
METHODS ARTICLE
published: 17 January 2014

doi: 10.3389/fninf.2013.00052

A framework for streamlining research workflow in
neuroscience and psychology
Jonas Kubilius*

Laboratories of Biological and Experimental Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium

Edited by:

Yaroslav O. Halchenko, Dartmouth
College, USA

Reviewed by:

Michael Hanke, Otto-von-Guericke
University, Germany
Fernando Perez, University of
California at Berkeley, USA

*Correspondence:

Jonas Kubilius, Laboratory of
Biological Psychology, Faculty of
Psychology and Educational
Sciences, KU Leuven, Tiensestraat
102 bus 3711, Leuven
e-mail: Jonas.Kubilius@
ppw.kuleuven.be

Successful accumulation of knowledge is critically dependent on the ability to verify and
replicate every part of scientific conduct. However, such principles are difficult to enact
when researchers continue to resort on ad-hoc workflows and with poorly maintained
code base. In this paper I examine the needs of neuroscience and psychology community,
and introduce psychopy_ext, a unifying framework that seamlessly integrates popular
experiment building, analysis and manuscript preparation tools by choosing reasonable
defaults and implementing relatively rigid patterns of workflow. This structure allows for
automation of multiple tasks, such as generated user interfaces, unit testing, control
analyses of stimuli, single-command access to descriptive statistics, and publication
quality plotting. Taken together, psychopy_ext opens an exciting possibility for a faster,
more robust code development and collaboration for researchers.

Keywords: python, neuroscience, vision, psychophysics, fMRI, MVPA, reproducibility, collaboration

INTRODUCTION
In recent years, Python and its scientific packages emerged as a
promising platform for researchers in neuroscience and psychol-
ogy, including PsychoPy for running experiments (Peirce, 2007,
2009), pandas1 and statsmodels2 for data analysis, PyMVPA (Hanke
et al., 2009) and scikit-learn (Pedregosa et al., 2011) for machine
learning data analyses, and NeuroDebian (Halchenko and Hanke,
2012) as an overarching platform providing an easy deployment
of these tools. Together, these tools are increasingly opening possi-
bilities for development, sharing and building upon experimental
and analysis code.

However, with most software focusing on facilitation of the
various parts of scientific routine, up till very recently there were
few if any options to directly foster the key principles of science,
namely, transparency and reproducibility. Even with an increas-
ing interest in Open Science, it is very infrequent that a researcher
publishes the entire log of her work that would allow for a perfect
reproduction of each and every step of that work. In fact, while
open access to publications is largely perceived as desired, open
sourcing experiment and analysis code is often ignored or met
with a grain of skepticism, and for a good reason: many publi-
cations would be difficult to reproduce from start to end given
typically poor coding skills, lack of version control habits, and
the prevalence of manual implementation of many tasks (such
as statistical analyses or plotting) in neuroscience and psychology
(Ince et al., 2012). As many practicing scientists know, organiz-
ing different research stages together into a clean working copy
is a time-consuming and thankless job in the publish-or-perish
merit system. Yet these tendencies are troubling because lacking
software engineering skills, researchers are more likely to produce

1http://pandas.pydata.org
2http://statsmodels.sourceforge.net

poor quality code, and in the absence of code sharing, errors
are hard to detect (Joppa et al., 2013), leading to reproducible
research in theory but not in practice.

I argue that the primary reason of such irreproducible research
is the lack of tools that would seamlessly enact good coding and
sharing standards. Here I examine the needs of neuroscience
and psychology community and develop a framework tailored
to address these needs. To implement these ideas, I introduce a
Python package called psychopy_ext (http://psychopy_ext.klab.lt)
that ties together existing Python packages for project organi-
zation, creation of experiments, behavioral, functional magnetic
resonance imaging (fMRI) and stimulus analyses, and pretty pub-
lication quality plotting in a unified and relatively rigid interface.
Unlike PsychoPy, PyMVPA, pandas, or matplotlib that are very
flexible and support multiple options to suit everyone’s needs, the
underlying philosophy of psychopy_ext is to act as the glue at a
higher level of operation by choosing reasonable defaults for these
packages and providing patterns for common tasks with a mini-
mal user intervention. More specifically, it provides extensive and
well-structured wrappers to these packages such that interaction
between them becomes seamless.

DESIGN
PHILOSOPHY
The overarching philosophical stance taken in psychopy_ext can
be summarized in the following manner: Tools must act clever.
This statement implies several design choices for a software
package:

1. Reasonable defaults. When a package is designed with the idea
that it must act clever, reasonable expectations from an end
user can be matched. Unfortunately, many packages lack this
quality. For example, while matplotlib excels in producing

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00052/abstract
http://www.frontiersin.org/people/u/96811
mailto:Jonas.Kubilius@ppw.kuleuven.be
mailto:Jonas.Kubilius@ppw.kuleuven.be
http://pandas.pydata.org
http://statsmodels.sourceforge.net
http://psychopy_ext.klab.lt
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

plots, by default it lacks publication-quality polish which is a
reasonable expectation from a user.

2. Minimal user intervention (top-down principle). A package
should be capable of producing a working end product with
little effort on a user’s part. Importantly, various components
in the workflow should be aware of each other and able to
transfer information.

3. Intuitive interface. A user should not struggle to grasp how
to perform a certain task. Rather, as explained in PEP 20 3,
“There should be one—and preferably only one—obvious way
to do it.”

4. Encourage good habits. In Python, code layout is not left up to
a user—it is part of language specification, resulting in inher-
ently highly readable code as compared to other programming
languages. Similarly, I maintain that software should be clever
enough to encourage or even require using such habits by
design.

IMPLEMENTATION
The aim of psychopy_ext is to streamline a typical workflow in
psychology and neuroscience research that is depicted in Figure 1.
In particular, an ideal tool should:

1. Streamline as many workflow steps as possible (“be clever”).
2. Seamlessly tie together these workflow steps.
3. Facilitate reproducibility of the entire workflow.

To reach this goal, psychopy_ext aims to abstract common rou-
tines encountered in a typical research cycle, and wrap relevant
existing packages in the format that makes them easily available

3http://www.python.org/dev/peps/pep-0020/

to an end-user. By adhering to the design philosophy explained
above, the goal is to anticipate common user’s needs and provide
a “magic” (or “all taken care of”) experience. This goal is achieved
by employing several means.

First of all, psychopy_ext makes many choices for a user. For
example, while there are many formats to store data collected dur-
ing an experiment, only several of them facilitate sharing (White
et al., 2013). Thus, unlike many other packages, psychopy_ext
imposes that data is saved solely to a comma-delimited .csv file
in the long format, which is versatile and widely adopted, and it
does not support exporting to tab-delimited or Microsoft Excel’s
xsl/xslx files which can be potentially problematic (White et al.,
2013). Such consistency in data output structure both improves
project organization and significantly simplifies functions that
use this data.

Moreover, psychopy_ext has a large number of built-in func-
tions that ensure that an experiment or an analysis can be up and
running with minimal effort on the user part. Very few things
have to be specified by a user to generate working experiments,
control stimuli, or produce nice looking plots. Importantly, unit
testing and version control are built-in features of psychopy_ext,
gently encouraging a user to embrace good programming prac-
tices. Similarly, access to simple image processing models is
provided, allowing researchers to quickly rule out potential con-
founds in their stimuli prior to conducting a study and resulting
in better controlled research paradigms.

Finally, psychopy_ext strives to integrate well with Python
in order to improve coding habits. In my experience, experi-
ments are often understood and coded as a sequence of com-
mands. However, this intuitive model quickly breaks when more
sophisticated routines and reuse of parts of code are necessary,
resulting in a poor codebase organization overall. Therefore, in
psychopy_ext experiments and analyses are defined as classes with

FIGURE 1 | A typical research workflow in neuroscience and psychology. For each task, modules from psychopy_ext that streamline the particular task are
listed. Figure adapted from Kubilius (2013).

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 2

http://www.python.org/dev/peps/pep-0020/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

their methods intended for a single task only. Such design subjects
users to learn and actively benefit from object-oriented program-
ming (OOP) and modularity. Moreover, the code automatically
becomes more readable.

While adopting a particular workflow might induce a steep
learning curve, I maintain that common templates facilitate code
clarity, comprehension, and reproducibility (Wilson et al., 2012).
In fact, multiple automations featured in psychopy_ext are solely
possible due to this rigid structure. On the other hand, intro-
ducing such templates does not impede flexibility because in the
OOP approach a user is free to customize everything to her own
needs.

TECHNICAL DETAILS
Scope and audience
Psychopy_ext is a Python package that wraps together other
Python tools for streamlining research, including PsychoPy, pan-
das, matplotlib, and pymvpa2. As such, it is not a standalone
tool; rather a user is expected to have Python with relevant
dependencies installed (which is the case for PsychoPy users that
psychopy_ext is directly targeted to). Moreover, users are expected
to be at least somewhat familiar with OOP as psychopy_ext takes
an extensive advantage of it.

Dependencies
Psychopy_ext depends on PsychoPy4 (version 1.70+) and pandas5

(version 0.12+), both of which are provided by the Standalone
PsychoPy distribution. To benefit from automatic docstring con-
version to instruction displays during experiments, docutils 6 is
required. Seaborn7 (version 0.1+) is also highly recommended for
extremely beautiful plots (otherwise it defaults to good-enough
pandas parameters). For fMRI analyses, pymvpa28 (version 2.0+)
and nibabel9 are required.

Installation
Psychopy_ext is part of the Standalone PsychoPy distribution.
Inexperienced users are encouraged to obtain it by download-
ing this distribution because it comes packaged with psychopy_ext
dependencies as well as a number of other scientific packages.
More advanced users can install psychopy_ext using the standard
pip installation procedure (pip install psychopy_ext) provided they
have dependencies already installed. However, for maximal flex-
ibility users are encouraged to download the source package
of psychopy_ext and place it together their experiment projects
without ever installing it.

Documentation
Psychopy_ext provides an extensive user manual and a growing
list of demos, including behavioral and fMRI experiments, sin-
gle and multiple task experiments, and fixed length and adaptive
(staircase) paradigms.

4http://www.psychopy.org/
5http://pandas.pydata.org/
6http://docutils.sourceforge.net/
7http://stanford.edu/∼mwaskom/software/seaborn
8http://www.pymvpa.org/
9http://nipy.org/nibabel/

Creating your own project
The easiest way to get started on psychopy_ext is to copy the
entire demos folder, choose a demo most closely resembling user’s
paradigm, and adjust it accordingly.

License
Psychopy_ext is distributed under GNU General Public License v3
or later10.

Stability
Psychopy_ext has been 4 years in development and has reached
a stable core architecture with the current release of version 0.5.
It is included in the Standalone PsychoPy distribution since ver-
sion 1.79. All modules in the package except for fmri (which is
provided as a beta version) are automatically tested with unit tests.

OVERVIEW OF CURRENTLY AVAILABLE TOOLS
Below I evaluate currently available tools using these criteria and
highlight where psychopy_ext could be used to provide a better
user experience in the context of psychology and neuroscience.

STREAMLINING WITHIN PACKAGE
Most currently available tools for researchers excel at providing
building blocks for specific tasks but typically lack standard rou-
tines (or templates) to easily integrate these blocks together. For
example, creating a Gabor stimulus in PsychoPy is simple and
achieved by calling a single command. However, a real experiment
is never limited to a mere presentation of a stimulus but rather
consists of a series of manipulations on these primitive build-
ing blocks. Crucially, however, many of these manipulations are
not pre-defined in PsychoPy. For instance, instructions are usu-
ally shown at the beginning of the experiment, trials consist of
showing several stimuli in a row (e.g., fixation, stimulus, fixation,
and recoding participant’s response), data and runtime logs are
recorded to data files, yet none of these steps have the same single
command access as the Gabor patch.

Presumably, such limitation is not a shortcoming but rather
the wide-spread philosophy that each experiment might require a
different approach and a user should be free to combine building
blocks for a particular task at hand. However, as illustrated above,
upon imposing certain assumptions even complex workflows can
often be abstracted and thus streamlined to a large extent, in effect
requiring only minimal customization on the user part.

Many other packages used by researchers suffer from a simi-
lar limitation. For example, while matplotlib can quickly produce
plots, with default settings they are rather unappealing and a lot
of handiwork is required each time to prepare figures for pub-
lication. It is possible that publishable quality is not the major
goal of matplotlib or, similarly to PsychoPy, requirements for fig-
ures might be thought to vary case-by-case. However, as seaborn
successfully demonstrates, pretty publication quality plots can be
made even for complex analyses by default, and it is therefore
incorporated in psychopy_ext.

10http://www.gnu.org/licenses/

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 3

http://www.psychopy.org/
http://pandas.pydata.org/
http://docutils.sourceforge.net/
http://stanford.edu/~mwaskom/software/seaborn
http://www.pymvpa.org/
http://nipy.org/nibabel/
http://www.gnu.org/licenses/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

INTEGRATION ACROSS PACKAGES
Most currently available tools for researchers address only a sin-
gle step of the typical workflow depicted in Figure 1. For example,
PyMVPA and pandas are powerful libraries for data analysis but
they make little or no assumptions how data was obtained and
what its structure could be. Lack of such assumptions make these
tools very flexible and applicable to nearly all contexts but, unfor-
tunately, at a cost of users having to connect separate workflow
steps manually.

Consider, for example, pandas’ generic Split-Apply-Combine
routine which allows users to split data into groups according to a
certain criterion, then apply a function to each of those groups,
and combine the results into a new data structure. Such rou-
tine is clearly useful for data analysis in general. However, many
psychologists will end up using this routine to compute average
response time or accuracy among participants. With the exist-
ing Split-Apply-Combine routine it would be somewhat tedious
to implement this computation, but given the ubiquity of it a
researcher can rightfully expect it to be available out of the box.
However, pandas is not specialized for neuroscience and thus
cannot provide such function. Similarly, PsychoPy, the leading
Python package for designing and coding experiments, cur-
rently does not provide an interface for conducting data analysis
either.

To the best of my knowledge, there are no tools currently that
would directly connect experiments, analyses, and simulations.
However, there have been several attempts to better integrate
research workflow. One notable effort in neuroscience commu-
nity is the NeuroDebian project (Halchenko and Hanke, 2012)
that provides a platform with many tools used by neurosci-
entists available with a single installation command. Since the
entire operating system and packages can be wrapped in a Virtual
Machine, this project provides a viable solution to a difficult prob-
lem of sharing the entire research workflow in such a way that
anybody would be guaranteed to be able to run the project.

Alternative solutions include research-oriented workflow
management systems such as VisTrails 11 , Taverna 12 , Galaxy 13 ,
and ActivePapers 14 that link separate workflow components
together into one. These systems are very powerful and versa-
tile yet might be too elaborate for the typically modest workflows
that neuroscientists and psychologists share. Moreover, a user
nonetheless has to implement many types of communication
between nodes in the workflow manually.

There are also a number of tools that integrate analysis out-
put with manuscript production. Most notably, Sweave and
knitr are popular packages for dynamic report generation that
enable embedding R code outputs into text documents (see Open
Science Paper 15 and Wallis et al. 16, 2014, for examples of usage
in research). A similar Python implementation of Sweave is avail-
able via Pweave. There are also a number of alternatives for
incorporating text into Python code, such as IPython Notebook

11http://www.vistrails.org
12http://www.taverna.org.uk/
13http://galaxyproject.org/
14https://bitbucket.org/khinsen/active_papers_py
15https://github.com/cpfaff/Open-Science-Paper
16https://github.com/tomwallis/microperimetry_faces

(Perez and Granger, 2007), pylit 17 , pyreport 18 , or for
incorporating Python code into LaTeX documents (pythonTeX19),
as well as language-independent solutions like dexy.it20. However,
it is not clear at the moment which of these approaches will be
adopted by the community at large, but in the future one of these
packages could also be integrated in the psychopy_ext framework.

REPRODUCIBILITY
Research output should be completely reproducible. However,
in practice, this is often not the case. Researchers often fail to
organize their code base and analyses outputs, do not keep track
of changes, neglect to comment code, and usually complete a
number of steps in their workflow manually, which make an
exact reproduction of output hardly possible even for the origi-
nal author. Unfortunately, few efforts have been put forward to
address these issues.

One simple way to improve reproducibility is provided by ver-
sion control systems such as git or Mercurial (hg). These systems
document changes in code, potentially allowing going back and
inspecting parameters that produced a particular output. A sim-
ilar but somewhat more focused towards research approach is
implemented in the Sumatra package (Davison, 2012). Sumatra
is meant for keeping records of parameters in projects based on
numerical simulations. It keeps a record of parameters used at
each execution, and also allows providing comments about simu-
lations, link to data files and so on. Both version control systems
and Sumatra can significantly increase organization and trans-
parency. However, due to their relative complexity and a require-
ment of a special commitment from a researcher to maintain a
log of activity, such systems are not widely adopted by researchers
in the field. Arguably, such tools would work best if they were
implemented to work implicitly, which is the approach that psy-
chopy_ext enacts. Moreover, reproducibility is usually poor due
to lack of instructions how to reproduce given results and what
parameters should be used rather than because of a mere lack
of code history. An ideal tool should therefore encourage code
documentation and overall organization.

CONCLUSION
Overall, a number of excellent specialized Python packages are
available to researchers today yet there does not appear to be a
package that would match the three criteria I proposed for an
“ideal” tool. Current tools largely do not provide a top-down
approach to a typical scientific routine. In particular, the entire
workflow should be possible to run largely automatically with
only an occasional user intervention where customization to
particular needs (such as defining stimuli or selecting analysis
conditions) is necessary.

psychopy_ext COMPONENTS
OVERVIEW
Psychopy_ext is composed of six largely distinct modules:
user interface (extends argparse and psychopy.gui), experiment

17http://pylit.berlios.de/
18http://gael-varoquaux.info/computers/pyreport/
19https://github.com/gpoore/pythontex
20http://www.dexy.it/

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 4

http://www.vistrails.org
http://www.taverna.org.uk/
http://galaxyproject.org/
https://bitbucket.org/khinsen/active_papers_py
https://github.com/cpfaff/Open-Science-Paper
https://github.com/tomwallis/microperimetry_faces
http://pylit.berlios.de/
http://gael-varoquaux.info/computers/pyreport/
https://github.com/gpoore/pythontex
http://www.dexy.it/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

creation (extends PsychoPy), (generic) data analysis (extends pan-
das), fMRI data analysis (extends pymvpa2), modeling and plot-
ting (extends matplotlib). The modules easily combine together in
order to streamline user’s workflow (Figure 1).

PROJECT STRUCTURE
Psychopy_ext assumes the position that all project-related materi-
als must reside together, organized in a rigid and consistent folder
and file naming structure (Figure 2). Data and other output files
are stored in separate folders for each study, all of which reside
in the Project folder (unless specified otherwise). Such organiza-
tion already improves researcher’s habits with no extra effort and
significantly facilitates collaboration and reproducibility.

A Project is assumed to consist of multiple Studies, each
defined by a separate Python script (Figure 3). A Study consists
of experiment, analysis, simulation, and any other user defined
classes. Any non-private methods defined by these classes (such
as running the experiment, displaying all stimuli, plotting aver-
age response times and so on) can be called via GUI or a
command-line interface (see User interfaces). It is also possible to
limit callable methods by providing actions keyword to the class
constructor.

All these scripts are not meant to be called directly. Rather,
a single file, run.py, is used in order to provide a unified inter-
face. Running this file will open a GUI where a user can choose
which study to run and what parameters to use, or parame-
ters can be passed directly via a command-line interface. Finally,
parameters specific to particular setups, such as monitor sizes

FIGURE 2 | A recommended project structure.

and distances, can be specified in computer.py file, providing a
seamless functioning across multiple machines.

USER INTERFACES
To facilitate the goal of unifying all research steps, psychopy_exp
module ui automatically generates command-line (CLI) and
graphic user interfaces (GUI) from user’s code. It scrapes through
all scripts (using Python’s inspect module) seeking for non-private
classes and functions, and extracts initialization parameter val-
ues stored in a name, info and rp variables. A name is used as
an alias in CLI to call that class. info is a concept inherited from
PsychoPy’s extraInfo and is defined as a dictionary of (key, value)
pairs of information that a user wants to later save in an output file
(e.g., participant ID). Finally, rp define parameters that will not be
saved in the output but control how a script runs. For example,
they could control whether output files are saved or not, whether
unit tests should be performed and so on. A number of standard
rp options are already built-in (see Figure 4).

When run.py file is called, a GUI is generated using these
parameters (Figure 4). A GUI is a wxPython app where differ-
ent studies are presented in a wx.Listbook, and each task (running
the experiment or performing analyses) is nested in its tabs
as a wx.Notebook with input fields generated from info and rp
(note different widgets for different input types) and buttons cre-
ated for available actions (e.g., plot response time data or plot
accuracy). As such, psychopy_ext significantly extends PsychoPy’s
functionality where only a simple dialog box is available via its gui
module.

Most users will benefit from the automatically generated
GUI for a number of reasons. First, running and rerunning
experiments or analyses while manipulating various parame-
ters becomes much easier, merely a matter of ticking the right
boxes and clicking buttons rather than editing source code every
time. Moreover, when a button is pressed, a new subprocess
is initiated to run a particular task. Thus, a user can keep the

FIGURE 3 | A typical project structure. A project is composed of one or
more studies that are defined in separate scripts, and each of them can
have experiment, analysis, simulation, or fMRI analysis classes defined.
Experiments can have one or more tasks (like a training paradigm and then
testing performance), that can be further subdivided into smaller blocks,
providing short pauses in between the blocks. Each block has a list of trials
that are composed of a list of events. For fMRI analyses, computations
occur per participant per ROI.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

FIGURE 4 | Graphical user interface (GUI). Psychopy_ext converts info
and rp parameters found in the class definition of an experiment or an
analysis into GUI widgets, and methods into buttons. Note that this GUI is
completely automatically generated from a class definition and does not
require user intervention.

GUI open and continue changing and rerunning the code with
the same parameters, which greatly speeds up development.
Finally, rerunning the project becomes much easier for other
researchers.

Some users will also appreciate a powerful CLI for running
tasks. CLI allows users to call required tasks directly without the
intermediate GUI step. It uses syntax comparable to Python’s arg-
parse with a difference that positional arguments (script, class and
function names) are before optional arguments, for example (also
see Figure 3):

python run.py main exp run --subjid
subj_01 --no_output

If no arguments are provided (i.e., python run.py), a GUI is
generated instead.

Note that using Python’s default argparse would be consid-
erably less convenient as one would have to manually update
argparse definitions every time a new option or function is
introduced to a class.

Moreover, it is important to understand that such user inter-
faces would not otherwise be possible if a particular code struc-
ture were not imposed by psychopy_ext. In order to be able to
use an interface, a user is forced to organized her code into
classes and functions, and immediately choose which parameters
can be manipulated by a user. Such organization brings signif-
icant clarity to the code (variables are not scattered around the
code) and teaches a user the benefits of OOP. Moreover, repro-
ducibility is inherently built in the code and does not require
any special preparation before publishing. In fact, the signifi-
cant time investment in preparing code for public is often cited
as one of the reasons researchers do not publish their code by
default (Barnes, 2010), thus psychopy_ext might help to alter this
tendency.

RUNNING EXPERIMENTS
The experiment module exp provides a basic template and mul-
tiple common functions for presenting stimuli on a screen and
collecting responses. An experiment is created by defining a class
that inherits from the Experiment class, thus gently introducing
the concept of inheritance. This may be somewhat unusual to
many users used to linear experimental scripts but the advan-
tage is that a number of functions can readily be used from the
parent class or overridden if necessary. Only stimulus definition,
trial structure, and trial list creation are always defined in the
child class (see Figure 5; Listing 1). Again, a good practice of
modularity becomes natural in this setting.

Listing 1 shows how to create a simple experiment in psy-
chopy_ext consisting of a single task only. To have more than
one task (e.g., first training on a particular set of stimuli and
then testing performance), multiple Task classes (inheriting from
the exp.Task class) can be defined separately with the same basic
structure as demonstrated above (see Figure 3). The tasks should
be stored in a self.tasks variable in the main Experiment
class, which would then call each task one by one during the
runtime. Each Task can further be divided into Blocks with
short pauses in between by defining a self.blockcol variable
that refers to a particular column in self.exp_plan variable
where block number is stored. Blocks consist of Trials that consist
of Events (e.g., show a fixation, show a stimulus, show a fixation
and wait for response). The flow of these components is han-
dled by the exp module; a user is required to only define these
structures (though a deeper customization is a matter of overrid-
ing the default methods, of course). Experiment, Task, and Block
classes have before and after methods that allow to cus-
tomize what happens just before and right after each of them are
executed. These methods are typically useful to define instruction
or feedback displays between tasks.

Beyond streamlining experiment creation, the Experiment and
Task classes offer several methods to address typical researcher
needs. First, every experiment inherited from these classes has
a built-in automatic running functionality which allows users to
quickly go through the entire experiment, in the essence acting
as unit testing. Moreover, keyboard input is simulated such that
responses could be collected and analyzed. A user can even define
simulated responses such that they would match the expected
outcome of the experiment. Such manipulation is especially
handy when a novel analysis technique is used and the user is not
confident that it was implemented correctly. Together, this func-
tion enables users to quickly verify that both experimental and
analysis code are working properly prior to collecting any data.

The Experiment class also simplifies study registration and
data collection processes by integrating with version control sys-
tems git and Mercurial (hg). If an appropriate flag is selected, at
the end of experiment new data and log files are committed and
pushed to a remote repository. Therefore, this feature allows an
automatic data sharing among collaborators, creates an instant
backup, and prevents users from tampering with raw data.

DATA ANALYSIS AND PLOTTING
Data analysis (stats) and plotting (plot) modules aim to sim-
plify basic data analysis and plotting. The stats module tailors

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

FIGURE 5 | A typical experiment and analysis structure. A user executes
run.py file either without any arguments (resulting in a GUI) or with them (as
shown in this example). Then, relevant scripts (brown), classes (purple) and

methods (black) are found and performed. A minimal structure of the script is
depicted in the lower panel. The user only has to specify stimuli, trial structure,
and the list of trials for experiment, and an analysis method for analysis.

pandas functionality for typical analysis patterns in neuroscience
and psychological research. In particular, it provides the aggre-
gate function which splits data into groups according to a certain
criterion (e.g., a participant ID) and applies a requested func-
tion to each group (an average, by default), returning a pan-
das.DataFrame. For example, to aggregate response times for each
participant separately and then plot averaged data in two subplots
(per session) with three levels on the x-axis and two conditions in
different colors with error bars (Figure 6, bar plot), the following
command is used:

agg = stats.aggregate(df, rows=’levels’,
subplots=’subplots’, cols=’cond’,
yerr=’subjID’, values=’rt’)

This results in a DataFrame with subplot, level, and condition
labels its index, and an average per participant (as specified by
yerr keyword) in columns.

The agg variable can be directly used for plotting, vastly
simplifying and improving plotting experience:

plt = plot.Plot()
agg = plt.plot(agg, kind=’bar’)
plt.show()

On top of plotting data, the plot function also:

• creates the required number of subplots
• formats and labels axes
• formats legend
• draws error bars
• for line and bar plots, performs a t-test (either one-sample or

two-samples) and displays results with one or more stars above
• chooses pretty color and layout options reminiscent of R’s

ggplot2 using seaborn, or pandas default color scheme if seaborn
is not available.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

import pandas
from psychopy import visual
from psychopy_ext import exp

import computer
PATHS = exp.set_paths('exp1', computer) # where data should be stored
class Exp1(exp.Experiment):

"""
Instructions (in reST format)
=============================

Hit 'j' to advance to the next trial, *Left-Shift + Esc* to exit.
"""
def __init__(self,

name='exp',
info=exp.OrderedDict([('subjid', 'exp1_'),

('session',),
]),

rp=None,
actions='run'
):

super(Exp1, self).__init__(name=name, info=info,
rp=rp, actions=actions,
paths=PATHS, computer=computer)

user-defined parameters
self.ntrials = 8
self.stimsize = 2

1

in deg

def create_stimuli(self):
"""Define your stimuli here, store them in self.s
"""
self.create_fixation()
self.s = {}
self.s['fix']= self.fixation
self.s['stim'] = visual.GratingStim(self.win, mask='gauss',

size=self.stimsize)

def create_trial(self):
"""Define trial composition
"""
self.trial = [exp.Event(self,

dur=.200, # in seconds
display=[self.s['stim'], self.s['fix']],
func=self.idle_event),

exp.Event(self,
dur=0,
display=self.s['fix'],
func=self.wait_until_response)

]

def create_exp_plan(self):
"""Define each trial properties. The experiment will go over the
self.exp_plan list and present trials one by one.
"""
exp_plan = []
for trialno in range(self.ntrials):

exp_plan.append(OrderedDict([
('trialno', trialno),
('onset', ''), # empty ones will be filled up
('dur', ''), # during runtime
('corr_resp', 1),
('subj_resp', ''),
('accuracy', ''),
('rt', ''),
]))

self.exp_plan = exp_plan

Listing 1 | The simplest fully functional experiment (with data and log files generated) that shows eight trials of Gabor grating and waits for

response in between them.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

FIGURE 6 | Plots generated by the plot module. Left panel: bar
plot, line plot, and scatter plot; right panel: bean plot (Kampstra,
2008) and matrix plot. The pretty color scheme is applied by default

and subplot layout, tick spacing, labels and other plot properties are
inferred from the original data without any manual input. ∗p < 0.05,
∗∗p < 0.01.

Observe that the resulting plot is immediately correctly for-
matted because the aggregate function recorded data layout infor-
mation in the index and column names. Moreover, in many cases
it has enough information (labels, error bars) and polish for pub-
lication, in part thanks to seaborn package. (In future releases, a
tighter integration with seaborn is planned.)

Also note that plotting module takes a slightly different
approach from matplotlib by requiring to initialize the Plot() class
for each plot. Due to this change, it becomes possible to easily and
automatically create figures with multiple subplots. For exam-
ple, a subplot does not need to be created prior to plotting; it is
automatically created upon the next call of the plot function.

FUNCTIONAL MAGNETIC IMAGING (fMRI) ANALYSIS
Preprocessing of functional magnetic imaging (fMRI) data has
become mainstream as a result of a number of robust and
free analysis tools, such as SPM (Ashburner and Friston, 2005),
FreeSurfer 21, or AFNI (Cox, 1996). More recently, multivari-
ate pattern analysis (MVPA) has become available to many
researchers thanks to packages such as PyMVPA (Hanke et al.,
2009). However, similar to stimulus presentation packages, many
free fMRI analysis tools lack standard “plug-and-play” routines

21http://surfer.nmr.mgh.harvard.edu/

that would allow users to carry out data analysis automatically.
For example, setting up a generic routine in PyMVPA that would
go over all participants, extract relevant regions of interest (ROIs),
perform and plot correlational or support vector machine (SVM)
analysis is not possible because researchers usually have their own
preferred workflows.

However, in psychopy_ext this goal becomes viable due to
a well-controlled data structure. The fmri module consists of
the Preproc and the Analysis classes that only require relevant
participant ID’s and ROIs to be specified to carry out analy-
ses in full. The Preproc class generates batch scripts to compute
beta- or t-values using Statistical Parametric Mapping toolbox
(Ashburner and Friston, 2005). In future releases, this function-
ality could be extended to automate the entire preprocessing
workflow using Nipype (Gorgolewski et al., 2011) or Lyman 22

packages. The Analysis class uses preprocessed data to display
regions of interest, plot changes in the fMRI signal intensity and
perform univariate (BOLD signal averages for each condition)
and multivariate (MVPA) analyses (however, group analyses are
not implemented).

For MVPA analyses, two most popular analysis approaches,
namely, correlational and SVM analyses, are provided. Both are

22http://stanford.edu/∼mwaskom/software/lyman/

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 9

http://surfer.nmr.mgh.harvard.edu/
http://stanford.edu/~mwaskom/software/lyman/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

implemented in a similar fashion. First, data is normalized for
each run by subtracting the mean across conditions per voxel
(for correlational analyses) or across voxels per condition (for
SVM analyses; Kubilius et al., 2011). Next, data is divided in two
halves (for correlations) or into roughly 75% of training data
(to train the SVM) and 25% of test data (to test the SVM per-
formance). Pair-wise correlations or pair-wise decoding for all
possible combinations are then computed. For SVM, by default
a linear nu-SVM kernel is used and an average of the test set
is taken to improve the performance (Kubilius et al., 2011). In
order to achieve a more stable performance, this computation is
performed for 100 iterations by randomly choosing the splits of
samples. Outputs of these computations are provided in a stan-
dard pandas DataFrame format, which can further be used to plot
the results within the same psychopy_ext framework.

Although this module is experimental at the moment due to
the lack of relevant unit tests, it has already been used in sev-
eral published or submitted papers (Kubilius et al., 2011; Kubilius
et al., unpublished results). Moreover, a user can easily adapt a
particular analysis details to her liking while still benefiting from
the implementation of the global routine.

SIMULATIONS
In many vision experiments it is important to verify that the
observed effects are not a mere result of some low-level image
properties that are not related to the investigated effect. Several
simple models have been used in the literature to rule out such
alternative explanations, including computing pixel-wise differ-
ences between conditions (e.g., Op de Beeck et al., 2001), applying
a simple model of V1 such as the GaborJet model (Lades et al.,
1993), or applying a more complex model of the visual system
such as HMAX (Riesenhuber and Poggio, 1999). Psychopy_ext
provides a wrapper to these models so that they could be accessed
with the same syntax, namely, by passing filenames or numpy
arrays of the images that should be analyzed and compared:

model = models.HMAX()
model.compare(filenames)

To get raw model output, the run command can be used:

model = models.HMAX()
out = model.run(test_ims=test_fnames,

train_ims=train_fnames)

Pixel-wise differences model is the simplest model for estimat-
ing differences between images. Images are converted to grayscale,
and a Euclidean distance is computed between all pairs of stimuli,
resulting in an n-by-n dissimilarity matrix for n input images (Op
de Beeck et al., 2001).

GaborJet model (Lades et al., 1993) belongs to the family
of minimal V1-like models where image decomposition is per-
formed by convolving an image with Gabor filters of different
orientation and spatial frequency. In the GaborJet model, convo-
lution is performed using 8 orientations (in the steps of 45◦) and
5 spatial frequencies on a 10-by-10 grid in the Fourier domain.
The output consists of the magnitude and phase of this convo-
lution (arrays of 4000 elements), and the sampled grid positions.

For comparing model outputs, only magnitudes are usually used
to compute an angular distance between the two output vectors
(Xu et al., 2009). In psychopy_ext, the code has been implemented
in Python by following the MATLAB implementation available on
Irving Biederman’s website23.

HMAX model (Riesenhuber and Poggio, 1999) has been pro-
posed as a generic architecture of the visual cortex. It consists
of four image processing layers and an output layer. Initially, a
convolution between the image and Gabor filters of four orienta-
tions (in the steps of 45◦) and 12 spatial frequencies (range: 7–29
px) grouped into four channels is computed (layer S1). Next, a
maximum of outputs of the same orientation over each spatial
frequency channel is taken (layer C1). Outputs of this operation
are pooled together in 256 distinct four-orientation configura-
tions (for each scale; layer S2), and a final maximum across the
four scales is computed (layer C2), resulting in an output vector
with 256 elements. If training data is provided, these responses
can further be compared to the stored representations at the final
view-tuned units (VTU) layer. In psychopy_ext, the code has been
implemented in Python by following the MATLAB implementa-
tion by Minjoon Kouh and the original implementation available
on Max Riesenhuber’s website 24. (Note that the current imple-
mentation of HMAX as provided by Poggio lab is much more
advanced than the one implemented in psychopy_ext.)

LIMITATIONS
Psychopy_ext debuted publically in November 2013 and thus has
not been adopted and extensively tested by the community yet. It
is therefore difficult to predict the learning curve of the under-
lying psychopy_ext philosophy and to what extent it resonates
with the needs of the community. For example, many researchers
are used to linear experimental and analysis scripts, while psy-
chopy_ext relies on object-based programming concepts such as
classes and modular functions in order to provide inheritance and
flexibility. However, object-oriented approach also means that
whenever necessary functions are not available directly from psy-
chopy_ext or do not meet user’s needs, they can be overridden or
used directly from the packages that are extended, often (but not
always) without affecting the rest of the workflow.

Furthermore, psychopy_ext was designed to improve a work-
flow of a typical PsychoPy user. Researchers that use other stimu-
lus generation packages or even different programming languages
(such as R for data analyses) will not be able to benefit from psy-
chopy_ext as easily. Such limitation is partially a design choice to
provide workflows that depend on as few tools as possible. Python
has a large number of powerful packages and psychopy_ext is
committed to promoting them in favor of equivalent solutions in
other languages. Nonetheless, when an alternative does not exist,
users can easily interact with their R (via rpy2 25), C/C++ (via
Python’s own ctypes), MATLAB (via pymatlab26 or mlab27) and a
number of other kinds of scripts.

23http://geon.usc.edu/GWTgrid_simple.m
24http://riesenhuberlab.neuro.georgetown.edu/hmax/index.html
25http://rpy.sourceforge.net/rpy2.html
26http://molflow.com/pymatlab.html
27https://github.com/ewiger/mlab

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 10

http://geon.usc.edu/GWTgrid_simple.m
http://riesenhuberlab.neuro.georgetown.edu/hmax/index.html
http://rpy.sourceforge.net/rpy2.html
http://molflow.com/pymatlab.html
https://github.com/ewiger/mlab
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

DISCUSSION AND FUTURE ROADMAP
Four years into development, psychopy_ext is already successfully
addressing a number of issues encountered in streamlining a typi-
cal research workflow and its reproducibility. By design, it enables
researchers to produce well-organized projects with a number of
typical steps automated, providing prebaked templates and inter-
faces for common tasks, and implementing default unit testing in
a form of customizable simulations. These projects can be rapidly
developed as psychopy_ext requires only a minimal customization
by a user to run and are easily reproducible via an automatically
generated GUI.

In future releases psychopy_ext will introduce more tools to
streamline typical routines encountered by psychologists and
neuroscientists. Beyond small improvements, there are several
intriguing possibilities that psychopy_ext could explore.

To begin, an interesting and, arguably, quite intuitive approach
to reproducibility has been recently introduced by Stevens et al.
(2013) in their Python package called Lancet. Often, repro-
ducibility is understood as a post-hoc feature where a researcher
cleans up and organizes her code just prior to publication. Since
this final code has a very different structure from a naturally
exploratory format of code in day-to-day research, extra effort is
required from a researcher to prepare it. In contrast, Lancet allows
exploratory research to naturally grow from IPython Notebooks
into more complex workflows where external processes can be
launched and tracked from the same pipeline. Such natural code
evolution is also encouraged in psychopy_ext but instead by defin-
ing new classes and functions for new branches of exploration.
Introducing functionality of both approaches might be fruitful to
explore in future releases of psychopy_ext.

Furthermore, given a neat integration of experimental and
analysis workflow it would be possible to automatically produce
reports of the experimental and analyses parameters and outputs.
Upon integration of experiment’s parameters, this feature could
even lead to an initial draft of a manuscript with Methods and
Results sections already partially prefilled. In fact, in the devel-
opment branch of psychopy_ext, a very primitive approach to
generating reports of analyses in a single HTML file is already
available. More robust results could be achieved by integrating
one of the Python packages for combining text and code as
mentioned in the Integration section.

Integration of resources could be further fostered by a gen-
eral project management tool. This tool could provide access to
all project materials, as well as track and display changes in them,
similar to Projects 28 software for Mac OS or a number of open
and platform-independent workflow systems mentioned in the
Integration section, especially VisTrails since it is Python-based.
Alternatively, such tool could be browser-based, thus enabling
researchers to access their projects from anywhere, and it could
integrate well with the existing browser-based solutions, such as
data plotting libraries.

Moving toward more GUI-based solutions also opens a pos-
sibility to improve user experience in designing an experiment
and analysis. For example, experiment creation in psychopy_ext
is already semantically structured: projects consist of experiments

28https://projects.ac/

that consist of tasks that consist of blocks, trials and events. Such
organization easily maps onto a GUI with blocks representing dif-
ferent components, somewhat akin to PsychoPy Builder. Similarly,
a pivot table or pivot chart option, reminiscent of the one in
Microsoft Excel, could be provided to allow a quick exploration
of data.

Taken together, psychopy_ext provides a transparent and
extendable framework for developing, sharing and reusing code
in neuroscience and psychology.

ACKNOWLEDGMENTS
I would like to thank Jonathan Peirce for his support in dissem-
inating psychopy_ext. I am also grateful to Pieter Moors, Sander
Van de Cruys, Maarten Demeyer, and Marco Maas for beta test-
ing psychopy_ext, as well as reviewers of this manuscript and the
editor for their valuable comments. This work was supported in
part by a Methusalem Grant (METH/08/02) awarded to Johan
Wagemans from the Flemish Government. Jonas Kubilius is a
research assistant of the Research Foundation—Flanders (FWO).

REFERENCES
Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,

839–851. doi: 10.1016/j.neuroimage.2005.02.018
Barnes, N. (2010). Publish your computer code: it is good enough. Nat. News 467,

753–753. doi: 10.1038/467753a
Cox, R. W. (1996). AFNI: software for analysis and visualization of functional

magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173. doi:
10.1006/cbmr.1996.0014

Davison, A. (2012). Automated capture of experiment context for easier repro-
ducibility in computational research. Comput. Sci. Eng. 14, 48–56. doi:
10.1109/MCSE.2012.41

Gorgolewski, K., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L.,
and Ghosh, S. S. (2011). Nipype: a flexible, lightweight and extensible neu-
roimaging data processing framework in Python. Front. Neuroinform. 5:13. doi:
10.3389/fninf.2011.00013

Halchenko, Y. O., and Hanke, M. (2012). Open is not enough. Let’s take the next
step: an integrated, community-driven computing platform for neuroscience.
Front. Neuroinform. 6:22. doi: 10.3389/fninf.2012.00022

Hanke, M., Halchenko, Y., Sederberg, P., Hanson, S., Haxby, J., and Pollmann, S.
(2009). PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI
data. Neuroinformatics 7, 37–53. doi: 10.1007/s12021-008-9041-y

Ince, D. C., Hatton, L., and Graham-Cumming, J. (2012). The case for open
computer programs. Nature 482, 485–488. doi: 10.1038/nature10836

Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., et al.
(2013). Troubling trends in scientific software use. Science 340, 814–815. doi:
10.1126/science.1231535

Kampstra, P. (2008). Beanplot: a boxplot alternative for visual com-
parison of distributions. J. Stat. Softw. 28, 1–9. Available online at:
http://www.jstatsoft.org/v28/c01

Kubilius, J. (2013). The Open Science Cycle. Available online at:
http://figshare.com/articles/The_Open_Science_Cycle_July_2013/751548

Kubilius, J., Wagemans, J., and Op de Beeck, H. P. (2011). Emergence of perceptual
gestalts in the human visual cortex: the case of the configural-superiority effect.
Psychol. Sci. 22, 1296–1303. doi: 10.1177/0956797611417000

Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C.,
Wurtz, R. P., et al. (1993). Distortion invariant object recognition in the
dynamic link architecture. IEEE Trans. Comput. 42, 300–311. doi: 10.1109/12.2
10173

Op de Beeck, H., Wagemans, J., and Vogels, R. (2001). Inferotemporal neurons rep-
resent low-dimensional configurations of parameterized shapes. Nat. Neurosci.
4, 1244–1252. doi: 10.1038/nn767

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830. Available online at: http://jmlr.org/papers/v12/pedregosa11a.html

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 11

https://projects.ac/
http://www.jstatsoft.org/v28/c01
http://jmlr.org/papers/v12/pedregosa11a.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kubilius Framework for streamlining research workflow

Peirce, J. W. (2007). PsychoPy–Psychophysics software in Python. J. Neurosci.
Methods 162, 8–13. doi: 10.1016/j.jneumeth.2006.11.017

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Front.
Neuroinform. 2:10. doi: 10.3389/neuro.11.010.2008

Perez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nat. Neurosci. 2, 1019–1025. doi: 10.1038/14819

Stevens, J. R., Elver, M., and Bednar, J. A. (2013). An automated and repro-
ducible workflow for running and analyzing neural simulations using Lancet
and IPython Notebook. Front. Neuroinform. 7:44. doi: 10.3389/fninf.2013.
00044

Wallis, T. S., Taylor, C. P., Wallis, J., Jackson, M. L., and Bex, P. J. (2014).
Characterisation of field loss based on microperimetry is predictive of face
recognition difficulties. Invest. Ophthalmol. Vis. Sci. 55, 142–153. doi: 10.1167/
iovs.13-12420

White, E. P., Baldridge, E., Brym, Z. T., Locey, K. J., McGlinn, D. J., and Supp, S. R.
(2013). Nine simple ways to make it easier to (re) use your data. PeerJ PrePrints
1:e7v2. doi: 10.7287/peerj.preprints.7v2

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M.,
Guy, R. T., et al. (2012). Best Practices for Scientific Computing

(arXiv e-print No. 1210.0530). Available online at: http://arxiv.org/abs/
1210.0530

Xu, X., Yue, X., Lescroart, M. D., Biederman, I., and Kim, J. G. (2009). Adaptation
in the fusiform face area (FFA): image or person? Vision Res. 49, 2800–2807.
doi: 10.1016/j.visres.2009.08.021

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 30 December 2013; published online: 17
January 2014.
Citation: Kubilius J (2014) A framework for streamlining research workflow in
neuroscience and psychology. Front. Neuroinform. 7:52. doi: 10.3389/fninf.2013.00052
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Kubilius. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 52 | 12

http://arxiv.org/abs/1210.0530
http://arxiv.org/abs/1210.0530
http://dx.doi.org/10.3389/fninf.2013.00052
http://dx.doi.org/10.3389/fninf.2013.00052
http://dx.doi.org/10.3389/fninf.2013.00052
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	A framework for streamlining research workflow in neuroscience and psychology
	Introduction
	Design
	Philosophy
	Implementation
	Technical Details
	Scope and audience
	Dependencies
	Installation
	Documentation
	Creating your own project
	License
	Stability

	Overview of Currently Available Tools
	Streamlining within Package
	Integration Across Packages
	Reproducibility
	Conclusion

	Psychopy_ext Components
	Overview
	Project Structure
	User Interfaces
	Running Experiments
	Data Analysis and Plotting
	Functional Magnetic Imaging (fMRI) Analysis
	Simulations

	Limitations
	Discussion and Future Roadmap
	Acknowledgments
	References

