
METHODS ARTICLE
published: 05 March 2014

doi: 10.3389/fninf.2014.00017

Analyzing large-scale spiking neural data with
HRLAnalysis™

Corey M. Thibeault*, Michael J. O’Brien and Narayan Srinivasa

Center for Neural and Emergent Systems, Information and Systems Sciences Laboratory, HRL Laboratories LLC., Malibu, CA, USA

Edited by:

Andrew P. Davison, Centre National
de la Recherche Scientifique, France

Reviewed by:

Thomas Wachtler,
Ludwig-Maximilians-Universität
München, Germany
Michael Denker, Forschungszentrum
Jülich, Germany

*Correspondence:

Corey M. Thibeault, Center for
Neural and Emergent Systems,
Information and Systems Sciences
Laboratory, HRL Laboratories LLC.,
3011 Mailbu Canyon Dr., Malibu, CA
90265-4797, USA
e-mail: cmthibeault@hrl.com

The additional capabilities provided by high-performance neural simulation environments
and modern computing hardware has allowed for the modeling of increasingly larger
spiking neural networks. This is important for exploring more anatomically detailed
networks but the corresponding accumulation in data can make analyzing the results
of these simulations difficult. This is further compounded by the fact that many existing
analysis packages were not developed with large spiking data sets in mind. Presented
here is a software suite developed to not only process the increased amount of spike-train
data in a reasonable amount of time, but also provide a user friendly Python interface. We
describe the design considerations, implementation and features of the HRLAnalysis™

suite. In addition, performance benchmarks demonstrating the speedup of this design
compared to a published Python implementation are also presented. The result is a
high-performance analysis toolkit that is not only usable and readily extensible, but also
straightforward to interface with existing Python modules.

Keywords: python, spiking neural data analysis, high-performance computing, spike train analysis, data sharing

1. INTRODUCTION
Large-scale neural simulations have become an increasingly
important tool in computational neuroscience. Although the
methods behind these simulations may be different they all result
in an extraordinary amount of simulated data. Whether it is the
inclusion of highly detailed biophysical models (Markram, 2006),
huge numbers of point neurons (Izhikevich and Edelman, 2008;
Ananthanarayanan et al., 2009), or nervous system spanning
functional anatomy (Eliasmith et al., 2012), the data deluge is a
concern. In addition, the relatively low cost of high-performance
computing systems and the recent popularity of neuromorphic
hardware promises to continue this trend toward larger, more
detailed models. And this problem is not exclusive to neural sim-
ulations. One of the underlying goals of the recently announced
BRAIN initiative1 is to develop tools capable of capturing the
activity of at least one million neurons—an effort that will greatly
improve the state of the art but also result in tremendous amounts
of data.

From a software engineering perspective, this data deluge can
be approached in different ways. Using strongly-typed compiled
languages, such as C, offers high-performance, but can sacrifice
flexibility and extensibility. Languages popular in neuroscience,
such as MATLAB or Python provide a relatively simple interface
but can result in poor performance for many large-scale prob-
lems. In this paper we present, HRLAnalysis™ , a software suite
that aims to alleviate these concerns when processing spiking
data.

Developed as part of the DARPA SyNAPSE program (Cruz-
Albrecht et al., 2012; DARPA, 2012; Srinivasa and Cruz-Albrecht,

1http://www.nih.gov/science/brain/

2012), the HRLAnalysis™ package was initially created as an
implementation of off-line analysis and visualization of spik-
ing and network data for use with HRLSim™ (Minkovich et al.,
2013)—although as described below, the design does not unnec-
essarily restrict its use to only those data formats. One of the
primary results of a neural simulation are recordings of the spik-
ing activity—action potential event times—of each of the neurons
in the network. Spike-train analysis is useful for providing insight
into the structure and function of a neural network or region of
the nervous system. For instance the information encoded about
a stimulus can be extracted using a number of different spike
and rate based codes derived from spike trains (Dayan et al.,
2001; Ince et al., 2009; Quiroga and Panzeri, 2009; Crumiller
et al., 2011). In addition, the synchronization in the spiking of
neurons may indicate a pathological condition or this can used
as a measure of neuronal coding (Kreuz et al., 2013). Similarly,
correlated firings can reveal information about motor behav-
ior, attention, and external stimulus (de la Rocha et al., 2007).
HRLAnalysis™ provides a way to efficiently calculate many of
these useful metrics on a large number of spike trains. As a general
tool, the scope of HRLAnalysis™ is limited to spike-train analysis.
However, as we demonstrate, its design does allow for integration
with existing tools that can complement the functions provided
by HRLAnalysis™ .

To balance efficiency with usability, the extraction—reading
spike data from disk or converting other formats into spiking
data—and analysis of the data is performed in C++ and the plot-
ting and any further manipulation required by the user is handled
in Python through the Boost package 2. With this, users get the

2http::/www.boost.org/libs/python/

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00017/abstract
http://community.frontiersin.org/people/u/41027
http://community.frontiersin.org/people/u/74872
http://community.frontiersin.org/people/u/63753
mailto:cmthibeault@hrl.com
http://www.nih.gov/science/brain/
http://www.boost.org/doc/libs/1_55_0/libs/python/doc/index.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

performance benefits of C++ but also the feature rich and syn-
tactically simple interface of Python. In addition, users can take
advantage of the extensive libraries available to Python for further
manipulation and visualization of the results.

2. METHODS
2.1. INTRODUCTORY EXAMPLE
Before exploring the design of HRLAnalysis™ in detail consider
the example in Figure 1. This gives a qualitative illustration of the
results for a simulated two-layer network using a class that reads
in HRLSim™ voltage files (included with the codebase). The plot
was created using the Matplotlib library3. Listing 1 is the relevant
code required to create this plot. Note that this is incomplete and
assumes that the subplots have been initialized on Line 4.

Each of the different analysis functions—Lines 18, 24, 34, and
40—return pointers to specific structures. In python the differ-
ent data members of these structures are seen as lists and can be
seamlessly plotted with Matplotlib—Lines 19, 25, 30, 35, 41, and
43. This example highlights the simplicity of using HRLAnalysis™

but hides the complexity of the design; in particular that these
objects are implemented and instantiated in C++.

2.2. DESIGN
The hybrid language design of HRLAnalysis™ is facilitated by the
Boost Python package which provides the logic required to inter-
face C++ with Python. Boost was chosen over SWIG4 for its ease
of use and additional features. These include namespace support,
automatic support for return by pointer and base-class reference,
templated type-conversions, and support for multiple source files.

3http://www.matplotlib.org/
4http://www.swig.org/

A data-centric object-oriented design (OOD) pattern was
selected for its balance of performance and extensibility, as well
as for its amenability to interfacing with Python. With this,
structures that organize the spike information in ways that are
optimal to the analysis can be developed by combining the
data with the methods. This allows for algorithmic and com-
piler optimizations—since the form of the data structures are
known and directly accessible—as opposed to relying on decou-
pled data and access functions where the formats may not be
consistent. Beyond the performance of data encapsulation, is the
extensibility OOD provides through object inheritance. Users can
extend the main library, described below, by adding or modi-
fying functionality to fit their particular needs in derived class
objects.

The rationale for employing a Python interface rather than
MATLAB is similar. The object oriented aspects of Python make
it far easier to reuse than MATLAB (Spacek et al., 2009). In addi-
tion, this provides flexibility that simplifies the management of
large-scale projects. Conversely, MATLAB functions are written
in individual files making it difficult to make major modifications
to an existing codebase (Ince et al., 2009). Finally, since Python
is open source there is potentially a larger available user base—all
that is required is a compatible operating system as opposed to a
commercial license.

2.2.1. Core classes
The organization of HRLAnalysis™ is illustrated in the context
diagram of Figure 2. The abstract base class HrlNeuralAnalysis,
written in C++, is the core of the analysis context. The
data structures—described in section 2.2.2—and core analysis
functions—described in section 2.2.3—are contained within this
class.

A E

G

H

F

B

D

C

FIGURE 1 | Example analysis of simulated data using a derived voltage

input class. For this example the rectangular bars highlight regions where
different signals are injected into the network. (A) Raster plot of 100 cells
selected from the input layer. (B) Voltage traces of the target layer neurons. (C)

Raster plot of the target layer. (D) Fire rate of the target output neurons
calculated using a Gaussian window function. (E) Coefficient of variation for 100
cells of the input layer. (F) Average rate for the 100 sample cells. (G) Spike count
histogram for the input neurons. (H) Fully connected feed-forward network.

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 2

http://www.matplotlib.org/
http://www.swig.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

Listing 1 | Pesudocode for creating Figure 1. This is incomplete and
assumes that the appropriate Matplotlib axes are setup on Line 4.
The analysis object is instantiated on Line 8. This is a voltage object
that is specific to processing HRLSim™ voltage files. As arguments
the constructor requires, startTime and stopTime, which define the
region of interest within the experiment, the range of neurons
defined by the startIndex and stopIndex variables, a vector with the
file paths containing the raw voltage data as the fileNames variable,
the number of cells in this voltage file, numCells (this is because of
the data format), a boolean to tell the analysis if the voltages should
be converted into spikes, and finally the membrane voltage threshold
for extracting spikes, threshold. The remaining lines of code perform
the analysis and create the individual plots. Note that Figure 1C is
created using a separate analysis object that extracts information
about a different cell population but is exactly the same as Line 18.

Specialized child objects that derive from the base class are
then defined to process different spike data formats—this can
be from files, live recordings or running simulations. These
are only responsible for implementing the virtual function
buildDataStructures and constructing the internal data structures,
described below. In addition, these derived classes can extend the
core functionality by adding additional analysis functions.

The execution of these core functions is controlled from the
Python interface. As an example, the provided derived class that

handles the HRLSim™ data format would be instantiated in
Python using

from libHrlAnalysis import *
analysis = HrlNeuralAnalysisHRLSim(

sampleStartTime,
sampleStopTime,
neuronStartIndex,
neuronStopIndex,
fileNames)

The constructor reads in the bounds of the analysis win-
dow, sampleStartTime and sampleStopTime, which define the
region of interest within the experiment. The range of neu-
ron indices is then defined by the neuronStartIndex and neu-
ronStopIndex variables. Finally, a vector, composed of the file
paths containing the spikes, is passed in as the fileNames
variable.

At this point analysis is not completely initialized since build-
DataStructures has not been called—it is bad practice to call a
virtual function from a constructor (Sutter and Alexandrescu,
2004). The user does have the option of directly calling an analysis
function since the core library will check if the internal structures
have been constructed and buildDataStructures will be called if
not. Alternatively, buildDataStructures can be called directly using

analysis.buildDataStructures()

The resulting data structures are described below.

2.2.2. Data structures
The two main storage containers constructed in the buildDataS-
tructures function, cellActivity and spikeActivity, organize the
spike information by cell or time (see Figure 3). Internally, spike-
Activity is a Standard Template Library (STL) vector (Stepanov
and Lee, 1995), of STL pairs, containing spike time and cell
index, ordered by spike times. Similarly, the cellActivity struc-
ture is implemented with a two-dimensional STL vector, where
the first dimension corresponds to the neuron and the second
contains the spike times for that neuron. The core analysis meth-
ods, described below, will utilize the structure that offers the best
performance.

Placing the information in redundant structures sacrifices
memory but provides the highest performance when a user has
the need for the associated analysis methods—it is more efficient
computationally to build these with the raw data than convert
from one to the other. This is the case in the example derived
classes provided with the suite. However, there is no require-
ment that a derived class build both structures. In addition, future
releases of the library will give the user the option of using just-
in-time construction of only the structure that is required when
they call an analysis function.

With this design the base object encapsulates both the data
and the analysis methods—sacrificing generality for optimization
and consistency. This runs counter to the current trends in com-
putational neuroscience where most, including the authors, are
pushing for more collaborative projects and standardized data
formats. The decision for internal structures was based on the

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

FIGURE 2 | Context diagram. The HrlNeuralAnalysis base class is the core of
HRLAnalysis™ . This is written in C++ and contains the data structures and
analysis methods. Derived classes are created in either C++or Python to handle

the conversion of the data file input into the two core structures. These classes
are responsible for implementing the buildDataStructures virtual function. The
access control and visualization is then provided through the Python interface.

FIGURE 3 | Core Data Structures (C++). The spikeActivity, top, stores
sorted pairs of spikes times and cell indexes in a vector. The cellActivity
structure is two-dimensional vector containing spike times for each of the
cells.

need for performance. However, as we demonstrate below this
does not impede interoperability.

2.2.3. Analysis functions
HRLAnalysis™ provides a useful set of basic functions for spiking
probability and statistics. This particular collection of meth-
ods was selected based on the initial needs of the authors for
dealing with large amounts of simulated data. They therefore
do not cover the full breadth of possible spike-train analy-
sis. Additional functions are constantly being developed and,
once mature, will be included in future releases. The currently
supported functions, listed in Table 1, are briefly described below.
For more information about the implementation of these refer to
the references or the available codebase.

The spike-count rate, r, of a single neuron is a simple way
to quantify the average activity over a window of time. Despite

the loss of temporal information this metric is useful in char-
acterizing the response of a neuron to a stimulus (Dayan et al.,
2001). These can be used to find the tuning curves of neurons
and their distribution within a population can reveal stimulus
selectivity or redundancy in the network. In HRLAnalysis™ the
spike-count rate for each of the neurons is found using getCell-
Rates, the spike-count histogram is returned by getRateBins, and
both can be computed using getRatesWithBins—the combined
method reduces redundant computations.

The loss of temporal resolution can be partial restored by
approximating the firing rate, r(t), of a single neuron or a whole
population. This can give a better representation of the stimulus
tuning. HRLAnalysis™ provides two methods for approximat-
ing the firing rate. The getWindowRate method counts spikes
along a rectangular window that is slid over the spike trains;
the window size and step size are defined by the user. In addi-
tion, these can also be filtered using a Gaussian window function
that smooths the response by weighting the influence of the
cells before and after the current time. This is provided by the
getGaussWindowRate.

Although important, these rate codes can fail to cap-
ture important spike response variability or information about
disparate cells within a population. For a single neuron this
variability can be captured by the inter-spike interval coeffi-
cient of variation (COV)—assuming a stationary rate. The get-
COV function performs this calculation. The COV is useful
for quickly identifying neurons with irregular spiking activ-
ity over the period of analysis. In addition, this is a nec-
essary condition for identifying Poisson firing (Dayan et al.,
2001).

The COV reduces neural variability to a single number but
often the quality of that variability is important. One example
is in capturing the bursting of a spike train. Bursting can be
an indication of a pathological condition, such as in Parkinson’s
disease (Rubin et al., 2012). It can also be an important indica-
tor of neuronal modulation (Hanes et al., 1995). The getBursting
function is used to find the regions of bursting for each of the
neurons in a population. This can be used to explore metrics such
as the synchronization of bursting or the overall burst rate of a
population.

Along the same lines, the correlated firing of cells within a pop-
ulation can both indicate a pathological condition (Walters and

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

Table 1 | HRLAnalysis™ spike analysis functions currently available.

Function name Description Structure References

getBursting Identify periods of bursting for individual cells using Poisson surprise Cell activity Hanes et al., 1995

getPairSynchrony Bivariate spike dissimilarity between two cells using the SPIKE-distance method Cell activity Kreuz et al., 2013

getPopulationSynchrony Bivariate spike dissimilarity for the entire population using the SPIKE-distance method Cell activity Kreuz et al., 2013

getCOV Calculate the coefficient of variation for cells that had more than 10 spikes Cell activity Dayan et al., 2001

getCellRates Calculate the individual cell spike count averages Cell activity

getRateBins Bin the number of cells based on average spike counts Cell activity

getRatesWithBins Combines getCellRates and getRateBins Cell activity

getGaussWindowRate Approximate the fire rate of the population using a Gaussian window Spike activity Dayan et al., 2001

getWindowRate Approximate the fire rate of the population using a rectangular window Spike activity Dayan et al., 2001

getSpikeTimes Create separate vectors of cell index and spike time Spike activity

Bergstrom, 2010), as well as reveal details of stimulus encoding
(de la Rocha et al., 2007). HRLAnalysis™ provides both aver-
age measures of spike-train synchrony as well as instantaneous
synchrony between cells over the sample interval using the SPIKE-
distance method of Kreuz et al. (2013). The instantaneous dis-
similarity between two cells is found using getPairSynchrony and
can be found for the entire population using getPopulationSyn-
chrony. The results of these can be used to find a single distance
metric using either calcSPIKEDistance or calcSPIKEDistance to
find the bivariate SPIKE-distance by numerical integration using
Simpson’s rule or taking the average of the dissimilarity profiles,
respectively. This a useful metric for effectively obtaining a com-
parable representation of the overall synchrony between spike
trains.

It is important to note that all of these functions are imple-
mented in the HrlNeuralAnalysis base class and directly accessible
to the Python functions. Once the spike data has been extracted,
the use of these methods is relatively simple. Returning to the
example above, to calculate the COV for each of the cells the user
would call

covInfo = analysis.getCOV()

The resulting object contains a vector—seen as a list in Python—
of the COVs for each of the cells. All of the analysis functions
return similar objects that encapsulate the results. The motiva-
tions for this design are described below and for a complete
reference refer to the available codebase.

2.2.4. Implementation
Algorithmically, the development of the analysis functions was
aided by their coupling to the data structures. As mentioned
above, those structures are constructed from STL vectors as
opposed to creating custom array based storage which may have
resulted in increased performance. However, not only would
that have made interfacing with Python more complicated, but
it would have made the analysis methods more difficult to
design and test. In this case correctness was valued over perfor-
mance.

STL vectors were also used exclusively for local storage in the
analysis functions. To increase the performance of these meth-
ods memory was reserved before filling the vectors and push_back
was the only insertion method, resulting in a constant time

insertion cost. There were some instances where the size of the
vector was unknown a priori—such as during burst analysis.
For these cases, the use of push_back still results in amortized
constant time cost (Sutter and Alexandrescu, 2004). STL contain-
ers were favored since these are already highly optimized and,
based on our previous experience, hand-tuned structures likely
would not have resulted in much, if any, performance benefit
(Minkovich et al., 2013). Finally, for the same reasons, built-
in STL algorithms were used wherever possible (e.g., sort and
accumulate).

Another design consideration was the choice of control struc-
tures. All of the analysis functions require iterating over one of
the data objects. In C++ this can be accomplished by directly
indexing into the container memory and looping over the length
of that by incrementing the index. A more portable way of
performing this, is through the use of iterators. These are spe-
cialized pointers to locations within the structure that can be
used to access the data. On the one hand employing itera-
tors makes for more generic and arguably safer code. On the
other, there are some instances where this unnecessarily hides
details from the compiler that could otherwise be optimized
(Sutter and Alexandrescu, 2004). Furthermore, both of these
methods lack bounds checking—meaning there is nothing stop-
ping the code from accessing memory beyond that allocated to
the structure. The use of BOOST_FOREACH—whose under-
lying implementation employs iterators—removes many of the
pitfalls of iterators and leads to much more readable code.
Unfortunately, there are some compilers where this can result in
a slight performance drop. During initial testing, however, with
the core data structures, the performance of BOOST_FOREACH
was almost identical to using either iterator or indexed based
loops. Because of this, its use was preferred during develop-
ment when the algorithm lent itself. Another option would have
been the use of the C++11 standard range-based for method.
Unfortunately that was not an option for this version of the
library.

Another area of concern are memory leaks resulting from
passing objects between C++ and Python. Earlier versions of
the library relied on dynamically allocated containers being
constructed by the user in Python. These were then passed by
reference to the C++ algorithms. This design ensured that the
memory was appropriate deallocated but was unfavorable for two
reasons. The first was that the library would rely on the Python

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

code to provide the appropriate variable type in the correct posi-
tion within the parameter list. This made the library difficult to
use. The second was that it created extra code that unnecessarily
complicated the interface.

To avoid this, all dynamically allocated objects were created
with Boost shared pointers 5. These are class templates that use
reference counting to ensure that the object they point to is
deleted after all pointers to it are deleted. With these, objects cre-
ated in C++ can be passed to Python and, when they go out
of scope, they are guaranteed to be deleted. This not only made
dealing with object ownership between Python and C++ more
tractable but also removed container initialization code from the
Python interface—greatly improving the readability of the user
code.

Although performance was a motivating factor in the design
of this library, care was taken to not only follow good pro-
gramming practices but also produce maintainable and testable
code. There are some instances where algorithms could be fur-
ther optimized but much of that would come at the detriment
of readability and extensibility. Because of this, HRLAnalysis™

is not fully optimized. However, as the library matures and as
bottlenecks within these functions are identified, the algorithms
will be further enhanced. In addition, as we demonstrate with the
benchmarks below, the library still outperforms comparable spike
analysis options.

2.2.5. Extensibility
A unique aspect of this design, and a useful feature, is that the
derived classes can be either C++ or Python. This provides
users with different levels of programming experience access to
the high-performance core. Listing 2 is an incomplete example
of deriving from the HrlNeuralAnalysis base class with Python.
The incoming data in this example is stored by cell indexed
spike trains. This layout allows the cellActivity structure to be
constructed in order, however, the spikeActivity structure needs
to be sorted when built this way (this is handled by the call
to the C++ function sortSpikeActivity). Alternatively, only the
cellActivity structure can be constructed and, if required, the
spikeActivity structure can be created in C++ using the build-
SpikeActFromCellAct function. This can result in higher per-
formance during the construction of the internal data struc-
tures.

Extending the base class, whether in Python or C++, does
not limit the implementation to spikes. The derived class can be
used to process data in different forms as long as the data con-
tains enough information for spikes to be extracted. For example,
spike analysis can be done using voltage recordings with the
HRLAnalysis™ core and a derived class that includes methods
specific to voltage information.

Generally, encouraging extensions to a software package can
lead to instability. Unit, integration and system tests are included
with HRLAnalysis™ to combat such software entropy. These are
intended to ensure that the core functionality remains stable as
users develop their own modules.

5http://www.boost.org/

Listing 2 | Example of a derived HRLAnalysis™ base object in Python.

In this example the derived constructor prototype matches the base class
definition. Notice on line 6 that the base class constructor needs to be
called by the derived class. The programmatic loop outlined in line 12 is
repeated for each of the spike trains and it is assumed that cell_spike_train()
on line 14 is provided by that loop. The data structures are incrementally
constructed with calls to append(). These are C++ data structures, so they
map to the C++ vector push_back() function. The function call on line 20
sorts the spikeActivity structure by spike time. Note that the spikeAcitivity
structure can be created in C++ by the HrlNeuralAnalysis object using the
buildSpikeActFromCellAct function. This should provide a nominal
performance increase over the method presented here.

2.3. BENCHMARKS
As a way of quantifying the performance of HRLAnalysis™ ,
a set of benchmarks comparing it the Python analysis suite
NeuroTools6 version 0.1.0 were completed. Not all of the analy-
sis functions implemented in HRLAnalysis™ have corresponding
methods in these packages but a comparable subset was selected.
These are listed in Table 2. Only the time to complete the analysis
function is measured. This was due to the extended time it took
to load the data into NeuroTools which would have drastically
altered the results.

For test data, Poisson spike trains 10 s long with a target rate
of 10 Hz were generated for networks ranging from 1K to 10M
cells. However, for NeuroTools the largest network that could
be analyzed in memory was 1M cells. The spike trains were
saved in binary files with spikes, timing, and size information
stored as 32-bit integers. The performance of the analysis meth-
ods are dependent on both the number of cells and the number of
spikes generated—as both are increased not only does the timing
increase but also the file IO. Using independent Poisson genera-
tors, rather than a large test network of model neurons, results in a
number of spikes that grows somewhat linearly with the number
of cells. This was important for exploring the scalability of the
library. The number of neurons and spikes generated are included
in Table 3.

6http://neuralensemble.org/NeuroTools/

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 6

http://www.boost.org/
http://neuralensemble.org/NeuroTools/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

Table 2 | Benchmark results.

Function Cells Analysis time (s) Speedup

NeuroTools HRLAnalysis™ NeuroTools

getSpikeTimes 1k 0.0112 0.0004 30
(raster_plot) 10k 0.1186 0.0050 24

100k 1.2079 0.0497 24
1M 12.1409 0.4853 25
10M – 4.8941 –

getRatesWithBins 1K 0.0019 0.0002 8
(rate_distribution) 10K 0.0180 0.0024 7

100K 0.1744 0.0264 7
1M 1.7551 0.3711 5
10M – 4.1252 –

getWindowRate 1K 0.0674 0.0003 209
(firing_rate) 10K 0.6615 0.0020 334

100K 6.5461 0.0182 360
1M 65.7611 0.1808 364
10M – 1.8568 –

getCOV 1K 0.0169 0.0012 15
(cv_isi) 10K 0.1734 0.0136 13

100K 1.7176 0.1601 11
1M 17.1406 1.6327 10
10M – 15.8049 –

These results are for the analysis only. All data structures were initialized before

the benchmarks were started. The HRLAnalysis™ functions are in bold and the

corresponding NeuroTools functions is included below this in parenthesis.

Table 3 | Benchmark results for HRLAnalysis™ .

Cells Number of spikes Time (s)

Build Methods Total

1K 99,263 0.0063 0.0021 0.0084

10K 993,727 0.0483 0.0230 0.0713

100K 9,947,156 0.7352 0.2544 0.9896

1M 99,501,298 11.2022 2.6699 13.8721

10M 994,993,689 137.8604 26.6810 164.5414

The build time is for both reading in the data file and building the data structures.

The Methods column contains the total time to run the functions in Table 2.

Finally, the last column is the total time to perform the analysis from start to

finish.

Timings for NeuroTools and HRLAnalysis™ were computed
using the Python Time module. Each benchmark was run three
times and the best performance of those was reported. These
should be considered approximations, as all are subject to dif-
ferent resolutions based on the underlying implementation. The
benchmarks were completed on a server with dual Intel Xeon
E5550 2.67 GHz CPUs and 48 GB of memory running CentOS
5.4. Python version 2.6.5 were used.

3. RESULTS
3.1. BENCHMARKS
Compared to NeuroTools, HRLAnalysis™ is on average 107 times
faster. This is a significant performance difference but one that

is obscured slightly by the getWindowRate results. The speedup
for this function is a consequence of the optimized spikeActivity
structure. It is likely that the performance difference of this func-
tion would drop if the conversion to a time based orientation was
not required in NeuroTools.

The performance that these benchmarks illustrate is not only
important for large neural networks but also for large numbers
of small network simulations. The parameter searches described
in the conclusion of Thibeault and Srinivasa (2013) are on the
order of 1.5 billion simulations and take over 23, 000 h of com-
putation time. Roughly half of that is during the analysis using
HRLAnalysis™ . As a conservative estimate, assume that only
half of that number was in the actual analysis functions—around
5750 h—and that only a 10 time speedup over NeuroTools is pos-
sible. In that case these simulations would have required 80, 500 h
of compute time—3.5 times longer than with HRLAnalysis™ .
This is an important factor to consider; especially if researchers do
not have unlimited access to computing resources and are instead
buying time on a compute cluster.

Another important result of these benchmarks is the scaling
of the HRLAnalysis™ implementation with respect to data size.
Table 2 contains the timing results for reading in and initializing
the data structures, as well as the time required to run the meth-
ods listed in Table 3. Although the analysis functions presented
have approximately linear scaling, the file IO and data initializa-
tion scaling does not. Despite that non-linear trend, the suite runs
faster than real time—less than the 10 s of simulation time—for
the cases below 1M cells. For 1M cells the suite completed ini-
tialization and all of the methods in under 1.5 times real time.
For the 10M cell case, however, the run time is greater than 10.5
times real time.

These benchmarks are meant only as a reference. Although
performance is important in this project, we are not suggesting
that HRLAnalysis™ is a replacement or a competitor to libraries
like NeuroTools. It is quite the opposite, we feel these packages
complement each other. Both are important tools for neurosci-
entists and the Python language makes exchanges between the
two possible. The only overlapping analysis methods between
HRLAnalysis™ and NeuroTools are those listed in Table 2.

3.2. INTEROPERABILITY
HRLAnalysis™ not only performs well but, through the Python
interface, it can be coupled with other analysis libraries. For
example, in NeuroTools a SpikeList object contains a list
of SpikeTrains—this is comparable to the cellActivity object
described here. The constructor for this object takes in a list of
tuple pairs of the form (cell_id,spike_time), a list of all of the cell
ids, the starting time of the data, and the end time of the data.
Converting from HRLAnalysis™ into a NeuroTools object can be
done in the single compound line of code:

SpikeList(
[(spk.second,spk.first)
for spk in spikeActivity()],

range(startIdx,endIdx),
t_start=startTime, t_stop=endTime

)

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

It is this kind of cross tool compatibility that sets Python
projects apart from other languages popular in neuroscience.
It should be noted that this particular constructor is appro-
priate only for a small number of cells and spikes. In our
benchmarks this conversion took between 1.7 and 1.8 h to
complete for the 1M cell case. This was due to the way the
SpikeList object is constructed in NeuroTools. As the need arises
more efficient conversion methods will be implemented and
released.

Collaboration is important for data exchange as well as algo-
rithm sharing. The Neo project (Garcia et al., 2014), approaches
this by providing a common data object. Developers create inter-
preters for different open and proprietary file formats that instan-
tiate and return a Neo object. With this, analysis methods can
be developed that operate directly on Neo objects while requir-
ing no knowledge of the underlying file format. An example of
creating the HRLAnalysis™ structures from a Neo object is illus-
trated in Listing 3. This is incomplete in that there is no error
checking and some of the analysis parameters are not filled in
(line 27), but it demonstrates one way a Neo object containing
spike trains can be incorporated into HRLAnalysis™ . A complete
working example is included with the Python tests in the available
codebase.

Listing 3 | Example of reading in a Neo object. Unlike the example in
Listing 2, the derived class constructor (line 6), takes a Neo object as an
argument. The base class constructor still needs to be called though it is
filled with null data initially. In the buildDataStructures function (line 11),
the spike trains are read from the Neo object and the structures are
iteratively constructed. Once again the spikeActivity structure is sorted
(line 26). Finally, at this point all of the information about the object
should be available and line 27 marks the location where the parameters
that were set to null in the constructor (line 7), would be set using that
information.

4. DISCUSSION
4.1. SIMILAR PROJECTS
There are a number of analysis packages that have been developed
for processing simulations and recordings in neuroscience. The
International Neuroinformatics Coordinating Facility’s software
database7 contains a large number of projects that span all aspects
of neuroscience research. However, we were unable to find a high-
performance library for spike analysis that fits our needs.

The aforementioned Python based NeuroTools library focuses
minimally on spike train analysis. The broader scope of the
project is to reduce the amount of redundant code computa-
tional neuroscientists develop and provides functions for design-
ing, simulating and analyzing neural networks. Similarly, the
Spykeutils (Pröpper and Obermayer, 2013), library provides
methods for analyzing and visualizing spiking information but
employs Neo objects as data structures. Neuropy takes a more
data-centric approach based on electrophysiological data (Spacek
et al., 2009). Information is stored hierarchically based on
animal, track and recording. OpenElectrophy deals with large
amounts of experimental data by storing it in a MySQL database
(Garcia and Fourcaud-Trocmé, 2009). Users can interact with
OpenElectrophy through the GUI interface to visualize the raw
data as well as perform spike and oscillation detection. The
spike detection algorithms are provided but the analysis must be
performed by user supplied scripts through the Python interface.

There are similar projects with a focus on high-performance
available for MATLAB as well. The FIND package provides both
analysis tools for real and simulated single or multi-channel
recordings, as well as methods for simulating neurons as point
processes (Meier et al., 2008). The Information Breakdown
Toolbox is specific to information analysis and takes advantage
of MATLAB’s MEX interface to speedup computations (Magri
et al., 2009). Similarly, the Spike Train Analysis Toolkit (Goldberg
et al., 2009), is compatible with both MATLAB and Octave (Eaton
et al., 2008), and provides information theoretic analysis of spik-
ing data. This type of analysis is not currently implemented in
HRLAnalysis™ .

4.2. PERFORMANCE, EXTENSIBILITY, AND USABILITY
Often when performance is a priority, other desirable soft-
ware engineering aspects suffer and this project is no different.
Although we have aspired to balance performance with extensi-
bility and usability, it is still difficult to achieve all three. As a
consequence, this package may have a higher than desired level
of specificity.

The complexity of the hybrid language approach may be dis-
couraging to some researchers. In addition, the expectation of
a neuroscientist with limited programming experience modify-
ing and adding functions to the core C++ library is unrealistic.
However, the option of writing those functions in Python results
in a package that not only performs well, but is accessible to
users with varying programming experience. It is our intention
that as the project attracts more users, these Python prototype
functions can be ported into the core library by developers with

7http://software.incf.org/

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 8

http://software.incf.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

more experience. This is one of the key benefits of using a
hybrid-language design.

4.3. FUTURE DIRECTIONS
The large-scale neural simulations that this project was orig-
inally intended to support, all rely on parallel processing
for efficient computations. Analyzing the results of those
using a serial application is somewhat counterintuitive. So
the next logical step for HRLAnalysis™ is to port the code-
base to parallel and distributed systems. Fortunately, having
the Python interface can make that transition relatively seam-
less to the end user. As a first step, we plan to imple-
ment the analysis functions in OpenCL8. This will provide a
standardized interface to a large number of hardware plat-
forms.

Although not discussed here in detail, we have begun imple-
menting network connectivity and synaptic weight analysis tools
with HRLAnalysis™ . These are currently exclusive to file formats
output by HRLSim™ . However, a more generalized set of tools is
planned for the future.

5. CONCLUSION
The HRLAnalysis™ suite offers both high-performance and
usability. More importantly, it complements the existing packages
available to researchers today. The capabilities of these differ-
ent projects and the ability to connect them together through
Python is exciting and can only be a benefit to the community.
Researchers interested in HRLAnalysis™ can access it through
the HRL Laboratories Center for Neural and Emergent Systems
website9.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the support for this work by
Defense Advanced Research Projects Agency (DARPA) SyNAPSE
grant HRL0011-09-C-001. The views, opinions, and/or find-
ings contained in this article are those of the authors and
should not be interpreted as representing the official views or
policies, either expressed or implied, of the DARPA or the
Department of Defense. Approved for public release, distribution
unlimited.

REFERENCES
Ananthanarayanan, R., Esser, S. K., Simon, H. D., and Modha, D. S. (2009). “The

cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses,”
in Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (Portland, OR: IEEE), 1–12.

Crumiller, M., Knight, B., Yu, Y., and Kaplan, E. (2011). Estimating the amount
of information conveyed by a population of neurons. Front. Neurosci. 5:90. doi:
10.3389/fnins.2011.00090

Cruz-Albrecht, J., Yung, M., and Srinivasa, N. (2012). Energy-efficient neuron,
synapse and stdp integrated circuits. IEEE Trans. Biomed. Circ. Syst. 6, 246–256.
doi: 10.1109/TBCAS.2011.2174152

DARPA. (2012). Synapse broad agency announcement (BAA). Available online at:
https://www.fbo.gov/spg/ODA/DARPA/CMO/BAA08-28/listing.html

Dayan, P., Abbott, L. F., and Abbott, L. (2001). Theoretical Neuroscience:
Computational and Mathematical Modeling of Neural Systems. Cambridge, MA:
MIT Press. doi: 10.1016/S0306-4522(00)00552-2

8http://www.khronos.org/opencl/
9http://www.hrl.com/laboratories/cnes/cnes_main.html

de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., and
Reyes, A. (2007). Correlation between neural spike trains
increases with firing rate. Nature 448, 802–806. doi: 10.1038/
nature06028

Eaton, J. W., Bateman, D., and Hauberg, S. (2008). GNU Octave Manual Version 3.
Bristol: Network Theory Limited.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, C., et al.
(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.
doi: 10.1126/science.1225266

Garcia, S., and Fourcaud-Trocmé, N. (2009). Openelectrophy: an electrophysio-
logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:
10.3389/neuro.11.014.2009

Garcia, S., Guarino, D., Jaillet, F., Jennings, T. R., Pröpper, R., Rautenberg,
P. L., et al. (2014). Neo: an object model for handling electrophysiol-
ogy data in multiple formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.
2014.00010

Goldberg, D. H., Victor, J. D., Gardner, E. P., and Gardner, D. (2009). Spike train
analysis toolkit: enabling wider application of information-theoretic techniques
to neurophysiology. Neuroinformatics 7, 165–178. doi: 10.1007/s12021-009-
9049-y

Hanes, D. P., Thompson, K. G., and Schall, J. D. (1995). Relationship of pre-
saccadic activity in frontal eye field and supplementary eye field to saccade
initiation in macaque: poisson spike train analysis. Exp. Brain Res. 103, 85–96.
doi: 10.1007/BF00241967

Ince, R. A. A., Petersen, R. S., Swan, D. C., and Panzeri, S. (2009). Python for
information theoretic analysis of neural data. Front. Neuroinform. 3:4. doi:
10.3389/neuro.11.004.2009

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598. doi:
10.1073/pnas.0712231105

Kreuz, T., Chicharro, D., Houghton, C., Andrzejak, R. G., and Mormann, F.
(2013). Monitoring spike train synchrony. J. Neurophysiol. 109, 1457–1472. doi:
10.1152/jn.00873.2012

Magri, C., Whittingstall, K., Singh, V., Logothetis, N. K., and Panzeri, S.
(2009). A toolbox for the fast information analysis of multiple-site LFP,
EEG and spike train recordings. BMC Neurosci. 10:81. doi: 10.1186/1471-
2202-10-81

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160. doi:
10.1038/nrn1848

Meier, R., Egert, U., Aertsen, A., and Nawrot, M. P. (2008). FIND? A uni-
fied framework for neural data analysis. Neural Netw. 21, 1085–1093. doi:
10.1016/j.neunet.2008.06.019

Minkovich, K., Thibeault, C. M., O’Brien, M. J., Nogin, A., Cho, Y., and
Srinivasa, N. (2013). HRLSim: a high-performance spiking neural simulator
for GPGPU clusters. IEEE Trans. Neural Netw. Learn. Syst. 25, 316–331. doi:
10.1109/TNNLS.2013.2276056

Pröpper, R., and Obermayer, K. (2013). Spyke viewer: a flexible and extensible
platform for electrophysiological data analysis. Front. Neuroinform. 7:26. doi:
10.3389/fninf.2013.00026

Quiroga, R. Q., and Panzeri, S. (2009). Extracting information from neuronal pop-
ulations: information theory and decoding approaches. Nat. Rev. Neurosci. 10,
173–185. doi: 10.1038/nrn2578

Rubin, J. E., McIntyre, C. C., Turner, R. S., and Wichmann, T. (2012). Basal ganglia
activity patterns in parkinsonism and computational modeling of their down-
stream effects. Eur. J. Neurosci. 36, 2213–2228. doi: 10.1111/j.1460-9568.2012.
08108.x

Spacek, M. A., Blanche, T., and Swindale, N. (2009). Python for large-
scale electrophysiology. Front. Neuroinform. 2:9. doi: 10.3389/neuro.11.
009.2008

Srinivasa, N., and Cruz-Albrecht, J. (2012). Neuromorphic adaptive plastic
scalable electronics: analog learning systems. IEEE Pulse 3, 51–56. doi:
10.1109/MPUL.2011.2175639

Stepanov, A., and Lee, M. (1995). The Standard Template Library, Vol. 1501. Palo
Alto, CA: Hewlett Packard Laboratories.

Sutter, H., and Alexandrescu, A. (2004). C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices. Upper Saddle River, NJ: Pearson Education.

Thibeault, C. M., and Srinivasa, N. (2013). Using a hybrid neuron in physiologi-
cally inspired models of the basal ganglia. Front. Comput. Neurosci. 7:88. doi:
10.3389/fncom.2013.00088

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 9

https://www.fbo.gov/spg/ODA/DARPA/CMO/BAA08-28/listing.html
http://www.khronos.org/opencl/
http://www.hrl.com/laboratories/cnes/cnes_main.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Thibeault et al. Analyzing spiking data with HRLAnalysis™

Walters, J. R., and Bergstrom, D. A. (2010). “Synchronous activity in basal ganglia
circuits,” in Handbook of Basal Ganglia Structure and Function. Handbook of
behavioral neuroscience, Vol. 20, eds H. Steiner and K. Y. Tseng (Amsterdam:
Elsevier), 429–443. doi: 10.1016/B978-0-12-374767-9.00025-1

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 10 February 2014; published online: 05 March
2014.

Citation: Thibeault CM, O’Brien MJ and Srinivasa N (2014) Analyzing large-scale
spiking neural data with HRLAnalysis™. Front. Neuroinform. 8:17. doi: 10.3389/fninf.
2014.00017
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 HRL Laboratories LLC. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 17 | 10

http://dx.doi.org/10.3389/fninf.2014.00017
http://dx.doi.org/10.3389/fninf.2014.00017
http://dx.doi.org/10.3389/fninf.2014.00017
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Analyzing large-scale spiking neural data with HRLAnalysis™
	Introduction
	Methods
	Introductory Example
	Design
	Core classes
	Data structures
	Analysis functions
	Implementation
	Extensibility

	Benchmarks

	Results
	Benchmarks
	Interoperability

	Discussion
	Similar Projects
	Performance, Extensibility, and Usability
	Future Directions

	Conclusion
	Acknowledgments
	References

