated 2D vector graphics. There are a
few implementations of this API on top of OpenGL.13

We compared the performance of our reference implemen-
tation (Galry) with matplotlib, the most common visualization
library in Python. Even if matplotlib has been optimized for
performance over many years, it is unlikely that it can reach

12http://www.khronos.org/openvg/
13http://en.wikipedia.org/wiki/OpenVG#On_OpenGL.2C_OpenGL_ES

the speed of GPU-based solutions. Matplotlib is not the only
visualization software in Python; other notable projects in-
clude Chaco,14 VisTrails (Callahan et al., 2006),15 PyQtGraph,16

VisVis,17 Glumpy, 18 Mayavi (Ramachandran and Varoquaux,
2011)19 (oriented toward 3D visualization). However, none of
them is specifically designed to handle extremely large 2D plots
as efficiently as possible.

With our techniques, we were able to plot up to 100 million
points on a modern computer. One may question the interest
of rendering such a large number of points when the resolu-
tion of typical LCD screens rarely exceeds a few million pixels.
This extreme example was more a benchmark than a real-world
example, demonstrating the scalability of the method. Yet, raw
datasets with that many points are increasingly common, and,
as a first approach, it may be simpler to plot these data without
any preprocessing step. Further analysis steps reducing the size
and complexity of the graphical objects (subset rendering, down-
sampling, plotting of statistical quantities, etc.) may be engaged
subsequently once the experimenter has gained insight into the
nature of the data (Liu et al., 2013). More generally, it could be
interesting to implement generic dynamic downsampling meth-
ods adapted to common plots.

There are multiple ways our work can be extended. First, we
focused on performance (most notably in terms of number of
frames per second) rather than graphical quality. We did not
implement any OpenGL-based anti-aliasing technique in Galry,
as this is a challenging topic (Pharr and Fernando, 2005; Rougier,
2013). Anti-aliased plots result in greater quality and clearer visu-
als, and are particularly appreciated in publication-ready figures.
For example, matplotlib uses anti-aliasing and sub-pixel reso-
lution with the default Agg (Anti-Grain Geometry) backend.
High-quality OpenGL-based rendering would be an interesting
addition to our methods. Antialiased rendering leads to higher
quality but lower performance; end-users could have the choice
to disable this feature if they need maximum performance.

Another extension could concern graphical backends.
Currently, Galry uses Qt4 as a graphical backend providing an
OpenGL context, and it would be relatively easy to support other
similar backends like GLUT or wxWidgets. A web-based backend,
which would run in a browser, would be highly interesting but
challenging. More and more browsers support WebGL, an open
specification that lets OpenGL applications written in Javascript
run in the browser with hardware acceleration (Marrin, 2011).
A web-based backend would enable distributed work, where
the Python application would not necessarily run on the same
machine as the client. In particular, it would enable visualization
applications to run on mobile devices such as smartphones and
tablets. Besides, it would increase compatibility, as there are
some systems where the default OpenGL configuration is not
entirely functional. In particular, some browsers like Chrome and

14http://code.enthought.com/chaco/
15http://www.vistrails.org/index.php/MainPage
16http://www.pyqtgraph.org/
17https://code.google.com/p/visvis/
18https://code.google.com/p/glumpy/
19http://code.enthought.com/projects/mayavi/

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 7

http://www.khronos.org/openvg/
http://en.wikipedia.org/wiki/OpenVG#On_OpenGL.2C_OpenGL_ES
http://code.enthought.com/chaco/
http://www.vistrails.org/index.php/Main_Page
http://www.pyqtgraph.org/
https://code.google.com/p/visvis/
https://code.google.com/p/glumpy/
http://code.enthought.com/projects/mayavi/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Rossant and Harris Hardware-accelerated visualization in Python

Firefox use the ANGLE library20 on Windows to redirect OpenGL
API calls to the Microsoft DirectX library, which is generally
more stable on Windows systems. Also, it could be possible to
“compile” an entire interactive visualization application in a
pure HTML/Javascript file, facilitating sharing and diffusion of
scientific data. We should note that a web backend would not
necessarily require WebGL, as a VNC-like protocol could let the
server send continuously locally-rendered bitmap frames to the
client.

Another interesting application of a web backend could con-
cern the integration of interactive plots in the IPython note-
book. IPython plays a central role in the Python scientific
ecosystem (Perez and Granger, 2007), as it offers not only an
extended command-line interface for interactive computing in
Python, but also a web-based notebook that brings together all
inputs and outputs of an interactive session in a single web
document. This tool brings reproducibility in interactive com-
puting, an essential requirement in scientific research (Perez et al.,
2013). The IPython notebook only supports static plots in version
1.0. However, the upcoming version 2.0 will support Javascript-
based interactive widgets, thereby making the implementa-
tion of interactive hardware-accelerated plots possible in the
notebook.

The aforementioned possible extensions of our work are part
of a larger collaborative effort we are involved in, together with the
creators of PyQtGraph, VisVis, and Glumpy. This project consists
in creating a new OpenGL-based visualization library in Python
named “Vispy.”21 This future tool (supporting Python 2.6+ and
3.x) will not only offer high-performance interactive visualization
of scientific data, thereby superseding our experimental project
Galry, but it will also offer APIs at multiple levels of abstrac-
tion for an easy and Pythonic access to OpenGL. This library will
offer a powerful and flexible framework for creating applications
to visualize neuro-anatomical data (notably through hardware-
accelerated volume rendering techniques), neural networks as
graphs, high-dimensional datasets with arbitrary projections, and
other types of visuals. We expect Vispy to become an essential
tool for interactive visualization of increasingly large and complex
scientific data.

FUNDING
This work was supported by EPSRC (EP/K015141) and Wellcome
Trust (Investigator award to Kenneth D. Harris).

ACKNOWLEDGMENTS
We thank Max Hunter for his help on the paper and the imple-
mentation of KwikSkope, and Almar Klein and Nicolas Rougier
for helpful discussions.

REFERENCES
Almasi, G. S., and Gottlieb, A. (1988). Highly Parallel Computing. Redwood City,

CA: Benjamins/Cummings Publishing.
Alted, F., and Fernández-Alonso, M. (2003). “PyTables: processing and analyzing

extremely large amounts of data in Python,” in PyCon (Wahington, DC).

20https://code.google.com/p/angleproject/
21http://vispy.org/

Bailey, M. (2009). Using gpu shaders for visualization. Comput. Grap. Appl. IEEE
29, 96–100. doi: 10.1109/MCG.2009.102

Basser, P. J., Mattiello, J., and LeBihan, D. (1994). MR diffusion tensor spectroscopy
and imaging. Biophys. J. 66, 259–267. doi: 10.1016/S0006-3495(94)80775-1

Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nat. Neurosci. 7,
446–451. doi: 10.1038/nn1233

Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., and Vo, H. T.
(2006). “VisTrails: visualization meets data management,” Proceedings of the
2006 ACM SIGMOD international conference on Management of data (Chicago,
IL: ACM), 745–747. doi: 10.1145/1142473.1142574

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron
microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.
2:e329. doi: 10.1371/journal.pbio.0020329

Farrugia, J.-P., Horain, P., Guehenneux, E., and Alusse, Y. (2006). “GPUCV: A
framework for image processing acceleration with graphics processors,” in
IEEE International Conference on Multimedia and Expo (Toronto, ON: IEEE),
585–588. doi: 10.1109/ICME.2006.262476

Fletcher, M., and Liebscher, R. (2005). PyOpenGL–the Python OpenGL binding.
Available online at: http://pyopengl.sourceforge.net/

Folk, M., Cheng, A., and Yates, K. (1999). “HDF5: a file format and I/O library
for high performance computing applications,” Proceedings of SC’99. Vol. 99.
(Portland, OR).

Gregg, C., and Hazelwood, K. (2011). “Where is the data? Why you cannot
debate CPU vs. GPU performance without the answer,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS) (Austin,
TX: IEEE), 134–144. doi: 10.1109/ISPASS.2011.5762730

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsáki, G. (2000).
Accuracy of tetrode spike separation as determined by simultaneous intracel-
lular and extracellular measurements. J. Neurophysiol. 84, 401–414.

Hong, S., and Kim, H. (2009). “An analytical model for a GPU architec-
ture with memory-level and thread-level parallelism awareness,” in ACM
SIGARCH Computer Architecture News. Vol. 37 (New York, NY: ACM),
152–163.

Horstmann, H., Körber, C., Sätzler, K., Aydin, D., and Kuner, T. (2012). Serial sec-
tion scanning electron microscopy (S3EM) on silicon wafers for ultra-structural
volume imaging of cells and tissues. PLoS ONE 7:e35172. doi: 10.1371/jour-
nal.pone.0035172

Huettel, S. A., Song, A. W., and McCarthy, G. (2004) Functional Magnetic Resonance
Imaging. Vol. 1. Sunderland, MA: Sinauer Associates.

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The NIH BRAIN initiative.
Science 340, 687–688. doi: 10.1126/science.1239276

Jon Peddie Research (2013). Market Watch Press Release. Technical report.
Available online at: http://jonpeddie.com/press-releases/details/amd-winner-
in-q2-intel-up-nvidia-down/

Kessenich, J., Baldwin, D., and Rost, R. (2004). The OpenGL shading language.
Lang. Ver. 46, 1–5.

Koetter, R., Bednar, J., Davison, A., Diesmann, M., Gewaltig, M., Hines, M., et al.
(2008). Python in neuroscience. Front. Neuroinform.

Lefohn, A. E., Kniss, J. M., Hansen, C. D., and Whitaker, R. T., (2003). “Interactive
deformation and visualization of level set surfaces using graphics hardware,”
in Proceedings of the 14th IEEE Visualization 2003 (VIS’03) (Austin, TX: IEEE
Computer Society), 11. doi: 10.1109/VISUAL.2003.1250357

Lewicki, M. S. (1998). A review of methods for spike sorting: the detection and
classification of neural action potentials. Netw. Comput. Neural Syst. 9, R53–
R78. doi: 10.1088/0954-898X/9/4/001

Liu, Z., Jiang, B., and Heer, J. (2013). imMens: real-time visual querying of big data.
Comput. Graph. Forum (Proc. EuroVis) 32.

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55. doi:
10.1038/scientificamerican0612-50

Marrin, C. (2011). Webgl specification. Khronos WebGL Working Group. Available
online at: http://www.khronos.org/registry/webgl/specs/latest/1.0/

McCormick, P. S., Inman, J., Ahrens, J. P., Hansen, C., and Roth, G. (2004). “Scout:
a hardware-accelerated system for quantitatively driven visualization and anal-
ysis,” IEEE Visualization (Austin, TX: IEEE), 171–178. doi: 10.1109/VISUAL.
2004.95

Nvidia, C. (2008). Programming guide. Available online at: http://docs.nvidia.
com/cuda/cuda-c-programming-guide/

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 8

https://code.google.com/p/angleproject/
http://vispy.org/
http://www.khronos.org/registry/webgl/specs/latest/1.0/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://pyopengl.sourceforge.net/

Rossant and Harris Hardware-accelerated visualization in Python

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.
doi: 10.1109/MCSE.2007.58

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and
Phillips, J. C. (2008). GPU computing. Proc. IEEE 96, 879–899. doi:
10.1109/JPROC.2008.917757

Perez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Perez, F., Granger, B. E., and Obispo, C. P. S. L. (2013). An Open
Source Framework For Interactive, Collaborative And Reproducible Scientific
Computing And Education. Available online at: http://ipython.org/_static/
sloangrant/sloan-grant.pdf

Petrovic, V., Fallon, J., and Kuester, F. (2007). Visualizing whole-brain DTI tractog-
raphy with GPU-based tuboids and LoD management. IEEE Trans. Vis. Comput.
Graph. 13, 1488–1495. doi: 10.1109/TVCG.2007.70532

Pharr, M., and Fernando, R. (2005). Gpu Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Upper Saddle River,
NJ: Addison-Wesley Professional.

Ramachandran, P., and Varoquaux, G. (2011). Mayavi: 3D visualization of scientific
data. Comput. Sci. Eng. 13, 40–51. doi: 10.1109/MCSE.2011.35

Rößler, F., Tejada, E., Fangmeier, T., Ertl, T., and Knauff, M. (2006). GPU-based
multi-volume rendering for the visualization of functional brain images. SimVis
2006, 305–318.

Rougier, N. P. (2013). Higher quality 2D text rendering. J. Comput. Graph. Tech. 2,
50–64.

Segal, M., and Akeley, K. (2004). The OpenGL Graphics System: A Specification
(Version 2.0). Available online at: https://www.opengl.org/registry/doc/
glspec20.20041022.pdf

Shen, E. H., Overly, C. C., and Jones, A. R. (2012). The Allen Human Brain Atlas:
comprehensive gene expression mapping of the human brain. Trends Neurosci.
35, 711–714. doi: 10.1016/j.tins.2012.09.005

Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nat. Biotechnol.
26, 1135–1145. doi: 10.1038/nbt1486

Shneiderman, B. (1996). “The eyes have it: a task by data type taxonomy for
information visualizations,” in Proceedings of the IEEE Symposium on Visual
Languages (Boulder, CO: IEEE), 336–343.

Stone, J. E., Gohara, D., and Shi, G. (2010). OpenCL: a parallel programming
standard for heterogeneous computing systems. Comput. Sci. Eng. 12, 66. doi:
10.1109/MCSE.2010.69

Thome, C. (2005). Using a floating origin to improve fidelity and performance
of large, distributed virtual worlds. International Conference on Cyberworlds
(Washington, DC: IEEE), 8.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: a
structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30. doi:
10.1109/MCSE.2011.37

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.,
Bucholz, R., et al. (2012). The human connectome project: a data acqui-
sition perspective. Neuroimage 62, 2222–2231. doi: 10.1016/j.neuroimage.
2012.02.018

Woo, M., Neider, J., Davis, T., and Shreiner, D. (1999). OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2. Reading, MA:
Addison-Wesley Longman Publishing Co., Inc.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 October 2013; accepted: 05 December 2013; published online: 19
December 2013.
Citation: Rossant C and Harris KD (2013) Hardware-accelerated interactive data
visualization for neuroscience in Python. Front. Neuroinform. 7:36. doi: 10.3389/fninf.
2013.00036
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2013 Rossant and Harris. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 36 | 9

http://ipython.org/_static/sloangrant/sloan-grant.pdf
http://ipython.org/_static/sloangrant/sloan-grant.pdf
https://www.opengl.org/registry/doc/glspec20.20041022.pdf
https://www.opengl.org/registry/doc/glspec20.20041022.pdf
http://dx.doi.org/10.3389/fninf.2013.00036
http://dx.doi.org/10.3389/fninf.2013.00036
http://dx.doi.org/10.3389/fninf.2013.00036
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Hardware-accelerated interactive data visualization for neuroscience in Python
	Introduction
	Materials and Methods
	The OpenGL Pipeline
	Opengl Programmable Shaders
	Interactive Visualization of Neurophysiological Data
	Interactive visualization of 2D data
	Time-dependent neurophysiological signals
	Extracellular action potentials

	Results
	Discussion
	Funding
	Acknowledgments
	References

