frontiers n

NEUROINFORMATICS

TECHNOLOGY REPORT ARTICLE
published: 30 December 2013
doi: 10.3389/fninf.2013.00046

=

A midas plugin to enable construction of reproducible
web-based image processing pipelines

Michael Grauer'*, Patrick Reynolds', Marion Hoogstoel?, Francois Budin?, Martin A. Styner? and

Ipek Oguz*®

" Kitware, Inc., Carrboro, NC, USA

2 Neuro Image Research and Analysis Laboratories, Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
3 Department of Electrical-Computer Engineering, University of lowa, lowa City, IA, USA

Edited by:
Hans J. Johnson, The University of
lowa, USA

Reviewed by:

Daniel Marcus, Washington
University in St. Louis, USA

Tara M. Madhyastha, University of
Washington, USA
*Correspondence:

Michael Grauer, Kitware, Inc., 101
East Weaver St., Suite G4, Carrboro,
NC 27510, USA

e-mail: michael.grauer@kitware.com

INTRODUCTION

Image processing is an important quantitative technique for neuroscience researchers,
but difficult for those who lack experience in the field. In this paper we present a
web-based platform that allows an expert to create a brain image processing pipeline,
enabling execution of that pipeline even by those biomedical researchers with limited
image processing knowledge. These tools are implemented as a plugin for Midas,
an open-source toolkit for creating web based scientific data storage and processing
platforms. Using this plugin, an image processing expert can construct a pipeline,
create a web-based User Interface, manage jobs, and visualize intermediate results.
Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This
represents a new capability for biomedical researchers and offers an innovative platform
for scientific collaboration. Current tools work well, but can be inaccessible for those
lacking image processing expertise. Using this plugin, researchers in collaboration with
image processing experts can create workflows with reasonable default settings and
streamlined user interfaces, and data can be processed easily from a lab environment
without the need for a powerful desktop computer. This platform allows simplified
troubleshooting, centralized maintenance, and easy data sharing with collaborators. These
capabilities enable reproducible science by sharing datasets and processing pipelines
between collaborators. In this paper, we present a description of this innovative Midas
plugin, along with results obtained from building and executing several ITK based image
processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as
well as recommendations for building automated image processing pipelines. Although
the particular image processing pipelines developed were focused on rodent brain MRI,
the presented plugin can be used to support any executable or script-based pipeline.

Keywords: brain image processing, automated pipelines, rodent imaging, MRI, workflow processing

problems led to the recognition of the need for a software system

Magnetic Resonance Imaging (MRI) is a valuable method for ana-
lyzing neuro-anatomical structures and connectivity. Structural
Magnetic Resonance Imaging (sMRI) and Diffusion Tensor MRI
(DTI) are two common imaging types used in such studies. MRI
is highly useful because the method is non-invasive, has no known
biological effects on subject tissues, and can acquire data in sim-
ilar ways for human and animal subjects. Neuroscientists often
use the translational capabilities of MR imaging to study rodent
models of human neurological and psychiatric conditions.

A common image analysis study design in this context would
consist of acquiring brain MRI of the experimental and control
groups, then performing region-based analyses of the MR images
to compare the populations. An example of these region-based
analyses would be finding the average and standard deviation
of the volume and intensity of specific regions in the brain
after they have been segmented. While it is possible to perform
these steps manually, this is labor intensive and often results in
subjective variability that precludes reproducible analyses. These

that enables the construction of automated, reproducible neuro-
image processing pipelines for rodent brain MR data. In order
to develop and test the pipelines quickly, the system needed to
provide server-side processing running on a computational grid
infrastructure, co-located with the centralized data archive Midas
where our study results were stored. These pipelines needed to
be modifiable throughout their development, to present com-
mon graphical user interfaces across different platforms, and
be straightforward to develop for image processing experts but
also easy to use for clinical collaborators lacking this exper-
tise. These pipelines would be common tools presented to both
the image processing experts and the clinical collaborators, and
would run in the exact same computational environment and
using the same datasets independent of the user triggering a
run. The image processing experts needed to be able to build
and tune the pipelines, providing both appropriate parameters
for the pipelines as well as interpretation of results for their
collaborators.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 1

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00046/abstract
http://www.frontiersin.org/people/u/94863
http://www.frontiersin.org/people/u/79135
http://www.frontiersin.org/people/u/103427
http://community.frontiersin.org/people/FrancoisBudin/72338
http://www.frontiersin.org/people/u/24435
http://www.frontiersin.org/people/u/31103
mailto:michael.grauer@kitware.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

There are existing software tools for carrying out image pro-
cessing tasks or for building these into pipelines, such as Slicer!
(Pieper et al., 2004), ESL? (Smith et al., 2004), SPM?, and Nipype4
(Gorgolewski et al., 2011). However, these are complex to use,
especially for someone lacking image processing knowledge. They
do not always provide the correct set of default parameter values;
for instance, Slicer has a registration module that has good default
parameter values for human brain MRI, but these are inappro-
priate for use with rodent brain images. Furthermore, these tools
typically rely on local data, which introduces problems of locat-
ing and downloading the data, identifying its provenance (e.g.,
raw data from a scanner in a particular study vs. the result of
various processing steps previously carried out with a particu-
lar set of parameters), and sharing that data with collaborators.
Using these tools also makes it difficult to reproduce a process-
ing experiment, as there often is no good mechanism for sharing
parameter values outside of a local instance of the software. The
software setup, because these are local tools, is dependent on the
individual environment of the machine, which can introduce sub-
tle changes between setups that are difficult to identify. Results
produced by a researcher are local to that researcher and cannot
easily be shared or compared against subsequent runs by other
researchers. At the time our project commenced, we could find
no known systems available to the neuroscience community that
adequately solved all of the above issues, hence the need to cre-
ate just such a system using Midas. Developing pipelines for our
system can be technically involved like these existing systems, but
with the centralized storage and sharing of data, and separation of
development from web interface presentation, programmers can
develop pipelines that can then be used by non-programmer col-
laborators, dramatically reducing the use-of-complexity for this
latter group. We recognize that inevitably, there will be other
groups who decide to build their own pipeline systems rather than
using existing systems. For these researchers we provide recom-
mendations for building automated image processing pipelines
below.

Midas® is an open-source toolkit for creating web based scien-
tific data storage and processing platforms. It was created to solve
the problems of archiving, managing, and distributing image
processing datasets. These datasets are large in file size, need
to have variable access controls, and are essential for sharing
throughout the image processing research community as a base
for research and to ensure scientific reproducibility. Midas can
be extended through plugin modules to allow customized data
analysis, visualization, and server-side processing.

Midas is easy to use, even for non-programmers such as
biological and clinical researchers, and it allows them to share
data with their collaborators. The flexible group and permis-
sion system allows control over whom the data is shared with.
By providing a centralized data resource, there is an authorita-
tive version of the data that can be tracked over time for changes.

Uhttp://www.slicer.org.
Zhttp://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
3http://www.fil.ion.ucl.ac.uk/spm/.
“http://nipy.sourceforge.net/nipype/.
>http://www.midasplatform.org.

The plugin system allows for significantly enhanced functionality
over the stock Midas system, such as visualizing imaging results in
the browser or performing server-side processing. In this paper,
we present a specific application of the plugin system, describing
how it allows for creating image processing pipelines by experts
familiar with these techniques and making these available to
collaborators who may lack this expertise.

The Rodent Imaging plugin for Midas that we describe below
allows an image processing expert to construct a pipeline of
executables, create a web-based user interface, manage jobs,
visualize intermediate results and create compositions of mul-
tiple pipelines. Since input data and output data are centrally
stored, the user experience for sharing with collaborators is
tremendously improved and simplified. Collaborators who are
not image processing programmers are also given an opportu-
nity to run complex image processing tools without having to
understand command line execution or complex file operations.
Furthermore, the users can follow the results of the image pro-
cessing pipelines as they are brought back into Midas, preview
the results in the web, and can share these results with other
researchers. The computational environment and set of parame-
ters are also shared and available to all collaborators. As the three
inputs to image processing—parameters, input data and com-
putational environment—are shared between researchers, this
system vyields greater reproducibility of results, which is a core
principle of scientific research.

It should be noted that the design of the actual image process-
ing pipeline itself, such as the choice of particular registration and
segmentation methods to use, is beyond the scope of this cur-
rent manuscript. This image processing pipeline created with this
plugin and the outputs of running the pipeline are described else-
where (Budin et al., 2013) and the individual components were
described and validated in earlier work (Lee et al., 2009, 2011;
Oguzet al., 2011; Rumpleet al., 2013). In this paper, we focus
on describing a novel plugin to the Midas platform that enables
the image processing experts to port such a pipeline into Midas,
creating a streamlined web-based user interface.

The rest of this paper is organized as follows. In Section
Materials and Methods, we describe the Midas system and the
Midas plugin for developing image processing algorithms, fol-
lowed by an example walk-through of preparing an ITK-based
application for grid execution and generating a pipeline user
interface (UI) for the application. In Section Results, we present
the pipelines we developed using this plugin and the results of
running the pipelines to illustrate the performance of our plat-
form. Finally, in Section Discussion, we discuss our experience
with developing this pipeline along with possible improvements,
and present guidelines for developers creating automated image
processing pipelines.

MATERIALS AND METHODS

MIDAS

Midas is an open source software platform that provides scien-
tific data management services, especially for large image data
(Jomier et al., 2009, 2010, 2011). Written in PHP?, its architecture,

Shttp://www.php.net/.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 2

http://www.slicer.org
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.fil.ion.ucl.ac.uk/spm/
http://nipy.sourceforge.net/nipype/
http://www.midasplatform.org
http://www.php.net/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

MIDAS Core

Actions
MIDAS Components
MIDAS Models
Zend
Apache Database Storage

FIGURE 1 | Midas architecture.

shown in Figure 1, is based on the Zend” application framework,
typically running in an Apache® web server, using either a Mysql®
or PostGreSql'° database backend, with search support from the
Apache Lucene!! project. The Midas Platform provides a core set
of functionality for organizing and managing files and folders in
a hierarchical structure, and provides a framework for data access
through various methods (including web, filesystem and DICOM
server). It also provides for user and group creation, and a per-
missions structure similar to the unix filesystem permissions that
allows for read/write/ownership permissions on individual files
and folders. Any given resource in Midas, whether a folder or a
file, can be viewable by anonymous users (those that have not
logged in), or restricted to only be viewable by users given certain
permissions.

Upon creating a user account, a user of Midas is given a public
and private folder, with appropriate permissions corresponding
to each. The user can then add additional folders and files under
those folders, and change permissions of any folders or files.

In addition to user spaces, there are spaces called communities,
which are shared spaces between users. The notion of a commu-
nity is of a top-level point to add folders and files that are orga-
nized around a single group of users or purpose. Communities
can have folders that are publicly available to anonymous users,
or can be restricted to logged in users, or to only those users that
are members of the community, moderators of the community,
or administrators of the community.

All of the operations relating to the resources in Midas are
available through a RESTful'? API, which provides the ability to
create, read, update and delete resources via specific URLs. There
is a Python client library Pydas'? that wraps much of this API
functionality; this library allows for programmatic interaction
with a Midas server.

Midas is architected to allow for expansion through plugins,
which can be turned on or off to suit a particular setup. The

7http://www.zend.com/.

8http://httpd.apache.org/.

%http://www.mysql.com/.

10http://www.postgresql.org/.

http://lucene.apache.org/.

12http:/ /www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.
Bhttps://github.com/midasplatform/pydas.

plugins have access to all the core resources and functionality as
well as the core views. Plugins can add features to the core views
and add their own views, and add their functionality to the core
RESTful API set.

MIDAS IMAGE PROCESSING PIPELINE PLUGIN

In order to construct automated pipelines for image analysis, we
have built a Midas plugin !* that allows for the construction of
pipelines based upon configuration. The inputs for a pipeline are
a set of command line executables (statically linked), a BatchMake
script to coordinate inputs and outputs for the executables, and a
configuration file to describe the Ul displayed within Midas and
parameter routing.

To develop a particular pipeline, a BatchMake ' script is
developed that includes one or more command line executa-
bles and their parameters. BatchMake is a scripting language
that allows for local execution of a pipeline as well as exe-
cution under the HTCondor !¢ grid computing environment.
Local execution allows for debugging and rapid iteration, whereas
execution under the HTCondor environment allows for arbi-
trarily large scalability (within the limits of parallelism of the
pipeline).

Here, we describe the procedure for building an ITK-based
executable and wrapping it for BatchMake and HTCondor grid
execution. For the sake of clarity, we illustrate these concepts
using a simple executable that applies a Gaussian smoothing fil-
ter to the input image. The rodent brain imaging pipeline that we
have developed is considerably more complex, as can be expected;
however, it is based on the same principles we discuss in detail and
any noteworthy differences are pointed out.

5

An example of preparing an ITK-based application for grid
execution

To demonstrate parts of the pipeline development process, we
have created a simple ITK based application to perform a
Gaussian smoothing on an image. In order for BatchMake to cre-
ate HTCondor grid jobs for this executable, we need to define
the command line parameters of the executable in a.bmm file. In
the case of a Slicer-compatible executable, the data for the.bmm
can be readily derived from the XML description used by the
GenerateCLP library in the Slicer Execution Model. The.bmm file
shown in Figure 2 defines the inputs to the GaussianFilter exe-
cutable as a string that is the name of an input image file, a string
that is the name of the output image file, and a value for o, the
size of the Gaussian kernel. The Name element allows BatchMake
scripts to refer to this application and the Path element indi-
cates the full path to the executable on the executing nodes of the
HTCondor grid, which may be different from the job submission
or grid manager node. The Value element indicates what value to
print when the parameter is invoked, beyond the parameter value
itself; e.g., in the case of the o parameter, a “-s” will precede the
actual chosen value for o, thus passing in the correct command
line flag to the executable.

http://github.com/midasplatform/rodent.
http://batchmake.org/.
16http://research.cs.wisc.edu/htcondor/.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 3

http://www.zend.com/
http://httpd.apache.org/
http://www.mysql.com/
http://www.postgresql.org/
http://lucene.apache.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://github.com/midasplatform/pydas
http://github.com/midasplatform/rodent
http://batchmake.org/
http://research.cs.wisc.edu/htcondor/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

Midas and the image processing pipeline plugin define and
create configuration files that will be included by a BatchMake
script (bms file). This is how user selections and configuration
settings specified in the web application will be delivered to the
command line executables. In this example, we have created the
contents of a configuration file gaussian.config.bms in Figure 3
that includes parameters passed from Midas. Here the path of
the input and output images are passed, along with the value
for the o parameter, the executable to run the HTCondor post-
script, and the output directory for the command line executable.
When a processing request is made from Midas, a temporary
work directory is created (cfg_output_directory) on the submit-
ting machine. Any input data (cfg_inputlmage) is linked from
Midas into the work directory, and the executable is instructed
to create the output image in that same work directory. Note that
the input and output files are created in locations that are avail-
able to both the submitting machine and the executing machine
in the HTCondor grid. The cfg_exe will be run as the HTCondor
Post-script, with the argument of the Python script file itself,
gaussian_post_script.py. The HTCondor Post- and Pre-scripts are
always executed on the submitting machine. Further arguments
to the Python script file itself could be easily added to the pipeline
BatchMake script.

<executable>
<Name>GaussianFilter</Name>
<Version>1.0</Version>
<Path>/usr/local/bin/GaussianFilter</Path>
<Parameters>
<Parameter>
<Type>0</Type>
<Name>inputImage</Name>
<Value></Value>
<External>0</External>
<Optional>0</Optional>
</Parameter>
<Parameter>
<Type>0</Type>
<Name>outputImage</Name>
<Value></Value>
<External>0</External>
<Optional>0</Optional>
</Parameter>
<Parameter>
<Type>1</Type>
<Name>sigma</Name>
<Value>-s</Value>
<External>0</External>
<Optional>0</Optional>
</Parameter>
</Parameters>
</executable>

FIGURE 2 | GaussianFilterbmm.

The pipeline BatchMake script GaussianFilter.bms, shown in
Figure 4, then includes the configuration BatchMake script to
obtain these parameter values specific to each individual job. The
application gaussian is set to GaussianFilter, which was defined
in GaussianFilterbmm to have parameters of inputlmage, out-
putlmage and sigma. The CondorPostScript command will create
a POST script in the HTCondor DAG with the given parameters.

The BatchMake executable runs with parameters
GaussianFilterbmm and GaussianFilterbms to create a
HTCondor DAG (Directed Acyclic Graph) file and individ-
ual job files, which are created in the work directory on the
submitting machine. DAGs are commonly used to describe
workflow processes, with nodes of the graph representing steps
in the workflow, and directed edges between nodes showing
time order dependency between the steps. Because the graph is
acyclic, there is a known starting point and the workflow cannot
loop, meaning it must finish after each individual step is finished.
The contents of the DAG file for our example are shown in
Figure 5. Only a single job, job0 is created in this very simple
scenario; however, multiple jobs could be created by a more
complex BatchMake script with the sequencing dependencies
between the jobs expressed in the DAG file. For instance, if
two executables need to be called in sequence, there would be
a dependency between them with the job corresponding to the
second executable being the child of the job corresponding to
the first executable. Executable jobs that are created in a loop by
different iterations of the loop can occur in parallel and therefore
have no ordering dependency between them. This DAG file
example also contains the HTCondor POST script command
with its parameters.

An example of constructing a more complex pipeline is pre-
sented in the GaussianFilter2.bms BatchMake script in Figure 6.
In this case, we have a pre-processing step for the entire dataset,
followed by a processing step that would run on each input case,

Set (cfg_inputImage '/nfsmount/tmp/l/data/input.nrrd')

Set (cfg_outputImage '/nfsmount/data/output.nrrd')

Set (cfg_sigma '1.0"')

Set (cfg_exe '/usr/bin/python')

Set (cfg_condorpostscript '/nfsmount/scripts/gaussian_post_script.py')
Set (cfg_output_directory '/nfsmount/tmp/1')

Set (cfg_taskID 1)

FIGURE 3 | Gaussian.config.bms.

Include (gaussian.config.bms)

SetApp (gaussian @GaussianFilter)

SetAppOption (gaussian.inputImage ${cfg inputImage})
SetAppOption (gaussian.outputImage ${cfg_outputImage})
SetAppOption (gaussian.sigma ${cfg_sigma})
CondorPostScript (gaussian $(cfg_exe}

${cfg condorpostscript} ${cfg output directory}
${cfg_taskID})

Run (output ${gaussian})

FIGURE 4 | GaussianFilter.bms.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

with a final post-processing step for the entire dataset. Since the
three steps occur in sequence, there is an ordering dependency
between them. For the processing step itself, since it occurs within
a loop, the individual processing jobs (the three separate cases)
can be parallelized. A graphical representation of the resulting
DAG is also shown in Figure 6.

Returning to the simpler GaussianFilter example, the file
GaussianFilter.0.dagjob shown in Figure 7, is automatically cre-
ated in the work directory on the submitting machine, along
with any other individual job files. This file specifies the actual
execution that will be run by HTCondor on whichever execut-
ing machine in the HTCondor grid will run this particular job.
The POST script will be run on the submitting machine after
the individual job, and will take in the return value from the
executable job.

After execution of the GaussianFilter, the path to the output
file will be passed to a Python script which will then upload the
output file to the proper place in Midas. Using the HTCondor
PRE and POST scripts, status and progress of the overall DAG
and individual jobs in the DAG can be tracked from Midas and
made available to the user. This way the user can view the sta-
tus of the actual pipeline as it is processing on the HTCondor
grid, from the web application. The standard output and stan-
dard error logs of the executable are also uploaded to Midas to
enable executable debugging via the web interface. The Python
scripts for our actual pipelines make extensive use of the Pydas

library, a Midas Python client library that enables calling Midas’
API endpoints. The Python code in Figure 8 shows an example of
uploading an output file.

Once an image processing pipeline has been developed and its
input data have been added to a Midas instance, a pipeline UI
within Midas is created through a configuration file. The UI gen-
erated from this configuration file presents options to the end
user of the pipeline to select among inputs determined by the
configuration file, and then starts a processing job. At this time
Midas will export all data necessary for the pipeline, and execute
the BatchMake pipeline via HTCondor, which will then upload
results to an output folder that was determined by the pipeline
configuration file. An example of generating a pipeline UI follows.

An example of an automatically generated pipeline Ul

Beyond the example of the GaussianFilter presented above, we
will demonstrate our work in generating Ul components for
a pipeline with examples from the Registration component of
the rodent brain image processing pipeline developed in our
plugin. One of the innovative contributions of this work is bring-
ing the concept of automated user interface components to the
neuroimaging field.

Our goal is to allow
ferent pipelines within
much Midas experience.
Rodent_PipelineController

for ease of development of dif-
Midas by developers without
For this reason, we created a
PHP superclass that does most

Job job0 GaussianFilter.0.dagjob

SCRIPT POST job0 /usr/bin/python /nfsmount/scripts/gaussian_post_script.py
$JOB $JOBID S$RETURN

/nfsmount/tmp/1 1

FIGURE 5 | GaussianFilter.bms generated DAG file contents.

GaussianFilter2.bms

SetApp (preprocess @Preprocess)
Run (output ${preprocess})

SetApp (process @Process)
ForEach (case ${cases})
SetAppOption (process.case ${case)
Run (output ${process})
EndForEach ()

SetApp (postprocess @Postprocess)
Run (output ${postprocess})

FIGURE 6 | GaussianFilter2.bms and generated DAG.

&l

Generated DAG

Pre-Process

Process Process
Case 1 Case 2 Case 3

Post-Process

Universe = vanilla

Output = bmGrid.0.out.txt

Error = bmGrid.0.error.txt

Log = bmGrid.0.log.txt
Notification = NEVER

Executable = /nfsmount/bin/GaussianFilter
Arguments = "'/nfsmount/data/input.nrrd’
Queue 1

FIGURE 7 | GaussianFilter.0.dagjob.

'/nfsmount/data/output.nrrd' -s 1"

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

of the work of creating interface components for a pipeline
and handing off parameters to the BatchMake and HTCondor
components. To add a new pipeline, the developer must simply
create a new controller in PHP extending this superclass; we
present an example of this in Figure 9.

Then this specific pipeline controller class implements abstract
methods from the superclass to define general parameters for the
pipeline such as the title to display on the UI and the name of

the BatchMake script to run. The BatchMake script implements
the logic of creating jobs for the command line executables based
on the passed in parameters, similar to the simple GaussianFilter
example described above.

The first page in the Ul for the Registration pipeline is the
selection of input cases. The values set in the getCasesSelection
method determine the default folder to choose cases from, but
a different folder can be selected with the Browse button. The

itemId = item['item id']

FIGURE 8 | Post-processing Python script.

token = interfaceMidas.login with api key(cfgParams['email'],

item = interfaceMidas.create_ item(token, outputFile, output_ folder_ id)

filePath = outputFileDir + '/' + outputFile

uploadToken = interfaceMidas.generate upload_token (token,

uploadResponse = interfaceMidas.perform upload (uploadToken,

cfgParams|['apikey'],

application='Default')

itemId,

outputFile)

outputFile,
itemid=itemId,

filepath=filePath)

function getUiTitle() {

function getBmScript ()

function getCasesSelection ()
Directory");

}

function getInputFolder() { return array(
"l-Converted" => array(

array ("label"=> "Inputs",

"optional™ => "true"),

"true"))); }

function getSingleItemSelections() { return

before registration"),
"scaled" => array("type" => "boolean",
"inputType" => array("type" => "select",
DWI","scalar")),
"orientation" => array("type" => "text",
"default™ => "));
}

function getOutputFolderStem() { return array(

FIGURE 9 | Registration pipeline controller.

class Rodent RController extends Rodent_ PipelineController {

return "Registration Pipeline Wizard"; }
{ return "rl.pipeline.bms";
{ return array('id'=> "casesdirectory",

"varname" => "casesInputs"),

array("label"=> "Additional images to transform",

array("label"=> "Additional images to transform (NN interpolation)", "varname" =>
"casesAdditionalImagesNN" , "optional" => "true"),

array ("label"=> "Transform (no registration performed)", "varname" => "casesTransforms" ,
"optional" => "true"),

array("label"=> "Initial transform", "varname" => "casesInitialTransforms" , "optional" =>

array ("templatefile" => array("label" => "Template file",

function getParameters() {
return array("bias" => array("type" => "boolean", "label" => "Bias correction", "default" =>
true),

"skullstrip" => array("type" => "boolean", "label" => "Perform a coarse skullstripping

"label" => "Scale to 1,1,1 spacing"),
"label" => "Input Type",

"label" => "Manual orientation (LPS/RAS/...)",

array ("output_folder type" => "cases_child", "name" => "2-Registration",

}

'label' => "Select the Cases

"varname" => "casesAdditionalImages" ,

"bitstreamCount" => "single")); }

"options" => array("DTI","

"redirect" => true));

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

cases that are presented as checkboxes for the user to select from
come from the Midas folder named 1-Converted, a subfolder of
the cases folder. The Inputs parameter allows the user to select
a filename pattern from a dropdown for the actual input to this
pipeline, and the additional dropdowns are populated to allow the
user to select additional files coming from each of the selected case
directories, which gives the ability to send multiple input files to
be processed together as part of the same case. The cases selection
page created by these inputs is displayed in Figure 10.

The second page in the Registration pipeline Ul is determined
by the getSingleltemSelections method. This allows the user to
select a single Midas item (file) to be used in processing all cases.
The resulting UI page is similar to that displayed in Figure 10
and can be seen in step (1) of Figure 11. The final UI page of
the Registration pipeline allows the user to select parameters,
and will supply default values based on what is implemented in
the getParameters method. The parameter selection page for the
Registration pipeline is similar to that displayed in Figure 10 and
can be seen in step (1) of Figure 11.

The getOutputFolderStem method will determine where the
outputs of the Registration pipeline will be uploaded back into
Midas when processing is complete. Here cases_child indicates
that a new folder name 2-Registration that is a child folder of the
case folder will be created for each case the user selected for pro-
cessing, and this will be the location where outputs are uploaded
when that case is processed.

Putting it all together

We will now describe an example of an overall pipeline exe-
cution based on Figure 11. Once the developers have created
BatchMake scripts for the pipeline and the Pipeline Ul controller,
the pipeline is available for an end user. In step (1), the user views
the pipeline UI presented through Midas, with the UT pages auto-
matically created based upon the Pipeline UI controller. Based on

the configuration file for the pipeline, the user will be presented
in step (2) with some options for setting parameters and selecting
input data that is stored in Midas, or can simply choose default
values if they have been set for the pipeline, and can then request
execution. In step (3), the Midas system will create a temporary
workspace for this pipeline execution on the associated filesys-
tem, and the data referenced by this execution of the pipeline is
symlinked into this temporary directory. The parameter values
for this run of the pipeline are exported into this work direc-
tory for inclusion by the BatchMake script. The BatchMake script

Pipeline Ul
Controller

BatchMake Scripts

Exes, Scripts

1) Display Generated
Ul Pages within Midas

Pipeline Ul
Controller

2) User Selects Input Data and
Parameters, Starts Pipeline

e
’
e &
3) Workspace Setup

7
< _l
Jobs ||

Upload —_—
) BeEUES-)

FIGURE 11 | Pipeline development and execution.

BatchMake
by 5
Scripts

4) Grid Execution

Registration Pipeline Wizard

W Select the Cases Directory
Rodent/Public/RPVOO()Z/cases
Select the cases to run:

#0001
#0002

Inputs .nhdr
Additional images to transform | None
Additional images to transform
(NN interpolation)

Transform (no registration
performed)

None
None

Initial transform None

FIGURE 10 | Cases selection page.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

is then compiled and converted into HTCondor job description
files and an HTCondor DAG file. There will be one HTCondor
job description file for each instantiation of a command line exe-
cutable within the BatchMake script, and the DAG specifies the
dependencies between the jobs. In step (4), the HTCondor DAG is
submitted to the HTCondor grid, which allows for the execution
of the pipeline to be scaled up to the limits of available hard-
ware or budget. As each step of the pipeline finishes execution,
a post-processing script can optionally be run, e.g., the Python
script described above. For the pipelines we implemented, these
post-processing steps are used to load intermediate files, result
files, and metadata produced by the pipeline back into Midas.
Midas has a plugin to visualize any image format that ITK can
read, and as a result, end users can see the intermediate and
final results of their pipelines displayed within Midas itself as the
results come back.

Once a pipeline has been developed, an end user can run them
even if that user has no image processing experience, and can
run them in a completely reproducible manner. After creation of
pipelines, pipeline composition becomes possible, so that a user
can run multiple pipelines in sequence on a given dataset, chang-
ing parameters in order to visualize how this will affect the results.
The user may also run pipelines using any of several outputs from
a previous step, enabling them to see how changes in one stage of
the pipeline affect a later stage before accepting a single output of
a stage as the canonical input for the following stage or the final
result, once that output has passed manual quality assurance tests.

RESULTS

The Midas Rodent plugin was developed to enable creation of
image analysis pipelines, and was used specifically to construct
a composite pipeline that perform region-based analysis of 3D
rodent brain MRI images. This pipeline and the results of run-
ning it on our input datasets are described in detail in (Budin
et al., 2013). This composite pipeline is composed of six smaller
pipelines, and can process DWI, DTI and structural MRI data.
The pipeline includes both pre-existing tools and tools developed
for this pipeline. The pipeline comprises six major steps: (1) rigid
registration, (2) skull-stripping, (3) population average creation,
(4) population average segmentation, (5) segmentation propaga-
tion to individual subjects, and (6) region based statistics. The
output of each step is used as the input to the subsequent step.
The inputs to the overall pipeline are images acquired by MRI,
and then stored in Midas. The inputs are converted from DICOM
or raw formats to ITK readable formats such as Meta, Analyze,
Nifti, and Nrrd, since most of the executables within the pipeline
are built on top of ITK.

Each of the pipelines was built and debugged separately, and
is designed to be run independently of the others. Once a given
pipeline is debugged and validated, we can use them to process
our subject cases. The output of a pipeline step, once deemed
acceptable, becomes the input to the succeeding step. We may
sometimes need to reprocess a given pipeline many times to
achieve the correct parameter set, or to compare the outputs gen-
erated with different parameters or even alternative pipelines.
This can be viewed as a data quality assurance process. After
multiple runs of a given pipeline, the outputs of each of those

runs—which would vary based on parameter selection—can be
examined for quality and potential errors. Once the output of
a certain run is approved, it can be used as the canonical input
to the following step. Since the parameters of each pipeline run
are tracked, it is straightforward to find the parameters that went
into creating any particular output run of a pipeline, and hence
that same pipeline run is reproducible. This illustrates how using
our system seamlessly resolves the data provenance problem that
often causes issues in large or even middle-scale studies. Figure 12
shows the flow of data from one pipeline to the next.

Due to running the pipelines on the grid system, we were
able to execute the cases in parallel, which saved significant wall-
clock running time. This also helped to develop and debug the
pipelines faster, as we could see the results from a pipeline run
much more quickly than if we had to run each step in series.
However, there was a cost in development time, as the additional
layers of preparing the executables for grid execution incurred
overhead compared to simply running the executables locally.
Debugging in the HTCondor environment is not as straightfor-
ward as debugging an executable on its own. There could be bugs
in the executables, bmm file, the logic of the BatchMake script,
the networked file system or HTCondor grid setup, and the multi-
layered interaction between these components added complexity.
Once a pipeline is developed, it enables much easier develop-
ment of subsequent pipelines, as inputs could be quickly rerun to
evaluate parameter choices and their effects on the later pipelines.

The centralized nature of this platform was helpful in develop-
ment from the standpoint of data sharing, since multiple devel-
opers were working together on different pipelines and aspects
of the overall system. As there was only the one Midas reposi-
tory for data outputs, one developer could run a pipeline and
ask another developer to look at the outputs without having to
send the data. A developer could also easily use the output from
another developer’s run of a pipeline as an input to their pipeline.

Rigid Registration

L,
Skull Stripping

L Population Avg
Creation

L Population Avg
Segmentation

L Segmentation
Propagation

L Region Based
Statistics

FIGURE 12 | The constructed pipelines used for rodent brain image
processing.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

DISCUSSION

This web-based system for running complex multi-step image
processing pipelines enables researchers with little computational
image processing expertise to access cutting-edge methods for
segmentation, registration, and statistical analysis of rodent dMRI
imagery, but can potentially be extended to processing of human
imagery using similar methods. This system does not currently
have a formal facility for manual intervention. If a manual step
in a pipeline is desired, that could be achieved by breaking the
pipeline into two sub-stages around the manual step. The out-
put of the first sub-stage could be downloaded by the user, then
used as the basis for a manual processing step (e.g., manual ROI,
manual registration, etc.), and then the result of that manual step
can be uploaded and used as the input to the second sub-stage. It
would also be possible to add these “breakpoints” at any stages of
the pipeline that may fail, and only proceeding to the next stage
after quality control of the results and possible manual interven-
tion if deemed necessary. Adding in support for manual steps in
pipelines could be a useful feature in future versions.

Our other future work will involve improved job manage-
ment and debugging of the pipelines. Currently when a pipeline
has a problem from one of the command line executables, the
BatchMake scripts, or the HTCondor grid environment, these can
only be debugged using command line tools. The Rodent plugin
tracks the output files for each of the command line executables,
but does not present them to the user through the web UL What
would be desirable is for the overall DAG of the pipeline to be pre-
sented to the user as it is executing. The Rodent pipeline currently
uploads results after each command line executable has been run,
but does not notify Midas at the start of each executable. If each
command line executable was tracked before it starts, as it is pro-
cessing, and when it completes, the graphic of the DAG could
be updated as processing occurs. The standard out and standard
error of each command line could be presented to the user, as
could the HTCondor log for each executable. Status updates could
be presented to the user as color-coded indicators on each of the
individual DAG nodes, so the user could see at a glance which
nodes have completed, which have yet to run, which are currently
running, and the status of completed runs. Since the HTCondor
system provides a.dot representation of each DAG, one possibility
would be to export this SVG and then use this as a basis for web
interaction, using a library like D3 . The user could then drill
into any individual node to see the logs and outputs, so if a node
has an error the user could immediately formulate an understand-
ing of what happened with the command line executable on the
HTCondor grid all from the web interface. This process would
also allow for more rapid development of pipelines as debugging
would be eased and centralized. As result files are added back
into Midas, their provenance could also tracked so that the set of
operations and parameters leading to their creation will be linked
to these outputs, further enhancing the reproducibility of these
pipelines. Ideally, this information would be exportable accord-
ing to the w3c provenance standard!® , and our future work will
incorporate explicitly tracking provenance of all data throughout

http://d3js.org/.
8http://www.w3.org/TR/prov-overview/.

its lifetime using this standard. Provenance is currently implicitly
tracked through the system, but would have to be reconstructed
via examination of parameter files constructed for pipeline runs.
Systematic quality control is also crucial for a scientific study,
and while this current system has no built in mechanism for
anomaly detection, this could be added as a step of an image
processing pipeline, and is a recommended practice. For exam-
ple, for diffusion MRI data, DTIPrep could be used for quality
control of input data, including both adherence to study proto-
cols and image artifact detection and removal (Farzinfar et al.,
2013). Future versions of this work will include an API to propa-
gate quality control measures of the pipelines to the UI and to the
pipeline job management system.

The system we have developed in Midas allows for the cre-
ation of easy-to-use image processing pipelines, even for those
without image processing expertise. These pipelines can be run
multiple times by different investigators, but still retain the fea-
tures of reproducibility because the input data, the parameters
and the computing environment is shared and centralized, which
prevents reliance on human memory and informal communica-
tion. By using Midas, sharing data between collaborators is both
safe and simple. Clinical researchers who would not currently
have the ability to run complex command line image process-
ing pipelines can now repeatedly run these pipelines on shared
datasets, and can share results and intermediates with their col-
laborators. This simplifies the process of debugging, as when one
researcher finishes a pipeline, they can let an image processing
expert collaborator know, and even if that expert is in a remote
location, viewing the exact results of the pipeline along with the
specific inputs and parameters is possible through the centralized
Midas server. If the image processing expert makes a fix or change
to the executables of the pipelines, they will know that once the
pipeline runs correctly for them in Midas, it will run the same for
their clinical research partner, and there will not be any problems
in terms of dissimilar computational environments or dependen-
cies. Overall this system improves on the rapidity of development
time and execution time for complex image processing pipelines
and allows for greater reproducibility of experiments, which is
one of the fundamental building blocks of scientific research.

RECOMMENDATIONS FOR CREATING AUTOMATED IMAGE
PROCESSING PIPELINES

Regardless of whether this particular technology is adopted, our
experience has allowed us to explore creation of automated image
processing pipelines and to create recommendations to anyone
endeavoring to do the same. One of the largest sources of com-
plexity in this work was in trying to allow for automated Ul
generation by our image processing collaborators, where the Ul
would be displayed and processed within Midas. We tried to cre-
ate a complete set of building blocks that could be easily strung
together, but as we started each different pipeline, we realized that
new and specific building blocks would be needed. Because these
building blocks needed to exist within Midas, we could not rely
on generic web techniques or components. Providing a clear set
of APIs for Midas and for a server side processing framework
would allow an interface to be built completely separate from
either of these, but that could call into and take advantage of the

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 9

http://d3js.org/
http://www.w3.org/TR/prov-overview/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Grauer et al.

Constructing web-based image processing pipelines

strengths of both, without becoming overly burdensome on the
UI developer or on Midas. To build automated pipelines, the fol-
lowing API component areas are needed, and ideally should be
built independently to enable a clean separation of concerns:

e Data management.

e Pipeline and pipeline job status tracking.

e Grid execution, and the interface between applications and the
grid environment.

Then a Ul can be built using these APIs in whatever web technol-
ogy is appropriate for the interface developer.

Another large source of complexity was in developing and
debugging the pipelines. If each of the individual steps in a
pipeline are created supporting the properties listed below (which
can also be thought of as the rough sketch of the API for a Pipeline
Step, or a Pipeline), they can be developed and tested as inde-
pendent steps, then combined together into a pipeline. This setup
also allows for the pipelines to be run and intermediate results
to be examined, parameters changed and steps rerun, allowing
the pipelines to be executed in an interactive fashion, with gran-
ular control allowed over how much of the pipeline executes
asynchronously. These properties are:

Input files and parameters.

Output files and output parameters (e.g., scalar values).
Visualization of input and output files.

Current status of executable process in the grid.

Return code of executable.

Standard out of executable.

Standard error of executable.

Log of job execution from grid system.

A pipeline can then be composed of these steps, and the pipeline
should have similar information stored, along with a display of
the status of the individual pipeline steps and overall status of
pipeline execution. Imagine being able to see at a glance the sta-
tus of the overall pipeline and each step, and to allow the user
to drill into the details of a particular step to enable debugging
of command line executables through the web UL Designing a
framework with these ideas in mind would allow for flexible and
rapid development of automated image processing pipelines.

ACKNOWLEDGMENTS

This study was supported by the STTR grant R41-NS059095,
challenge grant RC1-AA019211, the NDRC grant P30-
HDO003110, R21 MH084132, the NADIA grant U01-AA020022,
the CAMID grant P01-DA022446, and the NIBIB grants
U54-EB005149 and R43-EB016621.

REFERENCES

Budin, E, Hoogstoel, M., Reynolds, P., Grauer, M., O’Leary-Moore, S., and Oguz, L.
(2013). Fully automated rodent brain MR image processing pipeline on a Midas
server: from acquired images to region-based statistics. Front. Neuroinform.
7:15. doi: 10.3389/fninf.2013.00015

Farzinfar, M., Oguz, 1., Smith, R., Verde, A., Dietrich, C., Gupta, A., et al.
(2013). Diffusion imaging quality control via entropy of principal direc-
tion distribution. Neuroimage 82, 1-12. doi: 10.1016/j.neuroimage.2013.
05.022

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom,
M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimag-
ing data processing framework in Python. Front. Neuroimform. 5:13. doi:
10.3389/fninf.2011.00013

Jomier, J., Aylward, S. R., Marion, C., Lee, J., and Styner, M. (2009). A digital archiv-
ing system and distributed server-side processing of large datasets. Proc. SPIE
7264, 726413. doi: 10.1117/12.812227

Jomier, J., Bailly, A., Le Gall, M., and Avila, R. (2010). An Open-Source Digital
Archiving System for Medical and Scientific Research. Madrid: Open Repositories.

Jomier, J., Jourdain, S., Ayachit, U., and Marion, C. (2011). “Remote visualization
of large datasets with MIDAS and ParaViewWeb,” in Proceedings of the 16th
International Conference on 3D Web Technology, (Paris), 147-150.

Lee, J., Ehlers, C., Crews, E, Niethammer, M., Budin, F, Paniagua, B.,
et al. (2011). Automatic cortical thickness analysis on rodent brain. Proc.
Soc. Photo Opt. Instrum. Eng. 7962, 7962481-79624811. doi: 10.1117/12.
878305

Lee, J., Jomier, J., Aylward, S., Tyszka, M., Moy, S., Lauder, J., et al. (2009).
Evaluation of atlas based mouse brain segmentation. Proc. Soc. Photo Opt.
Instrum. Eng. 7259, 725943-725949. doi: 10.1117/12.812762

Oguz, 1., Lee, J., Budin, E, Rumple, A., McMurray, M., Ehlers, C., et al. (2011).
Automatic skull-stripping of rat MRI/DTI scans and atlas building. Proc. Soc.
Photo Opt. Instrum. Eng. 7962, 796225-1-796225-7. doi: 10.1117/12.878405

Pieper, S., Halle, M., and Kikinis, R. (2004). “3D SLICER,” in Proceedings of the 1st
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vol.
1 (Washington, DC), 632-635.

Rumple, A., McMurray, M., Johns, J., Makam, P., Radcliffe, M., and Oguz, I. (2013).
3-dimensional diffusion tensor imaging (DTI) atlas of the rat brain. PLoS ONE
8:67334. doi: 10.1371/journal.pone.0067334

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. E,, Behrens, T. E.
J., Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. Neuroimage 23, 208-219. doi:
10.1016/j.neuroimage.2004.07.051

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 13 December 2013; published online: 30
December 2013.

Citation: Grauer M, Reynolds P, Hoogstoel M, Budin F, Styner MA and Oguz I (2013)
A midas plugin to enable construction of reproducible web-based image processing
pipelines. Front. Neuroinform. 7:46. doi: 10.3389/fninf.2013.00046

This article was submitted to the journal Frontiers in Neuroinformatics.

Copyright © 2013 Grauer, Reynolds, Hoogstoel, Budin, Styner and Oguz. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroinformatics

www.frontiersin.org

December 2013 | Volume 7 | Article 46 | 10

http://dx.doi.org/10.3389/fninf.2013.00046
http://dx.doi.org/10.3389/fninf.2013.00046
http://dx.doi.org/10.3389/fninf.2013.00046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	A midas plugin to enable construction of reproducible web-based image processing pipelines
	Introduction
	Materials and Methods
	Midas
	Midas Image Processing Pipeline Plugin
	An example of preparing an ITK-based application for grid execution
	An example of an automatically generated pipeline UI
	Putting it all together

	Results
	Discussion
	Recommendations for Creating Automated Image Processing Pipelines

	Acknowledgments
	References

