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Simulating biological neuronal networks is a core method of research in computational
neuroscience. A full specification of such a network model includes a description of
the dynamics and state changes of neurons and synapses, as well as the synaptic
connectivity patterns and the initial values of all parameters. A standard approach in
neuronal modeling software is to build network models based on a library of pre-defined
components and mechanisms; if a model component does not yet exist, it has to be
defined in a special-purpose or general low-level language and potentially be compiled and
linked with the simulator. Here we propose an alternative approach that allows flexible
definition of models by writing textual descriptions based on mathematical notation.
We demonstrate that this approach allows the definition of a wide range of models
with minimal syntax. Furthermore, such explicit model descriptions allow the generation
of executable code for various target languages and devices, since the description is
not tied to an implementation. Finally, this approach also has advantages for readability
and reproducibility, because the model description is fully explicit, and because it can
be automatically parsed and transformed into formatted descriptions. The presented
approach has been implemented in the Brian2 simulator.
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1. INTRODUCTION
Computational simulations have become an indispensable tool
in neuroscience. Today, a large number of software packages are
available to specify and carry out simulations (Brette et al., 2007).
In specifying neural simulations, there is a tension between two
often conflicting goals: a simulator should be able to express a
wide range of possible models while at the same time allowing the
creation of simulations rapidly and easily. Most simulators restrict
the basic model components (e.g., neurons and synapses) to a set
of predefined standard models, thereby severely limiting the range
of possible models.

Defining new model components can be time consuming and
technically challenging, requiring the user to implement them
in a low-level language such as C++, as in the NEST simu-
lator (Gewaltig and Diesmann, 2007; neuron models can also
be specified in NEST’s “simulation language interpreter” lan-
guage), implement them in a special purpose language, as in
the NEURON simulator (Carnevale and Hines, 2006) which uses
NMODL (Hines and Carnevale, 2000) for this purpose, or to
specify them in a complex simulator-independent description
language such as NeuroML (Gleeson et al., 2010) or NineML
(Raikov et al., 2011). In addition, the definition of model com-
ponents may not be entirely transparent, as it may be necessary
to inspect the simulator source code to know the details of the
simulated model. This makes it difficult to assess and reproduce
models, and to verify that they correspond to the description of
them in a publication.

In this article, we present an approach that combines exten-
sibility with ease-of-use by using mathematical equations to
describe every aspect of the neural model, including membrane
potential and synaptic dynamics. We implemented this approach
in Brian2, the current development version of the Python-based
Brian simulator (Goodman and Brette, 2008, 2009), extending
previous work which introduced the use of equations-based def-
initions of membrane potential dynamics. This consistent use of
equations to define all aspects of the model greatly extends the
scope of Brian, making it possible to run on different computing
devices as well as to automatically generate an accurate descrip-
tion of the model to be included in the methods section of a
publication.

Simulating a neural model means tracking the change of neu-
ral variables such as membrane potential or synaptic weights over
time. The rules governing these changes take two principal forms:
continuous updates (e.g., the decay of the membrane potential
back to a resting state in the absence of inputs) and event-based
updates (e.g., the reset after a spike in an integrate-and-fire neu-
ron, or the impact of a pre-synaptic spike on a post-synaptic cell).
Generally, continuous updates can be described by deterministic
or stochastic differential equations, while event-based updates can
be described as a series of mathematical operations. In this uni-
fied framework, it is possible to specify a very wide range of model
components. With different sets of equations, neuronal models
can range from variants of integrate-and-fire neurons to arbi-
trarily complex descriptions referring to biophysical properties
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such as ion channels. In the same way, a wide range of synap-
tic models can fit in this framework: from simple static synapses
to plastic synapses implementing short- or long-term plasticity,
including spike-timing dependent rules. Finally, mathematical
expressions can also be used to describe neuronal threshold con-
ditions or synaptic connections, weights and delays. In sum, this
framework based on the mathematical definition of a neural net-
work model seen as a hybrid system allows for expressiveness
while at the same time minimizing the “cognitive load” for users,
because they do not have to remember the names and properties
of simulator-dependent objects and functions but can describe
them in a notation similar to the notation used in analytical work
and publications (Brette, 2012). In section 2, we describe this gen-
eral framework and show how neural and synaptic models can be
described in this way.

We then explain in section 3 how an equation-oriented
description of models can be transformed into runnable code,
using code generation. This code generation involves two steps.
The first step applies to model components described by differ-
ential equations. In most simulators, the numerical integration
method (such as forward Euler or Runge-Kutta) is either fixed
or part of a model component definition itself. We propose
instead to describe the integration method separately, in math-
ematical notation. Using the capabilities of the Python symbolic
manipulation library SymPy (Joyner et al., 2012), we automati-
cally combine this update rule with the actual model equations
to yield a sequence of abstract code statements. These are high
level pseudocode statements that define a sequence of mathe-
matical operations which abstract away the details of how they
should be computed (e.g., by loops or vectorised statements), for
example a = b + c. The second code generation step then
applies to this sequence of statements and to all other explic-
itly given statements and transforms abstract code statements
into programming language code (for example in C++) using
a general code generation mechanism (Goodman, 2010).

Our approach also has important implications for the issue
of reproducibility of simulation results: by making the equations
underlying the model fully explicit, the source code also acts as
a readable documentation of the model. In addition, giving the
neural simulator access to mathematical descriptions of model
equations or connection patterns allows for straightforward semi-
automatic generation of model descriptions (see e.g., Nordlie
et al., 2009), which we describe in section 4.

2. MODEL DESCRIPTIONS
2.1. NEURAL MODELS
Neural models are described by state variables that evolve in
time. Mathematically speaking, they are hybrid systems: variables
evolve both continuously (e.g., the evolution of the membrane
potential between action potentials) and discontinuously through
events (e.g., the reset of the membrane potential after a spike in an
integrate-and-fire model, or the effect of pre-synaptic spikes). To
describe a model therefore requires a system that allows for both
of these components. An event is a change in the state variables of
the system that is triggered by a logical condition on these vari-
ables (possibly after a delay); spikes are the most obvious type of
events in neural models. But more generally, there could be other

types of events, for example changes triggered when some variable
(e.g., intracellular calcium) reaches a threshold value. In addition,
it is common that neural models, in particular integrate-and-fire
models, have different states, typically excitable and non-excitable
(refractory), with different sets of differential equations. An event
can then not only trigger changes in state variables but also a
transition in state.

It would be possible to make such a system extremely gen-
eral by allowing for an arbitrary number of general states that a
neuron can be in, conditions to change between the states and
descriptions of the dynamic evolution within the states (as in
NeuroML, Gleeson et al., 2010). Such a system would how-
ever have the disadvantage of being very complex to use and to
simulate. Therefore, we imposed restrictions so as to simplify
the description framework while supporting most neural models
currently used.

In the following, we have made the following simplifying
choices: (1) there are only two states, active (excitable) and
refractory (non-excitable); (2) there is a single type of event
per state. In the active state, the only type of event is spikes.
It triggers changes in state variables of the neuron (reset)
and its target synapses (propagation), and triggers a transi-
tion to the refractory state. In the refractory state, the only
type of event is a condition that triggers the transition to the
active state. This is indisputably restrictive, but was chosen
as a reasonable compromise between simplicity and generality.
However, the framework could be extended to more general cases
(see Discussion).

Finally, another important aspect of neural models is that
some state variables represent physical quantities (e.g., the mem-
brane potential, the membrane capacitance, etc.) that have physi-
cal units while others correspond to abstract quantities that are
unitless. Therefore, to be fully explicit and to avoid any errors
when dealing with variables in various units and scales, a descrip-
tion system should allow the user to explicitly state the units in all
expressions that deal with state variables.

In sum, the description of a neuron model consists of the
following four components: the model equations, the threshold
condition, the reset statements and the refractoriness condi-
tion. Model equations define all the state variables with their
units and describe their continuous evolution in time. The
threshold condition describes when an action potential should
be emitted and when the reset statements should be executed.
Finally, the refractoriness condition describes under which con-
dition a neuron can exit the refractory state. We explain in
section 2.1.3 how to specify different dynamics in the refrac-
tory state. We will show that this four-component description
allows for flexible specification of most neuronal models while
being still simple enough to be automatically transformable into
executable code.

2.1.1. Model equations
Model equations of point neurons are most naturally defined
as a system of ordinary differential equations, describing the
evolution of state variables. The differential equations can be
non-autonomous (depend on the time t) or autonomous, and
deterministic or stochastic (referring to one or more stochastic
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processes). To make the equations more readable, the formal-
ism should also allow for named sub-expressions. Note that even
though some models are presented in integral form as sums of
post-synaptic potentials, they can be rewritten into a system of
equivalent differential equations (see e.g., Destexhe et al., 1994).

As an example, consider the following equations defining a
Hodgkin-Huxley model with a passive leak current and active
sodium and potassium currents for action potential generation
(omitting the equations for the rate variables h, m and n):

dv

dt
= Il + IK + INa

Cm

Il = gl (El − v)

INa = gNahm3 (ENa − v)

IK = gK n4 (EK − v)

Since this model includes the action potential generation in
the dynamics it does not need a threshold or reset, except for
recording or transmitting spikes.

The model equations can be readily transformed into
a string description (including information about the units
and general comments), see Figure 1A for a translation into
Brian2 syntax, which includes a specification of units after
the colon and also uses units (e.g., mV) in the equations
themselves.

If a state variable should evolve stochastically, this can be
modelled by including a reference to a stochastic white noise
process ξ (or several independent such processes ξ1, ξ2, . . .).
The inclusion of a stochastic process in the model equations
means that the differential equations are now stochastic, with
important consequences for their numerical integration (see sec-
tion 3.1). Figure 1B shows an example for the description of a
noisy membrane equation in Brian2.

2.1.2. Threshold and reset
Integrate-and-fire models require a threshold condition and
one or more reset statements. A simple leaky integrate-and-fire
neuron, for example, can be described as:

dv

dt
= − (v − v0) /τm

After v > vth: v← v0

where v0 is the cell’s resting and reset potential, vth is the cell’s
threshold and τm is the membrane time constant (see Figure 1C
for a translation into Brian2 syntax).

Reset statements are not restricted to resetting variables but
can perform arbitrary updates of state variables. Similarly, the
threshold condition is not restricted to comparing the mem-
brane potential to a fixed value, it is more generally a logical

FIGURE 1 | Examples for neuronal model descriptions in Brian2. (A)

Differential equations and parameters are defined via multi-line strings, units
are specified after the colon. Note that the units specify the units of the
variables defined in the respective line which in the case of differential

equations is not equivalent to the units of left-hand side and right-hand side
of the equations (volt vs. volt/second). (B) The symbol xi is used to
refer to a stochastic variable for defining stochastic equations. (C,D)

Threshold conditions and reset statements are also defined by strings.

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 6 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Stimberg et al. Equation-oriented model specifications

expression evaluated on the state variables. For example, a leaky
integrate-and-fire neuron with an adaptive threshold could be
described by the equations:

dv

dt
= − (v − v0) /τm

dvth

dt
= − (vth − vth0) /τth

After v > vth: v← v0

vth ← vth + 3 mV

This model increases the threshold after every spike by 3 mV,
between spikes it decays back to the resting value vth0 (see
Figure 1D for the Brian2 syntax).

2.1.3. Refractoriness
In integrate-and-fire models, the fact that a neuron is not able
to generate a second action potential for a short time after a
first one is modeled explicitly (and not following from chan-
nel dynamics described in the differential equations). In con-
trast to that, Hodgkin-Huxley type models only use a threshold
for detecting spikes and the refractoriness to prevent detect-
ing multiple spikes for a single threshold crossing (the thresh-
old condition would evaluate to true for several time points).
In this case, the refractory period is not easily expressed as
a time span but more naturally as a condition that the neu-
ron should remain refractory for as long as it stays above the
threshold.

A simple formulation of refractoriness that allows some flex-
ibility is to consider that the exit from refractoriness is defined
by a logical expression that may depend on state variables and
the time of the last spike. In Brian2, the latter is stored in the
special variable lastspike and the condition evaluates to false when
the neuron must exit the refractory state. For example, a fixed

refractory period of 2 ms can be described as (t − lastspike) ≤
2 ms (see Figure 2A for the Brian2 syntax). If the refractoriness
should vary across neurons, the expression can refer to a neu-
ronal state variable instead: (t − lastspike) ≤ refractoriness. Since
the state variable refractoriness can undergo dynamic changes
as well (e.g., it could be described by a differential equation
or change with every spike as part of the reset), this allows to
model very complex refractoriness conditions (Figure 2B). For
Hodgkin-Huxley models, the refractoriness condition could sim-
ply be v ≥ vth, with no reference to the time of the last spike
(Figure 2C).

Finally, the set of differential equations could be different in
the refractory state. Most generally, this could be described by
two different sets of equations. However, neural models gener-
ally implement refractoriness in only two ways: either some or all
state variables are clamped to a fixed value, or the state variables
are allowed to continue to change but threshold crossings are
ignored. Only the former case (clamped variables) requires new
syntax. We propose to simply mark certain differential equations
as non-changing during the refractory period. This can be an
explicit syntax feature of the description language (as in Brian2,
see Figure 2D). Alternatively, an additional boolean variable rep-
resenting refractoriness can be introduced, and clamping can then
be implemented by multiplying the right hand side of the differ-
ential equation by that variable, interpreting the truth values true
and false as 0 and 1, respectively.

2.2. SYNAPTIC MODELS
The description of synaptic models has very similar requirements
to the description of neuronal models: synaptic state variables
may evolve continuously in time and undergo instantaneous
changes at the arrival of a pre-synaptic or post-synaptic spike.
A synapse connects a pre-synaptic neuron to a post-synaptic
neuron, and can have synapse-specific variable values. Events

FIGURE 2 | Examples for refractoriness formulations in Brian2. (A,B)

Refractoriness condition based on time since last spike. (C)

Refractoriness condition based on membrane potential threshold

crossing. (D) Modifying differential equations based on refractoriness
state, the keyword unless refractory clamps a variable x during
the refractory period, i.e., dx

dt = 0.
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can be pre-synaptic spikes or post-synaptic spikes, and they can
trigger changes in synaptic variables, pre-synaptic neural vari-
ables or post-synaptic neural variables. With these specifications,
describing synaptic models should follow a similar scheme to
the one used for neural models: the continuous evolution of
the synaptic state variables is described by differential equations,
“pre” and “post” statements describe the effect of a pre- or post-
synaptic spike. In contrast to neural models, there is no need
for a threshold condition since action potentials are emitted
from the pre-/post-synaptic neurons according to their threshold
conditions.

A very simple synaptic model might not define any equation
and only add a constant value to a post-synaptic conductance
or current (or the membrane potential directly) on every pre-
synaptic spike, for example gpost ← gpost + 1 nS. Note that the
index “post” is used to distinguish post-synaptic variables from
synaptic variables (in a simple textual description as part of

a neural simulator, a suffix _post can be used instead, see
Figure 3A). Similarly, the index “pre” can be used for pre-synaptic
neural variables. To model differing weights across synapses, a
synaptic state variable w storing the weights can be introduced,
which can then be referred to in the statement: gpost ← gpost + w
(see Figure 3B).

Probabilistic synapses can be modeled by introducing a source
of randomness in the “pre” statement. If U(0, 1) is a random
variable uniformly distributed between 0 and 1 and “int” a func-
tion converting a boolean expression into a value of 0 or 1, a
synapse that transmits spikes with 50% probability can use the
following “pre”’ statement: gpost ← gpost + int (U(0, 1) < 0.5) w
(see Figure 3C).

In the most general formulation, however, the evolution of
the synapses’ state variables have to be described by differen-
tial equations, in the same way as neuronal model equations.
By allowing these equations, as well as the “pre” and “post”

FIGURE 3 | Examples for synaptic model descriptions in Brian2. (A–C)

Forward propagation is described by specifying statements to be executed
on the arrival of a pre-synaptic spike (keyword argument pre), changing the
value of post-synaptic variables (suffix _post). (D,E) Equivalent definitions of
spike timing-dependent plasticity using forward and backward propagation.

The (event-driven) at the end of the differential equations in (D) makes
Brian2 automatically convert the equations into the alternative formulation
given in (E). The name w_max refers to a constant defined outside of the
synaptic model. clip is a function that restricts the values given as the first
argument to the range specified by the second and third argument.
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statements, to refer to pre- and post-synaptic variables a variety
of synaptic models can be implemented, including spike-timing-
dependent-plasticity and short-term plasticity. For example,
models of spike-timing-dependent-plasticity rules make use of
abstract “traces” of pre- and post-synaptic activity. Such a model
(Song et al., 2000) can be described by the following equations:

dAsource

dt
= −Asource/τsource

dAtarget

dt
= −Atarget/τtargetAfter a pre-synaptic

spike: gpost ← gpost + w

Asource ← Asource +�Asource

w← min
([

w + Atarget
]+

, wmax

)
After a post-synaptic

spike: Atarget ← Atarget +�Atarget

w← min
(
[w + Asource]+ , wmax

)

where [x]+ = x for x > 0 and [x]+ = 0, otherwise. This assumes
an additional state variable w, storing the synaptic weights,
parameters �Asource and�Atarget setting the change in the traces
with every spike and a parameter wmax, setting the maximum
synaptic weight. The variable gpost refers to a state variable of the
post-synaptic neurons.

Equivalently, the differential equations can be analytically inte-
grated between spikes, allowing for an event-driven and therefore
faster simulation (e.g., Brette, 2006; Morrison et al., 2007). It is
possible in this case (but not in general) because the variables
Asource and Atarget do not have to be updated at every timestep
(which could be very costly if the model involves a large num-
ber of synapses) since their values are only needed on the arrival
of a spike. Their differential equations are linear, it is therefore
possible to include the solutions directly in the “pre” and “post”
statements. This requires an additional state variable (lastupdate
in Brian2) that stores the time of the last state update (pre- or
post-synaptic spike). The model can then be reformulated with-
out differential equations (storing w, Asource and Atarget as state
variables, see Figure 3E), leading to the formulation of the STDP
rule in its integrated form (Song and Abbott, 2001):

After a pre-synaptic spike:
gpost ← gpost + w

Asource ← Asource · e(lastupdate−t)/τsource +�Asource

Atarget ← Atarget · e(lastupdate−t)/τtarget

w← min
([

w + Atarget
]+

, wmax

)

After a post-synaptic spike:

Asource ← Asource · e(lastupdate−t)/τsource

Atarget ← Atarget · e(lastupdate−t)/τtarget +�Atarget

w← min
(
[w + Asource]+ , wmax

)

The transformation from differential equations to event-driven
updates can be done automatically using symbolic manipulation.
In Brian2, this is implemented for certain analytically solvable
equations, in particular systems of independent linear differential
equations (see Figure 3D).

The framework presented so far is insufficient for two impor-
tant cases, however. One is non-linear synaptic dynamics such as
models of NMDA receptors. In this case, individual synaptic con-
ductances must be simulated separately and then summed into
the total synaptic conductance. In such a model, the total NMDA
conductance of a single neuron can be described as follows (e.g.,
Wang, 2002):

gNMDA
total =

∑
i

gNMDA
i

gNMDA
i = wis

NMDA
i

dxNMDA
i

dt
= −xNMDA

i

τNMDA
1

dsNMDA
i

dt
= −sNMDA

i

τNMDA
2

+ αxNMDA
i (1− sNMDA

i )

After a pre-synaptic spike at synapse i:

xNMDA
i ← xNMDA

i + 1

Another important case is gap junctions. In this case, the synaptic
current is a function of pre- and post-synaptic potential, which
can be expressed in the previously introduced framework, and
then all synaptic currents must be added in a neuronal variable
representing the total current.

Both cases can be addressed by marking every relevant
synaptic variable (NMDA conductance, gap junction current)
so that the sum over this variable should be taken for all
synapses connecting to a post-synaptic neuron and copied over
to the corresponding post-synaptic state variable at each simu-
lation time step. See Figure 4 for the corresponding syntax in
Brian2.

2.3. NETWORK STRUCTURE
We consider the following specifications for synaptic connections:
each synapse is defined by its source (pre-synaptic neuron) and
target (post-synaptic neuron); there is a transmission delay from
source to synapse, and another one from target to synapse (for the
backpropagation needed for example in spike-timing-dependent
plasticity rules); there may be several synapses for a given pair of
pre- and post-synaptic neurons.

There are several approaches to the problem of building the
set of synaptic connections, each having certain advantages and
disadvantages. A set of pre-defined connectivity patterns such
as “fully connected,” “one-to-one connections,” “randomly con-
nected,” etc. does not allow us to capture the full range of possible
connection patterns. In addition, such patterns are not always
clearly defined: for example, if neurons in a group are connected
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FIGURE 4 | Examples for synaptic model descriptions involving summed variables in Brian2. (A,B) The equation lines ending with (summed) specify that
the post-synaptic variable indicated with the suffix _post is set by summing the corresponding synaptic values on each time step.

to each other randomly, does that include self-connections or not
(cf. Crook et al., 2012)? Another approach is to specify connec-
tion patterns using a connectivity matrix, allowing for all possible
connection patterns. The disadvantage of this approach is that
it is not easy to see or report what the underlying connectivity
pattern is.

An alternative approach that offers expressivity, explicitness
and concise description of connectivity patterns is to use math-
ematical expressions that specify: (1) whether two neurons i and
j are connected, (2) the probability of connections between neu-
rons i and j, (3) the number of synapses between i and j (different
types of expressions can be combined).

The first expression is a boolean expression that evaluates to
true for a certain combination of indices i and j. For example,
i = j describes a one-to-one connectivity, �i/N� = j describes a
convergent pattern where N pre-synaptic neurons connect to one
post-synaptic neuron and | (i− j+ N/2

)
mod N − N/2| = 1

describes a ring structure of N neurons, where each neuron con-
nects to its immediate neighbours. More complex patterns can be
expressed in the same formalism, if the expression can also refer to
state variables of the pre- and post-synaptic neurons. Similarly to
the synaptic statements described in the previous section, we pro-
pose using an index or suffix such as “pre” and “post” to specify
these variables.

For example, if the location of neurons in the 2d plane is
stored as neural state variables x and y, spatial connectivity can
be readily expressed. The following expression describes a con-
nection from each neuron to all neurons in a 250 μm radius:√

(xpre − xpost)2 + (ypre − ypost)2 < 250 μm.

The same framework can be used to specify con-
nection probability, possibly in combination with
conditions described above. For example, the condi-
tion i �= j combined with the probability expression

pmax · exp

(
− (xpre−xpost)

2+(ypre−ypost)
2

2(125 μm)2

)
unambiguously defines

a structured random connectivity (as a 2-dimensional Gaussian
with standard deviation 125 μm) that does not allow for self-
connections.

Finally, the expression syntax can also be used to create more
than one synapse for a pre-/post-synaptic pair of neurons (use-
ful for example in models where a neuron receives several inputs
from the same source but with different delays).

See Figure 5 for the use of mathematical expressions to specify
synaptic connectivity in Brian2.

2.4. ASSIGNING STATE VARIABLE VALUES
To make the description complete, the initial value of state vari-
ables must be set. Many models include state variables that differ
across neurons from the start in a systematic (e.g., synaptic
weights or delays might depend on the distance between two neu-
rons) or random way (e.g., initial membrane potential values).
Such descriptions can be expressed using the very same formalism
that has been presented so far (for Brian2 syntax, see Figure 6).
For example, initial membrane potential values might be set to
random values as v0 +N (0, 1) · 3 mV.

For synaptic variables, references to pre- and post-synaptic
state variables can be used to express values depending on the
neurons that are connected via the synapse. For example, synap-
tic delays might be set to depend on the distance of the involved

neurons as

√
(xpre−xpost)

2+(ypre−ypost)
2

speed .

Setting state variables with textual descriptions instead of
assigning values directly using the programming language syntax
may seem to be a questionable choice. However, it offers at least
two advantages: firstly, it allows the generation of code setting the
variable that then runs on another device, e.g., a GPU, instead of
having to copy over the generated values (see section 3); secondly,
it allows for a semi-automatic model documentation system to
generate meaningful descriptions of the initial values of a state
variable (see section 4).
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FIGURE 5 | Examples for synaptic connection descriptions in Brian2.

Strings define conditions based on the pre-synaptic neuron index i,
post-synaptic neuron index j, and pre- and post-synaptic neuron variables with

suffix _pre and _post. Optionally, a value or expression for the probability of
creating a synapse can be given as the keyword argument p. The number of
synapses to create for each connection can be given as the keyword argumentn.

FIGURE 6 | Examples for specifying initial state variable values in Brian2. (A) Neuronal variables. (B–D) Synaptic variables based on pre- and post-synaptic
neuronal variables indicated with suffix _pre and _post respectively.

3. GENERATING CODE FROM MODEL DESCRIPTIONS
To simulate a neural model means to track the evolution of its
variables in time. As shown in the previous section, these dynam-
ical changes consist of three components: continuous updates (the
model equations), event-triggered updates (e.g., the reset in an

integrate-and-fire neuron or the synaptic transmission after a
pre-synaptic spike), and logical expressions defining the events
(e.g., a threshold condition).

Continuous updates are specified in the form of equations that
first have to be combined with a numerical integration method to
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FIGURE 7 | The code-generation process. Left column: user level
descriptions are given either as a set of equations with a numerical
integration method, or directly as a sequence of mathematical statements.
Middle column: in both cases the user level description is turned into a

sequence of mathematical statements which we refer to as “abstract code”.
This involves no change in the case that the user provided a sequence of
statements. Right column: the sequence of abstract code statements is
converted into valid code in the target language.

yield abstract code (see Figure 7 top) which is then transformed
into programming language code. Event-triggered updates and
logical expressions on the other hand are directly specified in the
form of abstract code and only have to be transformed into pro-
gramming language code (Figure 7 bottom). These two steps of
code generation will be described in the following.

3.1. NUMERICAL INTEGRATION OF CONTINUOUS STATE UPDATES
Most neural models are based on equations that are not analyti-
cally solvable. The standard approach is therefore to use numer-
ical integration and calculate the values at discrete time points.
Many well-studied integration methods exist, allowing for differ-
ent trade-offs between computational complexity and precision.
Often, the provided numerical integration methods are either an
integral part of the simulation tool (e.g., in Neuron, Carnevale
and Hines, 2006) or built into a specific neural or synaptic model
(e.g., in NEST, Gewaltig and Diesmann, 2007).

Here we show a new approach implemented in Brian2, in
which a mathematical formulation of an integration method
can be combined with the description of the neural model to
yield abstract code that is later transformed into target lan-
guage code using a common “abstract code to language code”
framework.

3.1.1. Deterministic equations
Explicit integration methods can be described by a recursive
scheme providing the values at discrete time steps. For example,
the “midpoint method” (second-order Runge-Kutta) calculates
the nth value of a variable x (where individual values are spaced
apart in time by dt) according to:

xn+1 = xn + dt · f
(

xn + dt · f (tn, xn)

2
, tn + dt

2

)
(1)

We specify this integration scheme using the following descrip-
tion, defining a name for a subexpression to avoid nested refer-
ences to the function f (which would make later processing steps
considerably more difficult):

’’’k = dt*f(x, t)
x_new = x+dt*f(x+k/2, t+dt/2)’’’

The x_new line denotes the final new value for the variable x.
Let us consider a model equation with two state variables,

describing a neuron with an adaptation current:

’’’dv/dt = (-w-v)/tau_v : volt # the membrane equation
dw/dt = -w/tau_w : volt # the adaptation current’’’

The integration method and the model equations are combined
and transformed into abstract code using SymPy, according to
algorithm 1.

Combining the midpoint method and the neuronal equations
from above according to this algorithm works as follows:

The model equations in vector form:
x = (v, w) , with xv = v, xw = w

f
(
x, t

) =
(

(−xv − xw)

τv
,
−xw

τw

)

The first statement σ:
k = dt · f (

x, t
)

Expanding it:

k =
(

dt · −xv − xw

τv
, dt · −xw

τw

)

Append to code:
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Algorithm 1 | Combining model equations and numerical integration method

description to yield abstract code. Here, the differential equations in vector form

are dx/dt = f (x, t) where x is the vector of state variables with components xv for

variable v, and f is a vector function with corresponding components fv . All

statements in the numerical integration method should be understood as referring

to vectors of variables and vector functions.

for all statements σ in the numerical integration method do

Expand f (x̂, t̂) in σ

Replace xnew in σ by y

for all state variables v do

Append component σv of the transformed σ to code

end for

end for

for all state variables v do

Append xv = yv to code

end for

kv = dt · −xv − xw

τv

Append to code:

kw = dt · −xw

τw

The second statement σ:
xnew = x + dt · f (

x + k/2, t + dt/2
)

Expanding it:

xnew =
(

xv + dt · − (xv + kv/2)− (xw + kw/2)

τv
,

xw + dt · −xw + kw/2

τw

)

After replacing xnew by y:

Append to code:

yv = xv + dt · − (xv + kv/2)− (xw + kw/2)

τv

Append to code:

yw = xw + dt · −xw + kw/2

τw

Finally:
Append to code:

xv = yv and xw = yw

The full abstract code then reads (using names starting with
underscores to denote the variables k and y introduced by the
algorithm):

_k_v = dt*(-v-w)/tau_v
_k_w = -dt*w/tau_w
_v = dt*(-_k_v/2-_k_w/2-v-w)/tau_v+v
_w = -dt*(_k_w/2+w)/tau_w+w
v = _v
w = _w

3.1.2. Stochastic equations
The same procedure can also be applied to stochastic differential
equations, a description of a state updater in this case looks like
(Euler-Maruyama method):

’x_new = x + dt*f(x, t) + g(x, t)*dW’

The function g in the above formulation corresponds to the fac-
tor of the stochastic variable. Note that in the specific case of
the Euler-Maruyama method, the function g has to be a constant
and is therefore not a function of time (“additive noise”), we use
the notation g(x, t) nevertheless for consistency. The symbol dW
denotes a normally distributed random variable with variance dt.

In an equation defining a simple integrate-and-fire neuron
with additive noise

’dv/dt = -v/tau + tau**-0.5*sigma*xi : volt’

f is identified as -v/tau and g as tau**-0.5*sigma, leading
to the following abstract code:

xi = dt**.5*randn()
_v = -dt*v/tau + v + sigma*tau**(-0.5)*xi
v = _v

The randn() function generates a normal distributed random
number.

In the case of more than one stochastic variable (which can be
used to model shared noise between variables) the stochastic part
of the state updater description is understood as being additive for
all stochastic variables. For example, in the case of two stochastic
variables, the above described integration method is read as

’x_new = x + dt*f(x, t) + g_1(x, t)*dW_1
+ g_2(x, t)*dW_2’

Therefore, the following equation with two stochastic variables

’’’dv/dt = (-w-v)/tau_v + tau_v**-0.5*sigma_both*
xi_both + tau_v**-0.5*sigma_v*xi_v : volt

dw/dt = -w/tau_w + tau_w**-0.5*sigma_both*xi_both:
volt’’’

will be integrated as:

xi_both = dt**.5*randn()
xi_v = dt**.5*randn()
_w = -dt*w/tau_w + w + sigma_both*tau_w**(-0.5)*xi_both
_v = dt*(-v/tau_v - w/tau_v) + v + sigma_both*tau_v**

(-0.5)*xi_both + sigma_v*tau_v**(-0.5)*xi_v
w = _w
v = _v

3.2. TURNING ABSTRACT CODE INTO RUNNABLE CODE
3.2.1. Abstract code
“Abstract code” is also used for updates that are triggered by spe-
cific events, typically a spike, either in a neuron itself or in a pre-
or post-synaptic neuron in the context of synapses. In contrast to
the model equations, this code is not a mathematical formulation

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 6 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Stimberg et al. Equation-oriented model specifications

but an explicit statement on how variables should be changed. For
example, the reset of an integrate-and-fire neuron might simply
state ’v = v_r’ to reset the membrane potential to a specific
value. The new value might also depend on the old value, e.g., for
an adaptation current: ’w = w+3*mV’. This is a programming
language statement and not a mathematical equation, therefore
it could also make use of an in-place operator: ’w += ↪→
3*mV’. In Brian2, abstract code is used for the reset statements
of an integrate-and-fire neuron (where the reset might include
updating adaptation variables, changing the refractory period,
etc.) and for the code executed on the arrival of pre- or post-
synaptic spikes at a synapse. As shown in the previous section,
the code generated from model equations via the numerical inte-
gration method also is abstract code that will be executed on every
timestep.

Abstract code is currently restricted to simple statements of the
form:

{variable} {operator} {expression}

where {variable} is the name of a state variable (or a tem-
porary variable used later in the same abstract code block),
{operator} is one of =, +=, -=, *=, /=, i.e., either an
assignment or an inplace operation, and expression is an
arbitrary expression in Python syntax (which is mostly indistin-
guishable from C++ syntax, except for rare exceptions such as
the absence of a “power” operator in C++, where the pow func-
tion will be used as a replacement). Even though this code does
not allow for control structures such as if statements, some condi-
tional updating can be realized by using boolean expressions. For
example, if a model should only update its adaptation variable w
during an initial time period of 1 s, the reset code could be stated
as ’w += 3*mV*int(t < 1*second)’ This makes use of
an int function that converts a boolean expression into 0 or 1.

3.2.2. Expressions
The final remaining building block for model definitions are
expressions, such as the threshold condition in integrate and fire
models. It could refer to a fixed value (’v > -30*mV’), to
another state variable (’v > v_t’) or use any other expression
that would be admissible in the right-hand-side of an abstract
code statement; in fact, the threshold condition is simply captured
in a variable by transforming the expression {expression}
into the statement _cond ={expression}. We now describe
some specifics for expressions used in making synaptic connec-
tions and in assigning state variables.

Building connections from the synaptic connection descrip-
tions presented previously is straightforward: two nested loops
iterate over all possible values of i and j, evaluating the con-
nection condition in turn, using the given i and j values and
accessing any referenced pre-/post-synaptic variables with indices
i and j respectively. If the condition evaluates to true and
no probability is given, the given number of synapses is cre-
ated (potentially after evaluating the expression determining
the number of synapses, in the same way as the condition
was evaluated). If a probability has been given, creating the
synapse(s) is only done if a random number drawn from a

uniform distribution in the interval [0, 1) is smaller than the
given probability (respectively the result of evaluating the given
expression).

Note that in languages supporting vectorization (e.g., in
Python with the NumPy libraries (Oliphant, 2007)), instead of
looping over individual indices, it is more efficient to only loop
over one index and use a vector of all values for the other index.
In principle it would be possible to have two vectors of all possi-
ble index combinations i and j and not do any looping at all, but
this would require generating temporary vectors that have size
N ×M (for group sizes N and M) which is infeasible for large
networks.

Setting state variable values with string expressions does not
require any specific mechanism and can use the existing code gen-
eration techniques. In particular, setting a state variable of a group
of neurons can be implemented in the same way as the reset (it
can be thought of as a reset that only happens once, not after
every spike) and setting state variables of synapses can be imple-
mented in the same way as the effect of a pre- or post-synaptic
spike.

3.2.3. Code generation
The abstract code that is generated from the combination of
model equations and state updater descriptions or directly pro-
vided for event-triggered state updates mostly follows Python
syntax conventions but is not directly executable as such. It
describes what operations should be executed in the context
of a given neuron or synapse, but the implementation may
use vectorization or parallelization over neurons/synapses (e.g.,
in Python, see Brette and Goodman, 2011) or loops (e.g., in
C++). Therefore, there is an additional step to transform the
abstract code into runnable code for a target language and/or
machine.

Let us investigate a simple code statement, resulting from
applying forward Euler integration to an integrate-and-fire model
with an adaptive current (same example as in the beginning of
section 3.1):

_w = -dt*w/tau_w + w
_v = dt*(-v-w)/tau_v + v
w = _w
v = _v

If we let w and v refer to the state variable arrays (NumPy arrays),
these statements are directly executable in Python. However, they
don’t directly change the original arrays, w and v instead refer to
new temporary arrays that need to be copied back to the origi-
nal arrays. Python code generation therefore surrounds the above
code with:

w = _array_w
v = _array_v
... # main state update code (see above)
_array_w[:] = w
_array_v[:] = v

Code in other languages, e.g., C++, does not have built-in sup-
port for vectorisation, therefore it has to loop explicitly. Still,
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the main state update code can be left intact, by surrounding
it with1:

for(int _neuron_idx=0; _neuron_idx<_num_neurons;
_neuron_idx++)

{
double w = _array_w[_neuron_idx];
double v = _array_v[_neuron_idx];
... // main state update code (see above)
_array_w[_neuron_idx] = w;
_array_v[_neuron_idx] = v;

}

Thus, the transformation from abstract code to target code con-
sists of a model-independent template (responsible for the for
loop in the C++ code), statements for reading/writing state vari-
ables from/to the arrays they are stored in and small changes to
the abstract code to yield syntactically correct code in the target
language (in the case of C++ this includes adding semicolons at
the end of statements and replacing x**y by pow(x, y), for
example).

More details on the code generation mechanism can be found
in Goodman (2010).

4. AUTOMATIC MODEL DOCUMENTATION
Even though it is now considered best practice for publications
in computational neuroscience to make the source code that
was used to generate the published results available, a simulator-
independent description of the simulation is still valuable. Firstly,
it is more accessible, particularly for researchers not familiar
with the given simulation environment and/or programming lan-
guage. Secondly, it simplifies reproducing and verifying the result
with other tools.

There are two main approaches to this issue: first, the whole
model can be specified in an abstract specification language such
as NeuroML (Gleeson et al., 2010) or NineML (Raikov et al.,
2011) which then allows the generation of simulator code and tex-
tual descriptions, e.g., in the form of an HTML page (see http://
opensourcebrain.org for examples). Second, the model may be
documented in a standardized form (e.g., Nordlie et al., 2009)
that can be directly included in the publication.

The techniques presented in this paper allow for a third
approach: since the simulator operates on high-level descriptions
of the model in the form of strings, it is possible to create model
descriptions automatically. For example, by virtue of SymPy’s
LATEX printing facilities, Brian2’s Equations object can be auto-
matically converted into mathematical descriptions in LATEX code
(shown here in an interactive Python session):

>>> eqs = Equations(’’’dv/dt = (g_L*(E_L-v) +
g_s*(E_s-v))/tau_m : volt

dg_s/dt = -g_s/tau_s : siemens’’’)
>>> print sympy.latex(eqs)
\begin{align*}
\frac{\mathrm{d}v}{\mathrm{d}t} &= \frac{1}{\tau_{m}}
\left(g_{L} \left(E_{L} - v\right) + g_{s}
\left(E_{s} - v\right)\right) && \text{(unit:
$\mathrm{V}$)}\\ \frac{\mathrm {d}g_{s}}{\mathrm{d}t}

1The code generated by Brian2 is a bit more complicated, including optimisa-
tions using const and _restrict_ keywords.

&= - \frac{g_{s}}{\tau_{s}} &&
\text{(unit: $\mathrm{S}$)}
\end{align*}

Included in a LATEX document, this is rendered as:

dv

dt
= 1

τm

(
gL (EL − v)+ gs (Es − v)

)
(unit: V)

dgs

dt
= − gs

τs
(unit: S)

This “rich representation” of models not only makes it easier to
generate useful model descriptions but can also help in prevent-
ing mistakes when generating them; a description that is directly
generated from code is always “in sync” with it.

Models are not only defined by their equations, but also by
parameter values. For simple parameters, e.g., the time constant
τm from above, most simulators would allow for a convenient
read-out of the values and therefore be able to display them with
name and value in a table, for example. The situation is different
for values that have to be described as a vector of values instead of
a scalar, e.g., a τm that varies across neurons. Suppose we have a
group G, consisting of N neurons, where we want the membrane
time constant τm to vary across neurons. This might be specified
by doing:

G.tau_m = 20*ms + 5*ms*randn(N)

where randn generates normally distributed random numbers.
All that the simulator “knows” in this case, is that the parameter
τm should be set to a given array of N numbers. There is no way
it can infer where these numbers came from and all it can do in
an automatic fashion is either to display all values (which would
be inconvenient for large N), display a subset of them, to give an
“idea” of the numbers used or provide summary statistics, e.g.,
minimum, maximum, mean and standard deviation of the values.
A useful description would have to be manually provided by the
researcher, with all the possibilities for making a mistake that this
entails.

In contrast, consider the following assignment, providing the
expression as a string:

G.tau_m = ’20*ms + 5*ms*randn()’

where randn is implicitly understood to vectorize over all neu-
rons. Given such a description, the simulator can automatically
generate a human-readable documentation of the parameter
value, say “τm = 20 ms+ 5 msN (0, 1),” without any interven-
tion from the researcher.

While a completely automatic documentation will not be fea-
sible in all cases, and postprocessing by the researcher is often
inevitable, a fully automatic documentation system also offers
other advantages: interactive exploration, for example in ipython
notebooks (Pérez and Granger, 2007), benefits from having a
rich representation of model components. In addition, tools that
are concerned with provenance tracking and aim to support the
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workflow of researchers (e.g., Davison, 2012) could use such a
mechanism to give quick and automatic overviews not only over
the parameter values used in simulations but also about the model
itself, i.e., the equations that define it.

5. DISCUSSION
We have described a general framework for defining neural
network models, which is based essentially on mathematical
equations. It consists of a formalism for defining state variables
including their physical units, differential equations describing
the dynamics of state variables, conditions on state variables to
trigger events and event-triggered statements, changing the state
variables discontinuously.

We think that such a mechanism has several advantages over
the approach of writing models based on a fixed library of
models and mechanisms that can only be extended by writing
new descriptions in a low-level language: the equation-oriented
framework allows for straightforward descriptions of models; it is
explicit about details of the model; by relying on common math-
ematical notation it does not require the user to learn any special
syntax or names used for models and mechanisms.

5.1. LIMITATIONS
Not all models can be expressed in the framework we have pre-
sented, and we will now try to list these limitations. Neuron
models were constrained to have only two excitability states,
active and refractory, instead of an arbitrary number of states
with transitions between them. This is not a fundamental limi-
tation of an equation-oriented approach, but rather a choice that
substantially simplifies the syntax.

The framework also neglects the spatial dimension, which
would be important to simulate the cable equation on mod-
els with an extended spatial morphology, or to simulate cal-
cium dynamics. While a small number of compartments could
be already simulated in the current framework (by using the
equations for the equivalent electrical model), a complex multi-
compartment simulation can only be described in a simple way
with an explicit support for this scenario.

Regarding synaptic connections, although a fairly diverse set
of synaptic models can be expressed with our framework, there
are at least two limitations: structural plasticity and develop-
ment (requiring the addition and removal of connections during
a simulation), and hetero-synaptic plasticity (which cannot be
expressed in the presented framework that describes changes in
individual synapses independently of other synapses). Extending
the framework to cover these cases is not impossible but would
require substantial additions.

Finally, the proposed method of specifying the numerical inte-
gration method is designed for the general case where the equa-
tions cannot be integrated analytically. In Brian2 we do however
also allow for special integrators for specific cases such as linear
equations that can be integrated exactly using a matrix exponen-
tial (Hirsch and Smale, 1974; Rotter and Diesmann, 1999). Even
though such integration schemes cannot be expressed in the way
described in this paper, they still fit with the general code gen-
eration framework: instead of combining the model equations
with a textual description of the integration method to yield the

abstract code, the numerical integration method is implemented
as a Python function that converts model equations directly into
abstract code.

5.2. RELATION TO OTHER WORK
The NineML description language uses string descriptions of dif-
ferential integrations, conditions and statements in a similar way
to the approach presented here. However, due to the use of XML-
based definitions and the decision to allow an arbitrary number
of states and transition conditions, it is much more verbose in
the common use cases and therefore more difficult to use for
interactive exploration and rapid development. NineML and the
approach presented here are not incompatible but rather comple-
mentary. It would be possible to automate the creation of a Brian2
simulation from a NineML description or vice versa.

For describing connectivity patterns, Djurfeldt (2012) pro-
posed the connection-set algebra. This is based on similar ideas
as the approach presented here, notably it also allows for unam-
biguous, explicit descriptions and has a high expressiveness.
Connection-set algebra builds on the concept of elementary con-
nection patterns (e.g., one-to-one connectivity, full connectivity)
that can then be combined to yield more complex patterns. One
advantage of this approach over the one we presented is that it
allows for an implementation that is very efficient, especially for
sparse connectivity patterns such as one-to-one connectivity (it
generates all pairs (i, i) instead of checking all pairs (i, j) for i
being equal to j). However, it also has a few disadvantages com-
pared to our approach: connectivity patterns that are based on
arbitrary pre- or post-synaptic state variables are more difficult
to specify, and it defines connectivities based on a system that
is completely separate from the rest of the model definition and
cannot make use of common features such as the unit system.

5.3. FUTURE WORK
The framework presented allows for a wide variety of models with
a minimal and unobstrusive syntax. However, we also plan to fur-
ther increase its expressivity: the restriction to two neural states
can be lifted without sacrificing simplicity by supporting multiple
event types, each with a condition and a list of statements to be
executed. This indirectly allows for an arbitrary number of states,
since the state could be represented by a neural variable and equa-
tions could then depend on this value. The textual descriptions of
numerical integration methods are currently restricted to explicit
methods that only refer to the previous simulation time step. The
same formalism could be quite naturally extended to implicit
methods (e.g., the backward Euler method: xnew = x + dt ·
f (t + dt, xnew) or multistep methods (e.g., the two-step Adams-
Bashforth method: xnew = x + dt

( 3
2 f (t, x)− 1

2 f (t − dt, xprev)
)
).

More efficient synapse creation for sparse connectivities (e.g.,
one-to-one connectivity) can be achieved by either analyzing the
user-specified connectivity definition for common patterns (e.g.,
i = j), or by adding a new syntax explicitly stating which synapses
to create (in contrast to a boolean condition for a synapse to
exist). Finally, control statements such as if and for could be
added to abstract code. This poses some challenges for code gen-
eration, particularly when using vectorised statements, but would
allow for even greater expressivity in models, and the use of more
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complex numerical integration schemes such as variable time
step schemes. These additions would allow for a wider variety
of expressible models without sacrificing the core principles of
model descriptions being explicit, readable and easy to write.
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