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1. INTRODUCTION

Spatial component analysis is often used to explore multidimensional time series data
whose sources cannot be measured directly. Several methods may be used to decompose
the data into a set of spatial components with temporal loadings. Component selection is
of crucial importance, and should be supported by objective criteria. In some applications,
the use of a well defined component selection criterion may provide for automation of
the analysis. In this paper we describe a novel approach for ranking of spatial components
calculated from the EEG or MEG data recorded within evoked response paradigm. Our
method is called Mutual Information (MI) Spectrum and is based on gauging the amount
of Ml of spatial component temporal loadings with a synthetically created reference signal.
We also describe the appropriate randomization based statistical assessment scheme that
can be used for selection of components with statistically significant amount of MI. Using
simulated data with realistic trial to trial variations and SNR corresponding to the real
recordings we demonstrate the superior performance characteristics of the described Ml
based measure as compared to a more conventionally used power driven gauge. We
also demonstrate the application of the Ml Spectrum for the selection of task-related
independent components from real MEG data. We show that the MI spectrum allows to
identify task-related components reliably in a consistent fashion, yielding stable results
even from a small number of trials. We conclude that the proposed method fits naturally
the information driven nature of ICA and can be used for routine and automatic ranking
of independent components calculated from the functional neuroimaging data collected
within event-related paradigms.

Keywords: spatial components, ICA, SVD, components selection, mutual information, eloquent cortex mapping

identification of the repetitive task-related signal subspace from

Spatial decomposition is one of the key techniques applied to
exploratory analysis of multichannel data in general, and to
spatial-temporal electro- and magnetoencephalographic (EMEG)
signals in particular. The most commonly used methods to obtain
both spatial components and the corresponding temporal load-
ings are independent component analysis (ICA) (Comon, 1994),
principal component analysis (PCA) (Golub and Van Loan, 1996)
and factor analysis (FA) (Child, 2006).

The most frequently used approach for analysis of stimulus-
locked averaged EMEG data is PCA, which can be performed
using the singular value decomposition (SVD) of the stimulus-
locked averaged data matrix (Lagerlund et al., 1997). This analysis
is followed by thresholding the singular values (SV) spectrum
to identify the subspace capturing the largest amount of data
variance for a given approximation rank (Vandewalle, 1988).
This technique is inherently power driven. Its application to the

the averaged ERP/F data relies on the assumption that the indi-
vidual evoked responses are sufficiently well phase-locked to the
stimulus. In that case, the stimulus-locked summation results
in an enhanced relative power of the phase-locked component
(Misulis, 1994).

SVD is the optimal method for signal subspace detection mea-
sured by subspace correlation for a given approximation rank
(Vandewalle, 1988). However, the actual value of signal subspace
rank, R, is, in general, unknown. Finding an estimate of R is not
a trivial task. It is often done by visual inspection of the SV spec-
trum . The method is based on identifying the target index, R, of
a singular component just preceding a sharp drop in power, fol-
lowed by a slow decaying plateau in the SV spectrum. However,
a large disparity of activation amplitudes, spatial proximity of the
neuronal sources and powerful noise sources may result in the
absence of a clear cut division between task-related and noise
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components. In addition, in realistic conditions, the recordings
are often contaminated by spatially colored brain activity and/or
spatially coherent artifacts. Under these circumstances, compo-
nent selection based on the SV spectrum may be misleading.
As a motivating example, consider the top panel of Figure 1
that shows the SV spectrum calculated for the averaged data
obtained from the simulated MEG timeseries containing the con-
tribution of two non-synchronous dipolar sources. Although the
subspace spanned by the first R = 2 singular topographies almost
exactly matches the true subspace (subcorr ([a; a3], [u; wp]) =
[1,0.987]) the spectrum of SVs fails to provide evidence that the
second component contains task-related signal.

ICA is one of the most widely used approaches to blind source
separation, popular for exploratory analysis of multidimensional
data. In the analysis of EMEG data from evoked response exper-
iments, this decomposition may be used both to isolate task-
related components (Makeig et al., 1996; Vigario et al., 2000) and
to remove artifacts (Jung et al., 2000). It can also be used for esti-
mation of source timeseries when proper forward modeling is
unavailable and for the estimation of the signal subspace in cases
when the experimental paradigm can not guarantee sufficiently
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FIGURE 1 | In some practical cases, the first singular topographies
remain reasonably good estimators of signal subspace but inspection
of the SV spectrum fails to reveal this as illustrated by a model
example here. While the subspace spanned by the first two singular
topographies and the actual simulated subspace practically coincide the SV
spectrum (top panel) fails to reveal the fact that the second singular
component also belongs to the signal subspace. On the contrary the Ml
spectrum (bottom panel) computed using raw data projected onto the left
singular vectors demonstrates a very clearly cut separation of the
task-related and task unrelated subspaces. This figure also introduces the
measure of task-related subspace identifiability used in the paper. Since the
correct signal subspace rank value is R = 2, we use discriminating indicator
q = log (%) — log (%13&;) that formalizes the strategy employed by the
human observers and estimates the amount of drop between the second
and the third components referenced to the ratio of the two largest
components of the noise range spectrum (with indices 3 and 4)
immediately following the two signal components (with indices 1 and 2).

accurate stimulus locking, e.g., in voluntary movement paradigm
(Ossadtchi et al., 2000; Delorme, 2010).

The application of ICA to routine analysis of EMEG datasets
is limited by the absence of standard approaches for ordering
the independent components (Hyvirinen et al., 2001). In the
most typical scenario a human observer visually identifies the
desired components by exploring their timecourses and topogra-
phies. Since the raw EMEG data are often very noisy, it can
be difficult to determine which components should be selected.
Additionally, such manual selection is often daunting, and selec-
tion based on power (Delorme, 2010) or stim-locked averaged
power (AP) (Hyvirinen et al., 2001) does not ensure that the
components are event-related for reasons essentially similar to
those just described for the SV spectrum. It should be also noted
that such power-driven ordering methods may be inappropri-
ate, since ICA as an information (rather than power) driven
technique. An alternative method, using the correlation met-
rics between each estimated component and the event trigger,
is critically dependent on signal shapes, and is therefore highly
unreliable. For completeness we will mention that for some meth-
ods of blind source separation, such as AMUSE (Tong et al.,
1991), components may have an intrinsic order but such an
ordering is not very useful in the context of analysis of EMEG
data from ERP studies. These problems hinder efficient uti-
lization of ICA for batch-mode processing of EMEG datasets,
and affect the objectivity of the results obtained with manual
analysis.

The independent components sorting problem has received
considerable attention in the fMRI data analysis literature. Gu
et al. (2001) and Esposito et al. (2002) have introduced meth-
ods for component ordering based on spatial characteristics. Lu
and Rajapakase (2003) suggested ranking based on component
timecourse kurtosis. Himberg et al. (2004) used clustering of a
succession of ICA realizations to select relevant components. Yang
et al. (2008) describes a method for components selection based
on the reproducibility principle. In the application of ICA to EEG
and MEG, a technique based on measuring the amount of spa-
tial component variance explained by the electromagnetic model
was proposed by Grosse-Wentrup and Buss (2008). However,
an accurate forward model is required to fully benefit from this
approach.

In the current paper, we present a novel mutual information
(MI) based approach for ICA components sorting. Moritz et al.
(2003) has described a somewhat related method for component
ranking, based on the spectral manifestation of stimulus peri-
odicity. However, the periodicity assumption is not always ful-
filled, especially in voluntary movement paradigms. In addition,
the spectral measure uses only first and second order statistical
moments, while our MI-based method implicitly employs higher
order moments for estimating the amount of task-related signal
present in a component. We report the performance of our new
MI based approach and compare it against more conventionally
used AP driven technique. Additionally, we demonstrate an appli-
cation of the MI Spectrum to sorting InfoMax ICA components
obtained from real MEG recordings obtained from an exper-
iment designed to non-invasively map primary motor cortex
(M1 zone).
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2. MATERIALS AND METHODS

2.1. EMEG SIGNAL MODEL AND PRELIMINARIES

EMEG data recorded by a K— sensor array during the i-th rep-
etition of a neuromotor or cognitive task can be written as the
following linear combination

P
© | +n@® (1)
0)

fi®

xi(t)=[a1,...,aR] +[b1,...,bL]

fi)

For the i — th epoch, a multichannel signal at each instance of
time, x'(¢) is a noisy additive mixture of source topographies
[a, ..., aR] weighted by the corresponding stimulus-locked acti-
vation timeseries [ff(t), e fé(t)], along with a task-unrelated
contribution from sources with topographies [bl, e, bL] acti-
vated with task-unrelated timeseries [p’i(t), o, pi(t)], and a
random noise vector n (¢). Topographies of task related sources
form an R-dimensional signal subspace and topographies of task
unrelated sources form an L-dimensional coherent interference
subspace. ERP experiments are usually accompanied by a binary
stimulus signal s(f) marking the task onset. In neuro-motor
experiments this binary signal may be derived from the myo-
graphic activity record or from the accelerometer signal, using
a thresholding procedure. Usually the goal of data analysis is to
identify the task related signals and extract the task-related signal
subspace to be used subsequently for neuronal source localiza-
tion. For completeness, we may include induced sources whose
activation power is locked to the task-onset moment with ran-
dom phase. However, since we are interested in analysis of ERP’s
(which are phase-locked by definition), we do not include the
induced component in (1).

Under the ideal and largely unrealistic conditions when acti-
vations f(t) are exactly reproducible across trials, time locked
to the stimulus, and spatially coherent task-unrelated compo-
nents are absent, the identification of task related components
can be done optimally using the SVD of the stimulus locked aver-
age data matrix X = [%(0), ..., X(T)], where X(¢) = wa: L Xi(1),
M is the task repetitions count, and T is the interval of interest
duration (Vandewalle, 1988). The SVD yields the averaged data
matrix decomposition X = USVT. Columns of the orthonormal
matrix U are the singular topographies, S is a diagonal matrix of
SVs, and columns of the right singular matrix V are the singular
activations. Task related components are chosen to be the first R
components ranked by power. R is determined typically by visual
analysis of the SV spectrum. Optionally, the SV spectrum of ran-
dom matrix may be used as a reference in this task (Golub and
Van Loan, 1996).

ICA is usually applied to the raw (unaveraged) spatial-
temporal matrix X(¢) and yields a spatial unmixing matrix B
and a collection of independent components z;(t) obtained as
z(t) = BX(t), z(t) = [z1(¢), ..., zK(t)]T. We assume that some
of these components contain task-related signal and the others
do not. In correspondence to B we can put matrix F = B~! so
that X(#) = Fz(¢). Columns of F are called independent topogra-
phies and describe the profiles formed by the corresponding
independent “sources” on the sensors.

2.2. MUTUAL INFORMATION SPECTRUM

We propose to assess the degree to which the i-th component
z; (t) is related to the task using the normalized MI spectrum,
computed as I; = I(z;(t), e(t)). e(t) is the expanded stimulus line
signal, computed by convolution of the original binary stimulus
signal s(¢) with expansion kernel k() as e(t) = s(t) * k() to pro-
duce monotonic variations over the interval of interest around
each event onset moment. In this work we used a centered (i.e.,
symmetric around the x-axis) ramp function as the expansion
kernel k(¥).

We used a simple scaled histogram method to compute the MI
as the difference between the entropy of an independent compo-
nent z;(¢) and its entropy conditioned on the expanded stimulus
line signal e(?), i.e.,

Io (zi(1), e(t)) = H (zi(1)) — H (zi(1)|e(?)) (2)

where H(u) denotes the entropy of u.

As suggested by Strehl (2002), we use the geometric mean of
the two marginal entropy values to obtain the normalized MI
quantities as

T (s _ D@, e®)
I =1(zi(1), e(r)) = FICOLICO) (3)

We then define the MI spectrum as the rank ordered elements
L {l; = Tip )

As with the more conventional SV spectrum, visual analysis of
the MI spectrum can be used to estimate the signal subspace rank.
Originally suggested by us in Ossadtchi et al. (2000), this mea-
sure of MI with the expanded stimulus signal is a power-invariant
way to assess the degree of task-relatedness of raw (unaveraged)
timeseries.

We have introduced the notion of MI spectrum in the con-
text of ICA component selection. This method can also be used
for ranking singular components obtained via SVD of the stimu-
lus locked average data matrix. To compute the MI spectrum for
such singular components, first project the raw unaveraged data
matrix X(¢) onto the left singular column vectors of U as z(t) =
UTX(t) and then apply the MI spectrum calculation procedure as
described above.

In neuro-motor tasks, the EMG signal, m(¢), can be recorded
and used instead of the expanded stimulus line. Then the MI spec-
trum is calculated as I; = I(z;(t), m(t)). Since the EMG signal
usually occupies a broader spectrum than that of EEG or MEG
signals, it is beneficial to perform a zero-phase-shift band-pass
filter to remove excessively low and high frequency components
prior to computing the ML

2.3. STATISTICAL TESTING
In automated applications, and for a more informed decisions
during the visual analysis of the MI spectrum, we suggest the fol-
lowing randomization testing scheme to estimate the p-values to
reject the null-hypothesis that a component is not task related.
The suggested scheme is based on the observation that for
signal components that contain a statistically significant evoked
response, the value of the MI is directly related to the consistent
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correspondence (not similarity!) between the shape of this com-
ponent and the expanded stimulus signal. Therefore, when the
actual task onset moments are randomized, this correspondence
will be destroyed. The MI values for the task-related components
will experience a significant drop, while those that pertain to the
task-unrelated components will remain in the original range.

We suggest the following simple steps to generate surrogate
data and assess statistical significance of the observed MI val-
ues. In what follows M is number of independent components,
J-number of randomization iterations, N; is the number of sam-
ples in the stimulus signal s(f) and N, = Zi\r‘: 1 5(¢) is the number
of task repetitions.

1. forj=1]

1. Create a new, surrogate stimulus signal s*(¢) by randomiz-
ing task onset moments:
s¥(t) =0, Vt € [1, N¢];
fork=1:N,, t < U(0,Ny), s*(t) = 1, endg

2. Calculate  surrogate expanded  stimulus
ef(t) = s*(t) x k(t)

3. Calculate the amount of normalized MI of all the compo-
nents with this surrogate expanded stimulus:
fori=1:M, Il?; = I(e*(1), zi(t)) , end;

signal:

2. end;

The i-th row of I?J‘. measures the MI for the i-th component and
the j-th randomization of the stimulus onset signal. In order to
calculate the p-values of the null-hypothesis that the i-th compo-
nent does not contain task-related signal, we compute the fraction
of surrogate values I;;., j € [1,]] that exceed the actual observed
value I;. If we define a logical function L(a, b) =1 if(a > b)
and L(a, b) = 0 otherwise, then p-values for the null-hypothesis
that the i-th component contains no task related signal can be

expressed as p; = ﬁ ;;II L(I;}f, I).

2.4. MULTIPLE COMPARISON CORRECTION

Since we are testing several hypotheses, we need to correct the
calculated p-values for multiple comparisons. Simple Bonferroni
correction is appropriate, since the components are independent
or at least orthogonal (SVD case) . We therefore conclude that a
component can be considered as task-related at the significance
level of o if p; < N%, where N, is the total number of components
tested. An example of applying the suggested statistical testing
scheme is illustrated in Figure 2, where the proposed procedure
allows for the correct identification of task related components in
a simulated scenario with R = 2 task-related sources with pow-
erful, spatially coherent, interference. For this and subsequent
simulations, we used the procedure described in the following
section.

2.5. SIMULATION PROCEDURE

In order to illustrate the performance of the MI spectrum and
compare it with a more standard power driven approach, we
performed realistic simulations with the following procedure.
To simulate the observed sensor signals, we used Equation (1).
We obtained a realistic source configuration from analysis of a

Logarithm of p-values
I OLJ%%%W”])%
aH ]

Log,, (@)
-3

Bonferoni corrected significance threshold = log10( 0.05/68 ) = -3.1335 A

0 10 20 30 40 50 60 70
Singular component index

FIGURE 2 | Raw components’ log(p)-values computed using the
suggested randomization scheme. The horizontal line corresponds to
Bonferroni corrected threshold determined for a = 0.05. The data were
simulated with two dipolar sources and powerful spatially coherent
interference. SVD was applied to the stimulus-locked data matrix that
yielded first singular topographies. Subspace correlation of the first two
singular topographies with the true signal subspace was [1,0.987]. We can
see that the suggested randomization scheme is able to correctly detect
the first two components that span the signal subspace.

somatosensory MEG dataset recorded with a 67 channel CTF
MEG system. We applied the RAP-MUSIC localization algorithm
to [0-200ms] range of the stimulus-locked average data and
obtained R = 2 dipoles with topographies a; and a, and their
corresponding activations f; (¢) and f,(¢) [see Equation (1)]. We
used these dipoles as sources of task related activity in our simu-
lations. To simulate task related activation timeseries we adapted
a kernel-based model of evoked potentials described by Lange
et al. (1997). This model includes random trial-to-trial variation
in the latency and amplitudes of signal components. It is based
on the decomposition of activation timeseries into a superposi-
tion of Gaussian kernels with varying amplitudes and delays. The
model is justified by the fact that, given relatively poor spatial res-
olution of MEG, the dipole timeseries may be viewed as the sum
of activations of several neuronal assemblies, each with different
intensity and activation latency values. A graphical example of
such a decomposition is shown in Figure 3. The simulated acti-
vation of the r-th dipole during the i — th epoch can be expressed
formally as f,’ (H) = ZIk{: 1 Bpvi(t — 07) with K kernels defined as

()’
20;{2
V}Z(t):fr(t)ﬁ, re[1L,R], kell,K] (4)
_ t*‘[l
Zf:l e T
The model incorporates random variables By, 6x, k = {1, ..., K}

representing amplitude and latency variations. The latency jitter
values were independent for all components and were generated
using a Gaussian random variable with mean of 50 ms and stan-
dard deviation 10 ms.The k-th kernel amplitude variation By was
modeled as normally distributed random variable with mean of
unity and standard deviation equal to 0.2.

We modeled brain noise with L = 1000 spatially coherent,
task-unrelated cerebral sources whose locations and time series
varied with each realization. The corresponding topographies b;
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were calculated using locally fitted concentric spheres MEG for-
ward model as implemented in EMSE Software Suite, Source
Signal Imaging Inc., San Diego, CA, USA. The activation time
series were narrow-band signals obtained via zero-phase filtering
of realizations of Gaussian (pseudo)random process by the fifth
order band-pass IIR filters in the bands corresponding to theta
(4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz) and gamma (30-50
and 50-70 Hz) activity. Their relative contributions were scaled
in accordance with 1 characteristic of the realistic EMEG spec-
trum. An additional narrow-band alpha-component (9-11 Hz) of
occipital origin ([—0.05, 0.01, 0.06] in EMSE coordinate system)
was also included. We scaled the brain noise components to match
typical signal-to-noise ratio of real-life recordings.

3. RESULTS

3.1. DISCRIMINATIVE POWER OF THE MI SPECTRUM

Consider the situation when a task-related signal is generated by
a pair of dipolar sources. When a pair of sources has highly cor-
related topographies or, in case of a large imbalance in source
magnitude, the second singular component may be obscured and
may not produce a pronounced SV distinguishable from the base-
line. In this case, analysis of the SV spectrum will fail to provide
the correct estimate of the signal subspace dimension. An example
is illustrated in Figure 1, where the SV spectrum of the averaged
data matrix obtained from a simulated dataset with R = 2 task-
related sources does not have a significant drop between R = 2
and 3. On the contrary, the MI spectrum exhibits a very clear sep-
aration between task-related and task-unrelated parts, as it can be
seen in the bottom panel of Figure 1.

In order to perform a more systematic evaluation of using MI
to measure the extent to which a component is task-related, we
performed a set of simulations with two dipolar sources in the
presence of realistic brain noise. We varied the ratio of activation
amplitudes of the two dipoles, performed SVD of the averaged

= Original ERP
— Dec. kemels

50 100 150

FIGURE 3 | To simulate trial-to-trial variation of the responses we used
overlapping Gaussian kernel based model. At each trial we varied relative
positions of the kernel centers, kernel amplitudes, and global response
latency with respect to the binary stimulus signal. A typical response and
its representation with a set of overlapping modulated kernels is shown.

data matrix and calculated the MI spectrum for the projections
of continuous data onto the left singular vectors. We then com-
pared the discriminating power of the MI and the SV spectra. To
do so we introduced the discriminating indicator q. Since the cor-

rect rank value is R = 2 we used g = log (%) — log (%), see

Figure 1. g is sensitive to the drop between the second and the
third components, referenced to the ratio of the two largest noise
range spectrum values (with indices 3 and 4) immediately follow-
ing the two signal components (with indices 1 and 2). Results are
shown in Figure 4, illustrating the discriminating indicator g as a
function of source amplitudes ratio. We performed this numer-
ical experiment for a varying number of trials in a simulated
dataset. We found that the proposed MI spectrum outperforms
the SV spectrum for all trial counts, and also provides for a clearer
seperation between the task-related and task-unrelated compo-
nents. Also note that in most cases the correlation of the subspace
spanned by the first two singular topographies and the true sig-
nal subspace spanned by a; and a, was sufficiently high to be
considered as a correct estimate of the simulated signal subspace.

3.2. RECEIVER OPERATING CHARACTERISTICS OF MI

In this section we describe our experiments on exploring receiver
operating characteristics (ROC) of the MI metrics. We consider
the task of discriminating between the components that contain
task-related signal and those that do not. Spatial components z;(t)
obtained from signals that can be represented using Equation
(1) can be viewed as the superposition of signal and noise,
expressed as

z(t) = af (t) + opp(t) + opn(t), (5)
Discriminating powerof Mland SV spectra
4
o MLN“=50
B e WLN =TO 5

S
g SV N e

//
25| e SV N =70
DN TN PTY 75r//c>/2

log[Q(2)/Q(3)] - log[Q (3)/0 (4)]

.
o :
0.5 / //%?
V2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
source amplitude ratio, g

FIGURE 4 | Discriminating power indicator q as a function of source
amplitudes ratio for different number of trials calculated for Ml and SV
spectra. Each curve corresponds to a fixed datapoints count. We can see
that the proposed MI based measure outperforms power based technique
and produces a clearer cut between the task-related and task-unrelated
components.
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where f(¢) is task-related source activity of amplitude a. p(¢) and
n(t) are the contributions from spatially coherent and spatially
white noise sources, with standard deviation values ¢, and o,
respectively.

We simulated repetitions of the task-related signal, including
the jitter and variations characteristic of realistic brain signals. For
each of N, = 1000 Monte-Carlo realizations, we simulated N =
100 signals according to Equation (5). N7 = 10 out of 100 signals
had a = 1 and the remaining Ny = 90 signals had a = 0, i.e., no
task-related signal present. We simulated brain noise as described
in the Simulations Procedure section. The goal was to detect the
components that contain task related signals. We compared the
MI values against the more traditionally used stimulus-locked
averaged signal power (AP), calculated as

Pi=) 7).

teW

(6)

where z;(t) is the stimulus-lock averaged i-th signal. The sum-
mation was performed over a 200 ms window centered ont the
stimulus. We used the same windows to calculate both MI and
AP measures.

To calculate the ROC curves, we applied thresholding to the
MI and AP spectra separately, and marked as detected only those
components whose corresponding MI or AP values exceeded the
threshold. The threshold was originally chosen to be 0.05 of the
largest value in the spectrum (AP or MI). In order to obtain
the ROC curve we calculated the sensitivity pee,s(6) = N—TP and
specificity popec(0) = 1 — NFP for a succession of evenly spaced

threshold values 6 = 0.05 kmax, (I;) or 6 = 0.05 kmax;(P;) for
k=1,...,19.

The result is shown in Figures 5A,B. For all epoch counts,
the MI based measure significantly outperforms the power-based
characteristic, and also provides better sensitivity for any selected
specificity. We have observed similar behavior when dealing with
real MEG data, as described below in the “MI versus AP for small
epoch counts in real data” section. The improved ROC may be
explained by the fact that the MI based measure implicitly takes
into account higher order statistical information as compared to
the power based approach, where only the first and second order
statistical moments are used.

3.3. APPLICATION TO M1 MAPPING

Reliable mapping of the primary motor cortex (M1) based on
functional neuroimaging provides an important complement to
the use of structural data alone. However, since various zones
forming the somatosensor complex appear to be in a coupled
interaction even in the motor planning stage, the localization of
M1 zone from the functional EEG and MEG data via standard
approaches is problematic and often does not yield reliable results
(Sanders et al., 1996; Gerloff et al., 1998).

Inspired by the work of Riehle (2005) we explored the possi-
bility of using the information from activation timecourse mor-
phology and looked for spatial properties of activations with
sharp non-linear increase just preceding the movement onset.
To do so we studied MEG-recorded brain responses during a
voluntary index finger movement task performed by 18 healthy
right-handed volunteers.

For computational feasibility we used a subset of 50 sensors
located over the left sensory-motor region. These were selected
based on the grand-average responses, as shown in Figure 6.
Recordings from all experimental sessions in all subjects were

M1land averaged powerROC comparison

T
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FIGURE 5 | (A) The family of ROC curves for Averaged Response Power and
Mutual Information based detection for various number of epochs on the
same plot. Ml based detection clearly and significantly outperforms the
conventional method. Even with 50 trials the Ml based criterion (“Nrm. M,
50 trials” curve) allows to achieve 70 percent of sensitivity with ideal
specificity. We can see that for all counts of epochs the M| based measure

—0—Nm. Ul
—g—hv. Power

significantly outperforms the power based characteristic. This can be
explained by the fact that in calculation of MI we implicitly take into account
higher order information as compared to the power based approach where
only the first two statistical moments are used. (B) Area under ROC curve
performance characteristic for Averaged Response Power and Mutual
Information.
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FIGURE 6 | We selected for ICA analysis 50 electrodes over the left
sensory-motor cortex corresponding to the cortical representation of
the right hand. Evoked response fields are shown. The selected sensors
are framed.

concatenated into a single sequence and decomposed using the
InfoMax-ICA approach. We obtained 50 independent compo-
nents and ranked them according to the amount of MI with the
expanded stimulus signal e(t) = s(¢) * k(t) in the 200 ms window
centered around the movement onset moment marked by s(t).
The choice of the time window is motivated by our interest in the
early components reflecting the activity M1 zone.

We then focused on the first two components with the largest
mutual information, as shown in Figure 7. The temporal dynam-
ics of the first two components showed a slow activation increase
starting as early as 400 ms before the actual movement onset.
However, as illustrated in Figures 7A,B, the two components dif-
fered in their behavior during the interval directly preceding the
movement onset. The component with the larger value of MI
exhibited a sharp quasi-exponential growth starting at around
50-70 ms before the movement onset. The onset dynamics of
the second component was smooth, corresponding to a quasi-
linear growth. After movement onset both components show a
pronounced negative deflection reaching a minimum at around
100 ms after the movement onset.

We used MNE distributed source imaging to localize the neu-
ronal generators underlying the topographies of the first two
components with the highest values of MI. In both cases we
observed activations in the area surrounding the central fissure
of the hemisphere contralateral to movement, shown in Figure 8.
After thresholding at p < 0.001 we observed that cortical areas
subserving these two components do not overlap, as shown in
Figure 8. Cortical sources of the first component localized pri-
marily on the anterior slope of the central sulcus superior to the
omega zone, shown in Figure 8C. This source most likely lies in
M1, based on the anatomy. The cortical sources for the second
component were located in the post-central sulcus and in the
depth of the central sulcus inferior to the omega shaped zone,
shown in Figure 8D.

x10°

18} )
14"

1 N
11 11 p<000: _ _ _ _ _ _ _
0.2f

TTTTTTTTTTTTTTTTTTT?TT?T??999?90000000@0000(\
0 5 10 15 20 29 30 35 40 45

FIGURE 7 | Relative contribution of independent components of the
evoked magnetic activity accompanying movement onset. All derived
components (abscissa) are ranked according to the amount of mutual
information with the expanded stimulus signal. The Ml values were
normalized to the overall amount of information (ordinate). (A,B) The
stimulus-locked average time courses of the two components (4 and 1)
with the greatest share of mutual information with expanded stimulus
signal. Abscissa: time (ms) in relation to the movement onset. Ordinate:
component amplitude (arbitrary units). Low-pass filter with 30 Hz cutoff
frequency was applied. Movement onset is shown by the vertical dotted
line. Horizontal dotted line represents the background signal level. Dark-gray
area shows time interval of exponential growth preceding movement onset
of component 4.

3.4. MI VERSUS AP FOR SMALL EPOCH COUNTS IN REAL DATA

We also compared the performance of the MI spectrum with
the more conventional AP metric (6) when the number of
epochs is limited. We took every 30th event and analyzed the
data according to the scheme described above. Independently
sorted MI and AP spectra for the first 15 components are
shown in Figures 9A,B respectively. The MI spectrum clearly
shows the presence of task-related signal in the first two
components with original indices 4 and 1. The AP spec-
trum shows five seemingly task-related components (indices 8,
3, 4, 15, 1) standing out from the baseline. Components 1
and 4 are identified as task-related by the both measures of
task-relatedness.

In order to check which of the two methods provided the
correct answer, we performed stimulus-locked averaging of the
first five components obtained by sorting in decreasing order the
MI and AP spectra, shown in Figure9. The results are shown
in Figure 10. The first two components (4 and 1) identified by
the MI spectrum (see Figure 9A) show a clear task related deflec-
tion. The remaining components do not have significant amount
of stimulus-locked activity and therefore are most likely unre-
lated to the task. Three out of five components identified by
the AP spectrum (first two and the fourth) do not exhibit any
deflection resulting from coherent summation. Note also that
components 1 and 4 are among the five components selected
by the AP spectrum (the third and the fifth). Visual analysis of
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FIGURE 8 | Source localization of the two independent components
with the largest amount of MI, (A) component 4, (B) component 2.
Inflated surface of the left hemisphere obtained by averaging of the
co-registered individual cortices of 18 subjects is shown. Light-gray areas
represent gyri and dark-gray areas represent sulci. The central sulcus is
indicated by arrows. Localization of the sources of both components was
done via MNE approach followed by Bonferroni correction. (C,D) lllustrated
patches correspond to current distribution thresholded at significance level
of p < 0.001. (C) We can see that in agreement with our hypothesis the
topography of the independent component with the largest amount of Ml
predominantly localizes anterior to the central sulcus and may represent the
M1 zone. (D) The second component'’s sources localize to the post-central
fissure and in the depth of the central fissure inferior to the omega shaped
zone.
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FIGURE 9 | Analysis of a subset of trials. Normalized by the first element
value Ml (A) and AP (B) spectra calculated using a subset of events for the
first 15 independent components. On the top of each stem actual
(unsorted) component number. As prescribed by the Ml spectrum we
should select components 4 and 1 as task related. AP spectrum suggests
components 8, 3, 4, 15, 1 for this role. In order to check which of the two
measures provide the right answer we inspected stimulus-locked averages
of the components suggested by the two measures, see Figure 10.

the averages obtained for the other three components suggested
by the AP spectrum does not reveal the presence of signifi-
cant amount of stimulus-locked activity in three out of five
components.

Based on these observations, we conclude that both MI and
AP spectra demonstrate identical sensitivity, as both were able to
detect two clearly task-related components (1 and 4) that were
also found using the full dataset and characterized by inverse
modeling (see Figure 8). However, the MI spectrum exhibits opti-
mal specificity, identifying two components (Figure 9A). Both
of these components appear to have a task-related deflection in
their stimulus-locked averaged profiles (Figure 10A). The speci-
ficity of AP based measure r is poor by comparison with the
MI measure, since AP it identified 5 components (Figure 9B),
including 3 false positives and 2 correct hits (Figure 10B). The
observed behavior is consistent with our simulation studies, illus-
trated in Figures 5A,B, where the MI spectrum demonstrated
significantly higher ROC characteristics, and provided higher
specificity for any fixed sensitivity value compared to the AP
spectrum.

4. DISCUSSION

We describe a novel information-theoretic approach for spa-
tial components ranking. Our method is based on the MI
Spectrum which serves as a power-invariant measure of repeti-
tive task-related signal in the temporal loadings of spatial com-
ponents. Using realistic simulations we demonstrated that the
task-relatedness measure, based on estimating the MI between
a component and the expanded binary stimulus signal, allows
for significantly higher detector characteristics when compared
with conventional alternatives. It also provides a means for
more clear-cut separation of task-related and task-unrelated
components when compared with the standard power driven
approach that is used in SVD, and sometimes used for rank-
ing ICA components as well. The MI measure can be used
for sorting the components obtained from any sort of spatial
decomposition, as long as it is possible to calculate the quasi-
continuous timeseries underlying the components of interest.
The demonstrated advantage in performance over the power-
driven measure makes the MI spectrum method a candidate
for the routine use in ranking both SVD and ICA compo-
nents in the analysis of ERP data. Since the MI method is
insensitive to powerful non-task-related noise sources, it should
also facilitate automatic unsupervised analysis of ERP data
using ICA.

The method can be easily extended to extract not only
the evoked (phase-locked to the stimulus) activity but also
band-specific task induced activity that is characterized by ran-
dom phase but stimulus-locked power fluctuations. Such an
extension would require that the band-pass filtered compo-
nents envelope should be calculated before MI spectrum estima-
tion.

We have also investigated the MI method performance applied
to an MEG dataset in a voluntary finger movement task. Such
paradigms present special challenges, since they include large
amount of random latency jitter when compared with an external
stimulus driven paradigms. This increased jitter comes from the
inevitable errors in the estimates of motion onset obtained from
the accelerometer signal. Nevertheless, the MI measure supported
a clear cut separation of four task related components (Figure 7).
The component with the largest MI (index 4) demonstrated a
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FIGURE 10 | In order to check which of the two methods provide
the right answer we performed stimulus-locked averaging of the
first five components in the order prescribed by sorting of Ml and
AP spectra (Figure 9). Left panel corresponds to Ml prescribed
components and the right panel - to AR As it can be seen the first
two components (4 and 1) emphasized by the MI spectrum (Figure 9A)
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show a clear task related deflection, the subsequent components do
not have significant amount of stimulus-locked activity and therefore are
most likely unrelated to the task as correctly indicated by the
characteristic drop in the MI spectrum (Figure 9A). Three out of five (8,
3, 156) component averages prescribed by the AP spectrum do not
exhibit the expected deflection.

non-linear increase of activation just prior to the motion onset.
In agreement with the previous experiments on primates (Riehle,
2005), this component localized primarily to the anterior slope
of the central sulcus superior to the omega zone (Figure 8C), and
most likely originates in M 1. Thus, we demonstrated the potential
to localize M1 non-invasively on a group level, using a functional
probe.

In order to compare the performance of the MI and power
based measures on the experimental dataset, we used a reduced
number of trials. As shown by simulations (Figures 4, 5), this
reduction should increase the contrast between the performance
characteristics of the two methods. It should also mimic more
realistic scenarios, when only a single subject dataset is used for
ICA analysis. Under these conditions, we demonstrated that the

Frontiers in Neuroinformatics

www.frontiersin.org

January 2014 | Volume 7 | Article 53 | 9


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ossadtchi et al.

Mutual information spectrum

proposed MI based measure for a fixed sensitivity value yields
significantly higher specificity than the more conventional power
based measure. This result is in agreement with our simulation
studies.

In the current work we used a simple histogram-based
approach for calculation of MI, omitting any bias correction. For
realizations of independent random processes Treves and Panzeri
(1995) have shown that MI estimate bias is quadratically pro-
portional to the number of histogram bins used to approximate
the pdf of continuous random processes and is inversely propor-
tional to the number of datapoints. Since we used a large number
of datapoints (N & 6.5 x 10°) in our experimental data analy-
sis compared to the K = 10 bins used for approximation of the
probability density functions, we do not expect a bias correc-
tion procedure to appreciably alter the observed MI . However,
it has also been shown (Chrisman, 2013) that the bias decreases
as the true MI between the timeseries pairs grow. This means
that bias may result in MI values of task-unrelated components
being overestimated, yielding a decreased contrast between the
task-related and task-unrelated components in the MI spectrum.
In our simulation studies we used a relatively small number of
datapoints compared to a standard EEG/MEG data recording per
single patient. Therefore, we expect that the observed perfor-
mance (Figures 4, 5) may be further improved with a proper bias
correction procedure. The use of a biased estimator in the sta-
tistical testing approach we implemented results in less sensitive
tests, since the null-hypothesis distribution estimate appears to
be “shifted to the right” Selection of an appropriate bias correc-
tion method, however, requires a significant amount of additional
numerical experiments and goes beyond the scope of this paper.
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