
ORIGINAL RESEARCH ARTICLE
published: 21 February 2014

doi: 10.3389/fninf.2014.00016

Stimfit: quantifying electrophysiological data with Python
Segundo J. Guzman1, Alois Schlögl1 and Christoph Schmidt-Hieber2,3*

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
2 Wolfson Institute for Biomedical Research, University College London, London, UK
3 Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK

Edited by:

Eilif B. Muller, École polytechnique
fédérale de Lausanne, Switzerland

Reviewed by:

Szymon Leski, Nencki Institute of
Experimental Biology, Poland
Srikanth Ramaswamy, École
polytechnique fédérale de
Lausanne, Switzerland

*Correspondence:

Christoph Schmidt-Hieber, Wolfson
Institute for Biomedical Research,
University College London, Gower
Street, London, WC1E 6BT, UK
e-mail: c.schmidt-hieber@ucl.ac.uk

Intracellular electrophysiological recordings provide crucial insights into elementary
neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting
these signals is essential for a quantitative understanding of neuronal information
processing, and requires both fast data visualization and ready access to complex analysis
routines. To achieve this goal, we have developed Stimfit, a free software package for
cellular neurophysiology with a Python scripting interface and a built-in Python shell.
The program supports most standard file formats for cellular neurophysiology and other
biomedical signals through the Biosig library. To quantify and interpret the activity of
single neurons and communication between neurons, the program includes algorithms
to characterize the kinetics of presynaptic action potentials and postsynaptic currents,
estimate latencies between pre- and postsynaptic events, and detect spontaneously
occurring events. We validate and benchmark these algorithms, give estimation errors,
and provide sample use cases, showing that Stimfit represents an efficient, accessible
and extensible way to accurately analyze and interpret neuronal signals.

Keywords: electrophysiology, patch-clamp, data analysis, biosignal data formats, free software, C++, Python

1. INTRODUCTION
Neurons communicate with each other in a precisely timed, care-
fully orchestrated and widely tunable process termed synaptic
transmission. The critical steps of this process include action
potential generation in the presynaptic neuron, neurotransmitter
release from the presynaptic terminal, and integration of synaptic
inputs in the postsynaptic cell. To understand how information
is processed in the brain, it is essential to accurately measure
and reproducibly quantify these elementary steps of neuronal
communication.

Intracellular patch-clamp or sharp microelectrode recordings
provide insight into this neural communication process with
unmatched accuracy, resolving membrane potential at the micro-
volt level with microsecond precision in cell cultures, acute brain
slices, anesthetized and awake animals. These techniques can be
applied to a single neuron to study its sub- and suprathresh-
old activity. Alternatively, simultaneous recordings from multiple
neurons can be used to directly measure synaptic interac-
tions between neurons. Finally, subcellular axonal and dendritic
recordings assess the propagation of activity within a neuron.
Data from such intracellular recordings are typically stored as
repetitive epoch-like events (“sweeps”) that may be composed
of millions of sampling points. Efficient analysis and interpre-
tation of the resulting large datasets require user-controlled fast
visualization of recordings, simple selection of relevant sweeps,
and straightforward application of analysis routines to single or
multiple sweeps.

Given the large variety of experimental questions and
approaches in cellular neuroscience, flexibility and extensibility
through user customization are fundamental requirements for

a data analysis environment. A custom scripting language with
an interactive command-line environment represents a common
solution but it generally lacks practical use outside of the context
of the specific application. In contrast, general purpose pro-
graming languages like Python (van Rossum, 2007) give access
to supplementary scientific libraries, and provide tools to assist
with additional aspects of the analysis, such as storage, organi-
zation and sharing of analysis results. Moreover, by fully relying
on free and open-source software, reproducibility of analysis
routines can be ensured across different systems and platforms
(Peng, 2011).

We here present Stimfit, a free analysis environment for cel-
lular neurophysiology. We describe its workflow that utilizes a
standard desktop application with oscilloscope-like elements, and
show how a Python scripting interface and a built-in Python
shell can be used for customizing and extending the program
functionality. We then present and validate analysis algorithms
and routines that Stimfit uses to quantify neuronal signaling and
communication, and provide sample use cases to illustrate the
program functionality.

2. ANALYSIS WORKFLOW
We developed a natural analysis workflow to efficiently select
and analyze representative electrophysiological signals that are
acquired in consecutive traces (“sweeps”). Our goal was to design
a software with a general desktop application interface (i.e.,
with standard menus and mouse interaction) that incorporates
concepts that are familiar to neurophysiologists, such as the pres-
ence of cursors in digital oscilloscopes. We devised the analysis
workflow in four conceptually distinct layers (Figure 1).

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00016/abstract
http://community.frontiersin.org/people/u/87638
http://community.frontiersin.org/people/u/121167
http://community.frontiersin.org/people/u/44999
mailto:c.schmidt-hieber@ucl.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

FIGURE 1 | Analysis workflow. A four-layered analysis workflow that includes
(I) loading/exporting the recordings from/to various file formats, (II) setting the
location of the cursors in the regions of interest, (III) navigating through the
traces to select experiments matching inclusion criteria, and (IV) applying

measurements to the list of selected traces. The code in the right part of the
flow diagram shows how these operations can be performed from the
embedded Python shell. Note that the layers can be applied in any order, for
example first select traces (layer III) and last save selected traces in a file (layer I).

2.1. LAYER I: FILE IMPORT AND EXPORT
Electrophysiological data are commonly acquired using an
integrated commercial recording system comprising an amplifier,
an analog-to-digital converter (ADC) and a compatible soft-
ware package for controlling and storing the recordings. Usually,

each vendor uses its own data format, limiting interoperabil-
ity between platforms and complicating data exchange between
scientists. Stimfit overcomes this problem by supporting a
large range of data formats, including the most common
file types in cellular neurophysiology (ABF/ATF, AXG, CFS,

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

Heka/Patchmaster, see Table 1). Data can be exported to CFS,
GDF, HDF5 or IBW formats for further processing with other
software packages.

As an additional file handling backend, the Biosig library has
been included, adding support for more than 30 additional file
formats and providing a common software interface to access
them (Vidaurre et al., 2011). Biosig also supplies an automated
file format identification, reducing the need for the user to select
the correct import filter. It natively supports the “General Data
Format for biomedical signals” (GDF, Schlögl, 2013), which com-
bines features of various standards in biosignal data formats in
a single format, in the hope of reducing proliferation of mutu-
ally incompatible data formats. With Biosig, signals from various
native formats, such as fluorescence data, can be converted to
GDF for further analysis with Stimfit or other common analysis
platforms, like MATLAB/Octave.

To access data stored in common electrophysiology formats
from Python without running Stimfit, a standalone Python mod-
ule (stfio) has been developed. An accompanying Python module,
stfio_plot, includes functions that replace coordinate axes with
scalebars in plots generated with the matplotlib library, as is
customary when displaying electrophysiological traces.

2.2. LAYER II: POSITIONING OF MEASUREMENT CURSORS
After loading a recording, individual traces of a data set are
presented as on an oscilloscope, with pairs of vertical cursors
delimiting regions of interest. Once the user has chosen the cur-
sor positions (baseline, peak, decay, and latency), measurements
are performed within the cursor regions of the currently displayed
trace.

2.3. LAYER III: TRACE SELECTION
During navigation through a file, data are displayed using a fast
algorithm (described below), and all measurements are updated
so that quantitative criteria can be used to select traces for further
analysis. If required, selected traces can be concatenated to a single
uninterrupted trace or visualized in a separate window.

Table 1 | List of supported file formats.

File type Brief description Read Write

ABF Axon binary file format 1 (pClamp
versions 6–9)

Yes+ No

ABF2 Axon binary file format 2 (pClamp
versions 10+)

Yes No

ATF Axon text file format Yes Yes

AXGX/AXGD Axograph X file format Yes No

CFS Cambridge electronic devices filing
system

Yes+ Yes

GDF General dataformat for biosignals Yes* Yes*

HDF5 Hierarchical data format 5 Yes Yes

HEKA HEKA binary file format Yes+ No

IBW Wavemetrics Igor binary waves Yes* Yes

Only formats relevant for cellular physiology are listed.

(*) indicates support through Biosig, (+) indicates improved support through

Biosig.

2.4. LAYER IV: ANALYSIS ON SELECTED TRACES
Finally, a set of analyses can be applied to the list of selected
traces. Basic analysis routines include baseline substraction, aver-
aging across traces, filtering, etc. Moreover, traces can be fitted
to common models in neuroscience (alpha synapse function,
multiexponentials, etc.), and spontaneous synaptic events can be
extracted from the traces.

Every layer of the workflow can be executed independently or
in a different sequence. For example it is possible to first select
traces (layer III) and then save the selection to a file (layer I). All
layers can be controlled from a Python shell that is embedded into
Stimfit. This permits both a direct interaction with the program
(e.g., control cursor location, return measurements) and access
to the data using the stf module. An example script is given in
Supplementary Listing 1.

3. RESULTS
3.1. FAST TRACE VISUALIZATION
To efficiently visualize data sampled with high frequencies at uni-
form time intervals, we devised a down-sampling algorithm that
minimizes the number of plotted lines while preserving the visual
information from the original time series (Figure 2A).

The basic principle of the algorithm is to avoid redundant line
drawings within vertical pixel columns that will occur if the num-
ber of sampling points n (spaced equally in time) exceeds the
horizontal screen resolution w. Without data reduction, visual-
izing the full time series requires n − 1 line drawings between
subsequent samples. Within each pixel column, n/w − 1 vertical
lines are plotted, covering all pixels between the vertical minimum
ymin and the maximum ymax of the pixel column. As drawing
n/w − 1 lines is more expensive than finding the extreme of n/w
points, our algorithm replaces these lines by a single line between
ymin and ymax. It then proceeds to the next pixel column by con-
necting the last sample of the current column with the first sample
of the subsequent column.

In summary, two lines will be drawn per pixel column, that is a
total of 2w − 1 lines. Notably, the number of lines is independent
of the number of sampling points n. Since the algorithm saves n −
2w − 2 line drawings, it is only beneficial if n > 2w + 2. When
displaying a sweep of 2.5 · 106 data points (e.g., 50 s sampled at
50 kHz), our algorithm accelerates plotting up to ∼500-fold from
∼18 s to ∼35 ms (Figures 2B,C).

3.2. PRINCIPAL MEASUREMENTS
We first sought to validate the principal measurements that
Stimfit performs, including baseline, peak, rise time, half dura-
tion (full width at half-maximal amplitude), and maximal slopes
of rise and decay of an electrophysiological signal (Table 2). We
restrict the validation to these principal measurements, since all
other standard measurements (e.g., baseline standard deviation,
threshold crossing time, latencies, etc.) are derived from them. To
validate our implementation of the principal measurements, we
ensured that the measured values did not differ from known val-
ues obtained from idealized traces. We generated idealized traces
based on common functions (like sine or exponential functions)
that allowed us to analytically obtain expected measurement val-
ues. To mimic the ranges of values observed under experimental

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

FIGURE 2 | Data reduction benchmark. A data reduction algorithm
provides up to ∼500-fold speed increase without visual information loss. (A)

High-magnification view of individual pixels when all consecutive points in a
time series (a clipped action potential) are connected by lines (left) or when a
data reduction algorithm is applied (right). While the algorithm reduces the
amount of plotted lines by a factor of ∼16 in this example, all details of the
time series are visually preserved. Gray shaded pixels are caused by the
anti-aliasing algorithm of the line drawing back-end. (B,C) Plotting times (B)
and relative speed increase by the data reduction algorithm (C) were plotted
double-logarithmically against the number of sampling points n of the time
series. Relative speed increase was computed as the ratio of plotting times
without and with data reduction. In (B), plotting times are shown with (red)
and without (black) data reduction. Vertical dashed lines in (B,C) denote the
minimum number of sampling points n that is required for the algorithm to be
beneficial (speed increase >1.0), indicated by a horizontal dashed line in (C) at
a horizontal screen resolution w (800 pixels in this example). Plotting times
were measured for a 800 × 600 pixels window running on OS X.

conditions, we generated 10,000 data sets by multiplying function
parameters with random numbers drawn from a normal distri-
bution (see an example in Figure 3B). All measurements passed
the validation (e.g., returned the expected analytic values), show-
ing that they are accurate and robust. In addition, to evaluate the
computation time of the measurements we determined the aver-
age time for 10 validations with normally distributed parameters.
The execution times were small (see Table 2) as tested on a stan-
dard computer employed for such analysis. Because routines were
fast and accurate, we decided to make them accessible to Python
in the stf module using the wrapper generator SWIG (Beazley,
2003).

For measurements that involved the computation of a time
derivative, we designed a strategy that minimizes the effect

Table 2 | Description of principal measurements.

Measurement Return values (units) Execution time*

(ms)

Baseline Average value (y units) 2626 ± 25

Threshold crossing Value where the slope exceeds
a predefined rate value (y units)

2219 ± 5

Peak value Local maxima/minima (y units) 705 ± 10

Rise time Time difference between peak
fractions (e.g., 20% and 80%)
(x units)

1115 ± 4

Half duration Full width at half-maximal peak
amplitude (x units)

1155 ± 6

Slope of rise Maximal positive slope on the
rising phase of the peak (y/x
units)

757 ± 3

Slope of decay Maximal negative slope on the
decay phase of the peak (y/x
units)

613 ± 6

*Average time of 10 validations of the measurement with 10,000 randomly

generated signals. Data are expressed as mean ± SD.

of instrumental error (e.g., quantization, amplifier noise) that
occurs upon acquisition at high sampling rates. A common
approach to evaluate slopes (e.g., maximal slope of rise of an
action potential) is to compute the signal difference between
two adjacent sampling points. While slope estimation with this
method may be accurate for low-noise recordings acquired under
appropriate filtering (Nyquist conditions), slopes can be over-
estimated due to the noise if the signals are acquired at very
high sampling rates (Figure 3C). This is because the temporal
derivatives of the noise components (e.g., impedance, ampli-
fier and quantization noise) increase with the sampling rate.
Computations on simulated data showed that not only the
estimation of the maximal slope is affected, but also the con-
fidence interval of the slope estimate increases (i.e., becomes
less accurate, see Figure 3C). We therefore decided to com-
pute the derivatives at a fixed time interval of 50 μs. This
yielded more accurate slope estimates and reduced the depen-
dency of the estimate on the sampling rate and noise level
(Figure 3C).

As the measurements were reliable, we used them to compute
additional parameters of physiological relevance (Figure 3D),
such as latencies between action potentials (calculated between
peaks or between half-maximal amplitudes) or synaptic laten-
cies. Synaptic latency has been defined as “the time interval
between the peak of the inward current through the synaptic
membrane and commencement of inward current through the
postsynaptic membrane” (Katz and Miledi, 1965). The maximal
inward current during an action potential is expected to flow at
the time of maximal slope during the rising phase. The com-
mencement (sometimes called “foot”) of the postsynaptic current
can robustly be estimated from the extrapolated intersection of
the baseline with a line through the two points of time when
the current is 20% and 80% of the peak current (Jonas et al.,
1993).

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

FIGURE 3 | Principal measurements. (A) An action potential showing
baseline (green) and peak (red) cursors that delimit the principal measurements
obtained in layer II of the analysis workflow. (B) An example of a trace used to
provide analytical solutions to validate principal measurements (peak 10
arbitrary units, rise time 0.23 π rad, half duration 0.66 π rad, max slope 1 and
max decay −1). Histograms of baseline, peak, rise time and half duration
measurements (open bars) show estimated measurements together with the
theoretical distribution used to generate the analytical values (gray). (C) The
error to estimate the maximal slope depends on sampling rate and
measurement noise. The black line is the expected maximal slope when

sampling noise free data, in red are the slope values and its 5 and 95 percentiles
obtained when computed slopes from adjacent sampling differences at
different noise levels (impedance noise of 10, 20, 50, and 100 M�, respectively).
Blue lines indicate the slope values calculated from the traces in red, but with a
fixed interval (temporal window of 50 μs). Note smaller confidence intervals
and lower dependency on the sampling rate. Dashed line indicates the maximal
slope value (428.1 V/s) used as reference. (D) Parameters of physiological
relevance, like latencies between an action potential (red) and a postsynaptic
response (black) or between axonal (red) and somatic (black) action potentials
can be computed from principal measurements.

3.3. MODEL FITTING
Describing the kinetics of electrophysiological signals often
requires fitting observations to various models. We used an
implementation of the Levenberg–Marquardt (LM) least-squares
optimization algorithm (Lourakis, 2004) for model fitting and
adapted it to the analysis workflow. This was achieved by allowing
the selection of regions of interest in the data with fitting cursors
(Layer II, Figures 4A,B) to guide the fitting operation along the
standard workflow (Layer III and IV). Settings for the fitting algo-
rithm, such as stopping conditions, are made accessible to the user
(Figure 4C).

Convergence of a fit can be improved by choosing appro-
priate initial parameters. In some cases, the user may be able
to provide adequate initial parameters (Figure 4C) close to the
optimum. However, an automated execution of the fitting proce-
dure, including the choice of initial parameters, is often desirable,
in particular when operating on large data sets. We devised
several strategies to automatically estimate appropriate initial

parameters. For exponential models, we obtain parameters from a
linear regression on logarithmically transformed data. For other
models, we estimate the initial parameters based on the values
returned by the principal measurements described in section 3.2
(i.e., peak, baseline, rise time and half duration). For example, the
rise time of a current transient can be used to estimate the activa-
tion time constant for a Hodgkin–Huxley model. To evaluate our
approach to initializing parameters, we fitted idealized traces that
we generated from model functions using a range of known values
for each function parameter. In all cases, our approach resulted
in a convergence to the correct solution (i.e., the global mini-
mum of the least-squares merit function; see Table 3). In contrast,
when we initialized each function parameter with the average of
all values used to generate idealized traces, we found that some fits
did not converge (i.e., sum of squared errors (SSE) >0.001 for a
single trace; see Table 3). Thus, our approach to initialize param-
eters from the measurements provided the conditions necessary
to perform a correct fit (see Figure 4D) without user interaction.

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

FIGURE 4 | Model fitting by least-squares optimization. (A) Average
excitatory postsynaptic current (EPSC, in black) together with a fit to an alpha
synapse model (red) with a rate of 3.4 ms and amplitude of 13.7 pA. (B) A
single unitary excitatory postsynaptic potential (EPSP, in black) was fitted to a
bi-exponential function (red) with time constants of 7.1 and 161.7 ms,
respectively. Cursors delimit the fitting regions. Measurements performed by
Stimfit (e.g., baseline, peak) provide appropriate initial conditions to the fitting

algorithm. (C) User interface allowing detailed manipulation of both initial
parameters to the fitting model, and fitting options of the fitting algorithm. (D)

Without the aid of the measurements to obtain adequate initial estimates,
only a proportion of fits converges on the correct values (an SSE between
trace and fit >0.001 is considered as a failure). If initial estimates are derived
from the measurements (baseline, peak, rise time, and half-width), the fits
converge correctly in all cases.

Table 3 | Impact of initial estimates on Levenberg–Marquardt fit results.

Model SSE* Unsuccessful fits (%) SSE* Unsuccessful fits (%) Traces tested

Estimates from measurements Estimates from average

Two-gated Na+ conductance 6.7 × 10−4 0 5.0 × 104 32.5 5120

Hodgkin–Huxley Na+ conductance 6.6 × 10−4 0 6.1 × 104 36.4 5120

Alpha synapse 8.7 × 10−28 0 5.2 × 105 37.5 6240

Bi-exponential with delay 1.2 × 10−12 0 3.6 × 102 81.8 10,500

Gaussian function 2.8 × 10−28 0 5.1 × 101 84.7 6860

*Sum of squared errors between the idealized trace and the best fit averaged over the number of traces tested.

Optionally, data can be rescaled to have range [0, 1] in x (typ-
ically time) and y before fitting to improve convergence when
parameters are badly scaled (Dennis and Schnabel, 1996).

We validated the fitting algorithms similarly as we did for the
principal measurements by creating data sets from all our avail-
able models with combinations of known parameters. All models
were fitted by the algorithm with a tolerance level of a single
sampling point for the unknowns.

The fitting procedure is made available from the embed-
ded Python shell. An example script is given in Supplementary
Listing 2.

3.4. EVENT DETECTION METHODS
Stimfit includes template matching and deconvolution algorithms
to isolate individual events such as EPSCs or EPSPs from recorded
data (Figure 5).

3.4.1. Template matching
A template matching algorithm was implemented as described by
Jonas et al. (1993), with some additional details adopted from
Clements and Bekkers (1997). The template consists of a wave-
form p(t) with a length of n sampling points that represents
the time course of a typical event. The template is slid over the

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

FIGURE 5 | Event detection. (A) EPSCs were simulated in a ball-and-stick
model with NEURON. Onset times of synaptic conductance changes (triangles
at top) were simulated as a Poisson process to yield a mean EPSC frequency of
5 Hz. Colored noise was added as low-pass filtered white noise (fc = 1.0 kHz).
Red dashed line indicates mean −5 SD. Only a subset of the full simulation (60 s
duration) is shown. (B) To generate a template waveform, we first extracted
data periods surrounding negative peaks below mean −5 SD (gray traces). The
peak-aligned average of these data periods (black trace) was then fitted to a
bi-exponential function (red trace) serving as a template. (C) Detection criterion

according to template matching (green) and deconvolution (blue) for the EPSCs
shown in (A) computed with Stimfit. Events were detected when the criteria
exceeded a threshold of 2.5 SD (template matching) or 4 SD (deconvolution), as
indicated by red horizontal dashed lines. Two overlapping EPSCs are shown at
the bottom at higher magnification. Detected events are indicated by green
(template matching) or blue (deconvolution) triangles above the traces. (D) Error
rates for the template matching (left, green) and deconvolution (right, blue)
algorithms. Thresholds were adjusted to yield a small total number of false
positive and negative events.

recorded signal r(t), and at each sampling point with index s, it is
multiplied by a scaling factor m and an offset c is added or sub-
tracted so that the sum of squared errors χ2(ts) between the trace
and the template is minimized:

χ2(ts) =
n∑

k = 1

[
r (ts+k) − (

m·p (tk) + c
)]2

As can be seen from this equation, this amounts to the simple
operation of fitting a straight line that relates p(t) and r(t) at every
sampling point.

Finally, some detection criterion has to be applied to decide
whether an event has occurred at a sampling point. Two options
are available in Stimfit: Jonas et al. (1993) suggest to use the lin-
ear correlation coefficient between the optimally scaled template
and the data, whereas Clements and Bekkers (1997) compare the
scaling factor with the noise standard deviation.

3.4.2. Deconvolution
A deconvolution-based algorithm was implemented according to
Pernía-Andrade et al. (2012). The basic idea is to describe the
recorded signal r(t) as a convolution h(t) of the time course of

event onsets f (t) with the time course of a typical event p(t):

h(t) =
∫ t

0
f
(
t − t′

)
p
(
t′
)

dt′,

where f (t) describes event onsets by the Dirac delta function:

f (t) = δ(t − t0) =
{

∞ for t = t0,

0 for t �= t0,
,

where t0 is the time point of the onset of an event.
To detect events, an estimate of f (t) is obtained (f ′(t)) by

deconvolving the recorded signal r(t) from the template time
course p(t). As for the template matching algorithm, a detection
criterion needs to be applied. Following Pernía-Andrade et al.
(2012), we fit an all-point histogram of f ′(t) with a Gaussian func-
tion. The detection threshold is then set as a multiple (typically
4.0–4.5) of the standard deviation of the fitted Gaussian function.

3.4.3. Practical approach to event detection
In practice, the following steps need to be performed to extract
events with Stimfit:

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

1. Extract some exemplary large and isolated events (Figure 5A).
2. Create a template by fitting a function to the average of the

exemplary events (Figure 5B).
3. Extract all events with the final template using a low detection

criterion threshold (Figure 5C).
4. Use the GUI to eliminate false-positive and add false-negative

events (Figure 5D).

3.4.4. Event detection with Python
The event detection algorithms are accessible from the Python
shell through the function stf.detect_events(). It takes an arbi-
trary template waveform as input and returns a detection crite-
rion array. Peaks can be extracted from the detection criterion
array using stf.peak_detection(). An example script is given in
Supplementary Listing 3.

4. CONCLUSIONS
We have described and validated analysis algorithms for cellular
neurophysiology that are available in Stimfit, a free, open-source
and cross-platform application. Its focus lies on viewing and
analyzing electrophysiological signals obtained with patch-clamp
techniques, such as subcellular recordings from dendrites and
axons (Kim et al., 2012), whole-cell recordings from individual
cells (Schmidt-Hieber et al., 2007; Guzman et al., 2010) or paired
recordings from synaptically connected neurons (Eggermann and
Jonas, 2011). In addition to measuring parameters of physio-
logical relevance, the program includes detection routines for
spontaneous events, and an implementation of the Levenberg–
Marquardt algorithm (Lourakis, 2004) to fit the data to stan-
dard mathematical functions (single and multiexponentials) and
common models in cellular neuroscience. Thereby, both quan-
tification of signals and model testing can be performed within
the same analysis platform using an intuitive workflow. Analysis
routines employed in Stimfit were devised and validated across
several laboratories over many years and have been used in many
peer-reviewed publications.

Using the Biosig library as a backend for file I/O (Vidaurre
et al., 2011), Stimfit supports several typical formats for biomed-
ical signals, including those most commonly used in cellular
electrophysiology. Moreover, Biosig provides native, direct and
automated data format recognition that does not require addi-
tional programing effort from the user, in line with Stimfit’s goal
to offer an easily accessible analysis solution.

The analysis algorithms are accessible from a desktop appli-
cation and from an embedded Python shell. This strategy com-
bines an accessible and efficient analysis environment with the
flexibility of a general-purpose scriptable programing language,
making the program extensible and customizable through the
extensive scientific computing ecosystem that is available for
Python (Oliphant, 2007). Python is widely used in neuro-
science (Davison et al., 2009) and has been adopted by most
popular neural simulation environments, such as NEURON
(Hines et al., 2009), NEST (Eppler et al., 2009), and more
recently Genesis (Cornelis et al., 2012). Therefore, an anal-
ysis environment that relies on Python will also facilitate
seamless evaluation and integration of results from computer
simulations.

A number of alternative free software packages are available for
data analysis in cellular neurophysiology (e.g., OpenElectrophy,
Garcia and Fourcaud-Trocmé, 2009; Spyke Viewer, Pröpper and
Obermayer, 2013; WinWCP, http://spider.science.strath.ac.uk/
sipbs/software_ses.htm; RELACS, http://relacs.sourceforge.net/),
some of which include modules for recording data (WinWCP,
RELACS). Stimfit is distinct from these packages in that it is
cross-platform and Python-scriptable (in contrast to WinWCP
and RELACS), specializes on intracellular recordings (in con-
trast to OpenElectrophy and Spyke Viewer), and features an
embedded shell for direct on-line interaction with the graphi-
cal user interface (in contrast to OpenElectrophy, WinWCP, and
RELACS).

While the program’s main focus currently lies on the quan-
tification of single and paired intracellular recordings, we aim to
extend this to extracellular and imaging data by joining forces
with other projects within the lively Python neuroscience ecosys-
tem. To facilitate interoperability with other Python software
tools, we plan to adopt a common, shared object model for rep-
resenting electrophysiological data in Python, as described by the
neo project (http://neuralensemble.org/neo/). Moreover, we aim
to develop an interface to OpenElectrophy to improve support for
extracellular recordings and interchangeable storage of data and
meta-data. The long-term vision is to provide universal, validated
and standard free software tools for the analysis of a wide variety
of neuroscientific multi-channel time series.

5. MATERIAL AND METHODS
5.1. SOFTWARE DESIGN
The core application is written in C++, making use of several
open-source C/C++ libraries (see Table 4). The C++ toolkit
library wxWidgets (Smart et al., 2005) was chosen to create a
graphical user interface (GUI) providing native controls and util-
ities for all available platforms (Microsoft Windows, GNU/Linux
and Apple Mac OS X). In general, the source code can be com-
piled with any ANSI/ISO C++ compiler and has been tested with
the GNU compiler collection (gcc/g++) for GNU/Linux, Mac
OS X, the MinGW-cross-compiler environment (MXE, Grabsch,
2013), as well as with Microsoft Visual C++ 2008 (MSVC2008)

Table 4 | List of C++ external libraries.

Library Brief description Full Standalone

program module

Biosig Biosignal file format support Yes Optional

Boost C++ library Yes No

FFTW Fast fourier transform Yes No

GTest Google unit testing framework Yes No

HDF5 File format for large data sets Yes Yes

LAPACK Linear algebra package Yes No

levmar Levenberg–Marquardt
non-linear regression

Yes No

Python Scriptable general programing
language

Yes Yes

wxPython GUI toolkit for Python Yes No

wxWidgets GUI toolkit for C/C++ Yes No

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 8

http://spider.science.strath.ac.uk/sipbs/software_ses.htm
http://spider.science.strath.ac.uk/sipbs/software_ses.htm
http://relacs.sourceforge.net/
http://neuralensemble.org/neo/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

for Windows (only 32-bit tested). A 64-bit version for Windows
without Python support can be built with MXE (https://github.

com/schloegl/mxe.git).
Stimfit is available for GNU/Linux through the standard

Debian repositories and NeuroDebian (Halchenko and Hanke,
2012), for OS X through the MacPorts repository (https://www.

macports.org), and for Windows as a binary installer.

5.2. EXPERIMENTAL PROCEDURES
In the figures, original traces show whole-cell patch-clamp
recordings obtained from acute brain slice preparations of the
hippocampus as described in Schmidt-Hieber et al. (2004). In
Figure 3A, an action potential is evoked by somatic current injec-
tion in a granule cell of the dentate gyrus. Figure 3D shows excita-
tory postsynaptic currents evoked by an action potential between
synaptically connected CA3 pyramidal neurons and simultaneous
somatic and axonal recordings of an action potential originated
at the mossy fiber axon. In Figures 4A,B excitatory postsynap-
tic currents and corresponding potentials were evoked by a single
presynaptic CA3 neuron via recurrent collateral synapses.

5.3. VALIDATION OF MEASUREMENT AND FITTING ALGORITHMS
All validations were executed on a PC with a 2.5 GHz Intel Core
i5 CPU running on GNU/Linux. To validate principal measure-
ments, we generated synthetic data from analytic functions. As an
example, we used a sine function of the form

g
(
x, A, f

) = A sin 2πfx,

where x is the independent variable, and A and f are ampli-
tude and frequency, respectively. The expected peak measurement
will correspond in this case to A. The expected 20–80% rise
time is (arcsin 0.8 − arcsin 0.2)f , and the expected half width is
2(arcsin 1 − arcsin 0.5)f . For example, if we generate a sine func-
tion with frequency 1, the rise time will be 0.23 π radians, and
the half duration 0.66 π radians. Finally, the expected maxi-
mal slopes of rise and decay will be located where cos 2πfx =
1 and cos 2πfx = −1, respectively. For threshold and baseline
measurements we employed a mono-exponential function and a
Gaussian function, respectively. We then tested 10,000 variations
of randomly distributed parameters. Following this approach, the
validation was considered successful if the value returned by the
measure corresponded to the analytic result with one sampling
point accuracy. In addition, results of the principal measurements
were checked by re-implementing the algorithms in Python or
Octave code that returned identical values for the same data sets.

To quantify the fitting performance to different models (i.e.,
proportion of correct fits), we generated synthetic traces from
the model functions using known parameter combinations (see
Table 3). A trace was considered to be successfully fitted if the
parameters were correctly retrieved and if the sum of squared
errors (SSE) between the trace and the model was below 0.001.
Thus, the proportion of fits is the number of traces successfully
fitted divided by the total number of traces tested. For validating
the fitting algorithm we used a similar strategy that consisted in
generating a set of waveforms with known parameters that were
fitted to the models.

5.4. EVALUATION OF THE SLOPE ESTIMATION ERROR
When computing slopes, we used a realistic action potential wave-
form simulated at an integration interval of 10−3 μs that we
stored with double precision accuracy. The maximal slope of
rise of the waveform was 428.1 V/s. We added thermal noise by
applying impedance values from 0 to 100 M� to the expression

√
4kBTBZ,

where kB is the Boltzmann constant, T the absolute temperature,
B the corresponding Nyquist frequency and Z the impedance. The
waveform was down-sampled to frequencies in the range of 5–
200 kHz and rounded to 2 V/216 to mimic the quantization noise.
Next, we calculated the maximal slope of rise for every sampling
rate and thermal noise level. The maximal slope of rise was cal-
culated using the difference between two consecutive sampling
points or within a fixed time interval. The interval was fixed to
50 μs for sampling rates of 20 kHz or higher. For sampling rates
which are not multiples of that frequency, the interval was fixed to
the number of samples closest to 50 μs. Standard deviation and 5
and 95 percentile values were calculated from 100 different noise
realizations.

5.5. COMPUTER SIMULATIONS
Simulated traces were generated in NEURON 7.3 with Python 2.7
as interpreter (Hines et al., 2009). To generate the action poten-
tial waveform used for the validation of the slope algorithm, a
small current injection (100 pA for 2 s) was injected into a single
compartment with a specific membrane capacitance of Cm = 1
μF cm−2, a leak conductance of 0.1 mS cm−2 and active sodium
(35 mS cm−2) and potassium (9 mS cm−2) peak conductances, as
described by Wang and Buzsáki (1996).

To validate event detection algorithms, excitatory postsynaptic
currents (EPSCs) were generated in a ball-and-stick model with
a somatic diameter and length of 20 μm, a dendritic length of
500 μm and a dendritic diameter of 5 μm. Specific membrane
capacitance Cm was 1 μF cm−2, specific membrane resistance Rm

was 25 k� cm2, and specific axial resistivity Ra was 150 � cm.
Excitatory synaptic conductance changes had a bi-exponential
time course with τonset = 0.2 ms, τdecay = 2.5 ms, a peak ampli-
tude of 1 nS and a reversal potential of 0 mV. Dendritic locations
of synaptic conductance changes were distributed on the dendrite
according to a normal distribution with a center at 400 μm dis-
tance from the soma and a standard deviation of 12 μm. Time
constants and amplitudes of synaptic conductance changes were
varied by multiplying with a random number drawn from a nor-
mal distribution with mean 1 and standard deviation 0.3 for time
constants and 0.1 for amplitudes. Onset times of synaptic con-
ductance changes were simulated as a Poisson process to yield a
mean EPSC frequency of 5 Hz as described by Schmidt-Hieber
and Häusser (2013).

FUNDING
Christoph Schmidt-Hieber is a Feodor Lynen scholar of the
Alexander von Humboldt Foundation and supported by grants
from the European Research Council, the Wellcome Trust and the
Gatsby Charitable Foundation.

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 9

https://github.com/schloegl/mxe.git
https://github.com/schloegl/mxe.git
https://www.macports.org
https://www.macports.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Guzman et al. Data analysis with Stimfit

ACKNOWLEDGMENTS
A previous version of Stimfit was written in Pascal by Peter Jonas
(Institute of Science and Technology Austria). Helpful comments
and bug reports have been contributed by Bill Anderson, Josef
Bischofberger, Daniel Doischer, Emmanuel Eggermann, Liyi Li,
Charlotte Schmidt-Salzmann, and Imre Vida. We thank Amália
Solymosi for editorial assistance.

SUPPLEMENTARY MATERIAL
Stimfit is released under the GNU General Public License and
is available from http://www.stimfit.org. Parts of the results pre-
sented here have been previously published in abstract form
(Schlögl et al., 2013). Supplementary code listings accompany this
publication.

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fninf.
2014.00016/abstract

REFERENCES
Beazley, D. M. (2003). Automated scientific software scripting with swig. Future

Gen. Comput. Syst. 19, 599–609. doi: 10.1016/S0167-739X(02)00171-1
Clements, J. D., and Bekkers, J. M. (1997). Detection of spontaneous synaptic events

with an optimally scaled template. Biophys. J. 73, 220–229. doi: 10.1016/S0006-
3495(97)78062-7

Cornelis, H., Rodriguez, A. L., Coop, A. D., and Bower, J. M. (2012). Python
as a federation tool for genesis 3.0. PLoS ONE 7:e29018. doi: 10.1371/jour-
nal.pone.0029018

Davison, A. P., Hines, M. L., and Muller, E. (2009). Trends in programing
languages for neuroscience simulations. Front. Neurosci. 3, 374–380. doi:
10.3389/neuro.01.036.2009

Dennis, Jr., J. E., and Schnabel, R. B. (1996). Numerical Methods for Unconstrained
Optimization and Nonlinear Equations (Classics in Applied Mathematics,
16). Philadelphia: Society for Industrial and Applied Mathematics. doi:
10.1137/1.9781611971200

Eggermann, E., and Jonas, P. (2011). How the “slow” Ca2+ buffer parvalbumin
affects transmitter release in nanodomain-coupling regimes. Nat. Neurosci. 15,
20–22. doi: 10.1038/nn.3002

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
Pynest: a convenient interface to the nest simulator. Front. Neuroinform. 2:12.
doi: 10.3389/neuro.11.012.2008

Garcia, S., and Fourcaud-Trocmé, N. (2009). Openelectrophy: an electrophysio-
logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:
10.3389/neuro.11.014.2009

Grabsch, V. (2007-2013). Mingw-cross-compiler environment. Available online at:
http://mxe.cc. Accessed on 6 Oct 2013.

Guzman, S. J., Schmidt, H., Franke, H., Krügel, U., Eilers, J., Illes, P., et
al. (2010). P2Y1 receptors inhibit long-term depression in the prefrontal
cortex. Neuropharmacology 59, 406–415. doi: 10.1016/j.neuropharm.2010.
05.013

Halchenko, Y. O., and Hanke, M. (2012). Open is not enough. let’s take the next
step: an integrated, community-driven computing platform for neuroscience.
Front. Neuroinform. 6:22. doi: 10.3389/fninf.2012.00022

Hines, M. L., Davison, A. P., and Muller, E. (2009). Neuron and python. Front.
Neuroinform. 3:12. doi: 10.3389/neuro.11.001.2009

Jonas, P., Major, G., and Sakmann, B. (1993). Quantal components of unitary
EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus.
J. Physiol. 472, 615–663.

Katz, B., and Miledi, R. (1965). The measurement of synaptic delay, and the time
course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond.
B Biol. Sci. 161, 483–495. doi: 10.1098/rspb.1965.0016

Kim, S., Guzman, S. J., Hu, H., and Jonas, P. (2012). Active dendrites support effi-
cient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat.
Neurosci. 15, 600–606. doi: 10.1038/nn.3060

Lourakis, M. (2004). Levmar: levenberg-marquardt nonlinear least squares algo-
rithms in C/C++. Available online at: http://www.ics.forth.gr/∼lourakis/ lev-
mar/. Accessed on 6 Oct 2013.

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.
doi: 10.1109/MCSE.2007.58

Peng, R. D. (2011). Reproducible research in computational science. Science 334,
1226–1227. doi: 10.1126/science.1213847

Pernía-Andrade, A. J., Goswami, S. P., Stickler, Y., Fröbe, U., Schlögl, A., and Jonas,
P. (2012). A deconvolution-based method with high sensitivity and temporal
resolution for detection of spontaneous synaptic currents in vitro and in vivo.
Biophys. J. 103, 1429–1439. doi: 10.1016/j.bpj.2012.08.039

Pröpper, R., and Obermayer, K. (2013). Spyke viewer: a flexible and extensible
platform for electrophysiological data analysis. Front. Neuroinform. 7:26. doi:
10.3389/fninf.2013.00026

Schlögl, A. (2013). GDF - a general dataformat for biosignals. Available online at:
http://arxiv.org/abs/cs/0608052. Accessed on 6 Oct 2013.

Schlögl, A., Jonas, P., Schmidt-Hieber, C., and Guzman, S. J. (2013). Stimfit: a fast
visualization and analysis environment for cellular neurophysiology. Biomed.
Tech. (Berl) 58, SI–S1. doi: 10.1515/bmt-2013-4181

Schmidt-Hieber, C., and Häusser, M. (2013). Cellular mechanisms of spatial
navigation in the medial entorhinal cortex. Nat. Neurosci. 16, 325–331. doi:
10.1038/nn.3340

Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plas-
ticity in newly generated granule cells of the adult hippocampus. Nature 429,
184–187. doi: 10.1038/nature02553

Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2007). Subthreshold dendritic
signal processing and coincidence detection in dentate gyrus granule cells. J.
Neurosci. 27, 8430–8441. doi: 10.1523/JNEUROSCI.1787-07.2007

Smart, J., Hock, K., and Csomor, S. (2005). Cross-Platform GUI Programming with
wxWidgets (Bruce Perens Open Source). Upper Saddle River, NJ: Prentice Hall
PTR.

van Rossum, G. (2007). “Python programming language,” in Proceedings of the
USENIX Annual Technical Conference (Santa Clara, CA).

Vidaurre, C., Sander, T. H., and Schlögl, A. (2011). BioSig: the free and open source
software library for biomedical signal processing. Comput. Intell. Neurosci. 2011,
12. doi: 10.1155/2011/935364

Wang, X. J., and Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 06 October 2013; paper pending published: 29 November 2013; accepted: 04
February 2014; published online: 21 February 2014.
Citation: Guzman SJ, Schlögl A and Schmidt-Hieber C (2014) Stimfit: quantifying
electrophysiological data with Python. Front. Neuroinform. 8:16. doi: 10.3389/fninf.
2014.00016
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Guzman, Schlögl and Schmidt-Hieber. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 16 | 10

http://www.stimfit.org
http://www.frontiersin.org/journal/10.3389/fninf.2014.00016/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00016/abstract
http://mxe.cc
http://www.ics.forth.gr/~lourakis/levmar/
http://www.ics.forth.gr/~lourakis/levmar/
http://arxiv.org/abs/cs/0608052
http://dx.doi.org/10.3389/fninf.2014.00016
http://dx.doi.org/10.3389/fninf.2014.00016
http://dx.doi.org/10.3389/fninf.2014.00016
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Stimfit: quantifying electrophysiological data with Python
	Introduction
	Analysis Workflow
	Layer I: File Import and Export
	Layer II: Positioning of Measurement Cursors
	Layer III: Trace Selection
	Layer IV: Analysis on Selected Traces

	Results
	Fast Trace Visualization
	Principal Measurements
	Model Fitting
	Event Detection Methods
	Template matching
	Deconvolution
	Practical approach to event detection
	Event detection with Python

	Conclusions
	Material and Methods
	Software Design
	Experimental Procedures
	Validation of Measurement and Fitting Algorithms
	Evaluation of the Slope Estimation Error
	Computer Simulations

	Funding
	ACKNOWLEDGMENTS
	Supplementary Material
	References

