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Throughout the past few decades, the ability to treat and rehabilitate traumatic brain
injury (TBI) patients has become critically reliant upon the use of neuroimaging to acquire
adequate knowledge of injury-related effects upon brain function and recovery. As a result,
the need for TBI neuroimaging analysis methods has increased in recent years due to
the recognition that spatiotemporal computational analyses of TBI evolution are useful for
capturing the effects of TBI dynamics. At the same time, however, the advent of such
methods has brought about the need to analyze, manage, and integrate TBI neuroimaging
data using informatically inspired approaches which can take full advantage of their large
dimensionality and informational complexity. Given this perspective, we here discuss the
neuroinformatics challenges for TBI neuroimaging analysis in the context of structural,
connectivity, and functional paradigms. Within each of these, the availability of a wide range
of neuroimaging modalities can be leveraged to fully understand the heterogeneity of TBI
pathology; consequently, large-scale computer hardware resources and next-generation
processing software are often required for efficient data storage, management, and
analysis of TBI neuroimaging data. However, each of these paradigms poses challenges in
the context of informatics such that the ability to address them is critical for augmenting
current capabilities to perform neuroimaging analysis of TBI and to improve therapeutic
efficacy.
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INTRODUCTION
Traumatic brain injury (TBI) affects ∼1.7 million people in the
United States every year, leading to roughly 50,000 cases of
mortality and 80,000 cases of permanent severe neurological dis-
ability annually (Ghajar, 2000; Faul et al., 2010). Throughout the
past few decades, the use of neuroimaging to acquire knowl-
edge of injury-related effects upon brain function and recovery
has become prominent due to the recognition that spatiotem-
poral computational analyses of TBI evolution are useful for
capturing the effects of its dynamics (Irimia et al., 2011). On the
other hand, the proliferation of neuroimaging studies has brought
about the need to analyze, manage, and integrate TBI neuroimag-
ing data with sophisticated neuroinformatics methods which can
address and handle their large dimensionality and informational
complexity.

The high dimensionality of TBI neuroimaging data poses one
of the most significant challenges to the development and imple-
mentation of data processing workflows for TBI analysis. This
dimensionality stems partly from the fact that various types of
magnetic resonance imaging (MRI) sequences reveal only cer-
tain aspects of TBI pathology, which implies that their combined
use is often necessary in order to acquire a comprehensive view
of TBI lesion type and extent. For instance, fluid attenuated
inversion recovery (FLAIR) and susceptibility weighted imaging
(SWI) are MRI sequence types which are suitable for detecting

edema and cerebral micro-hemorrhages, respectively (Irimia et al.,
2011). Partly because of such qualitative and quantitative differ-
ences between MRI sequence types as well as between MRI and
other imaging modalities such as computed tomography (CT) and
positron emission tomography (PET), a vital component of TBI
neuroimaging involves the availability of multimodal neuroimag-
ing data sets to aid in the identification and characterization of
pathology.

Present methodologies for long-term clinical assessment of
this condition include the use of scoring scales such as the Glas-
gow Coma Scale (GCS), which is a frequently used evaluator of
consciousness level and head injury severity. Additional clinical
measures of functional outcome after TBI which are used in clini-
cal practice include acute physiology and chronic health evaluation
(APACHE), Mortality Probability Model (MPM), and simplified
acute physiology score (SAPS; Vincent and Moreno, 2010), all of
which can be complemented by neuroimaging-based metrics. In
the case of the GCS and of other currently available scoring sys-
tems, their effectiveness in providing prognostic information is
hampered by their limited descriptiveness. By contrast, computa-
tional analyses of multimodal structural neuroimaging data offer
a variety of ways in which pathological changes can be assessed. It
is important to note that (a) the GCS is typically used in conjunc-
tion with a number of other clinical measures and physiological
metrics, and that (b) computational analyses vs. clinical scoring
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systems fulfill different roles. Thus, one theme of this review is
that the drawbacks of conventional clinical scoring systems can be
complemented by outcome prediction models formulated using
neuroinformatics tools, which require the exploration and min-
ing of quantitative metrics derived from structural neuroimaging
data.

Given the current trends in TBI neuroimaging, this review
aims to highlight and draw the attention of the neuroinformat-
ics community to the challenges encountered in the study of
human TBI within the context of three distinct types of neu-
roimaging: structural, connectivity, and functional. It attempts
to suggest how novel data-driven solutions should be formulated
to assist TBI neuroimaging analysis with the ultimate purpose of
improving therapeutic efficacy. The analytic approaches exam-
ined below outline the use of a varied number of neuroimaging
techniques and demonstrate the wealth of knowledge obtainable
through quantitative analysis of neuroimaging data. We pro-
pose that, to improve rehabilitation strategies and the accuracy
of TBI patient outcome prediction, it is necessary to augment
existing capabilities to facilitate the multimodal use of neu-
roimaging methods and of their application to large population
samples of TBI patients, as well as to individual patients by
means of personalized approaches. This task should be reliant
on continued development, support and input from neurologists,
neuroinformaticians and biostatisticians to provide the theoret-
ical tools and practical mechanisms required for technological
and scientific progress in this field of high priority to public
health.

STRUCTURAL NEUROIMAGING APPROACHES
Computational methods for the analysis of brain structure pro-
vide a powerful approach to the investigation of TBI-related
pathology. Typical quantitative metrics for the study of brain
structure include morphometric measures (e.g., the curvature and
folding index of the cortex) and volumetric measures – e.g., cor-
tical thickness, gray matter (GM) volume, white matter (WM)
volume, etc. – which have been highly useful in describing neu-
roanatomical profiles at the macroscopic level, in both health and
in a variety of pathological conditions (Ashburner and Friston,
2000; Thompson et al., 2003). One motivating factor behind the
decision to undertake the calculations of these metrics within
large collaborative efforts such as the Alzheimer’s Disease (AD)
Neuroimaging Initiative (ADNI) has been the desire to identify
biomarkers which are prognostic and informative of clinical out-
come, and which can be used to optimize the formulation of
patient treatment as well as the selection of rehabilitation pro-
tocols, as in the study of Jack et al. (2008). The latter authors
aimed to address the neuroinformatics challenge of longitudi-
nal ADNI data processing by (a) linking all data at each time
point, (b) making a repository available to the scientific commu-
nity, (c) developing technical standards for longitudinal imaging
studies, (d) determining optimum methods for image acquisition
and analysis, and (e) validating imaging biomarker data. Such
goals are excellently suited for future human TBI studies as well.
All of these tasks involve neuroinformatics approaches which are
currently insufficiently available in human TBI research. Subse-
quently, the ability to perform relevant systematic and quantitative

analyses of TBI brain structure has been appreciably affected by
a number of formidable challenges which this section aims to
highlight.

One challenge encountered during the task of constructing TBI
data analysis workflows for the extraction of clinically relevant
information is the task of tissue segmentation, a process often
associated with the three-dimensional analysis of MRI volumes.
In neuroimaging, tissue segmentation refers to the classification
of voxels from MRI data into relevant tissue types (e.g., GM, WM,
cerebrospinal fluid, non-cortical structures) so that morphomet-
ric and volumetric measures can be quantified. Typically, tissue
segmentation is a complex procedure involving the correction
of magnetic field inhomogeneities, image intensity normaliza-
tion, extra-cerebral voxel removal via skull-stripping, and the
assignment of each voxel to one of several classes (WM, GM,
etc.) using a probabilistic model based on image intensity dif-
ferences between voxels belonging to each class (Dale et al., 1999).
Though there are a wide variety of approaches to segmentation
including those based on machine learning (Powell et al., 2008;
Hofmann et al., 2011), brain tissue segmentation often incorpo-
rates the application of anatomical priors while computing the
probability of a voxel belonging to a certain tissue type (Irimia
et al., 2011). Whereas the application of such anatomical pri-
ors is typically quite feasible in the case of healthy brains, this
class of methods is known to fail when applied to moderate or
severe TBI volumes because, in such cases, (a) TBI neuroanatomy
can differ substantially from health due to the presence of gross
pathology and (b) edema and hemorrhage can dramatically alter
voxel intensities, thereby modifying the spatial mapping of such
voxels to atlas space in an undesirable manner. Thus, segmenta-
tion of TBI volumes can be particularly difficult to automate due
to the heterogeneity of injury location, shape, and size, none of
which are easily predictable (Filippi et al., 1998). Nevertheless, it
is important to acknowledge that neuroimaging analysis of mild
TBI exhibiting no gross pathology can typically be accommodated
using standard algorithms, although for moderate and/or severe
TBI more sophisticated methods are needed, as previously stated.
Given the fact that most automatic segmentation algorithms have
been developed for healthy brains or for brains with diminutive
amounts of gross pathology (Irimia et al., 2012c), implementing
such algorithms for moderate to severe TBI cases often necessi-
tate periodic user intervention and guidance. This suggests that
future data-processing workflows devised for facilitating TBI seg-
mentation should aim to accommodate and minimize the need for
periodic user intervention. Presently, a persistent challenge resides
in the methodological dichotomy of opting for either a manual
or automatic segmentation approach. While manual segmenta-
tion methods do not require (complex) segmentation algorithms,
such methods are significantly more costly than automatic ones
due to the comparably large amount of time and human resources
needed for adequate segmentation of even a single MRI volume.
Furthermore, the nature of manual delineation implies that sub-
stantial inter- and intra-observer variability are to be expected,
which may increase quantitative measurement errors and thereby
diminish the statistical power of inferential tests applied to sets
of such measurements (Kempton et al., 2011). In the case of
TBI lesions, however, one benefit of manual segmentation is
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that it is often more trustworthy than conventional automatic
segmentation algorithms which were developed for the tissue
classification of healthy brains (Lehmann et al., 2010), largely
because TBI pathology is extremely heterogeneous among sub-
jects. On the other hand, conventional automatic segmentation
algorithms greatly reduce data processing time and improve repro-
ducibility, but can suffer from appreciable inaccuracies in the case
of TBI.

One software package which is often used for automatic seg-
mentation and whose methodological capabilities are illustrative
of automatic segmentation packages in general is FreeSurfer (Dale
et al., 1999). As in the case of typical unsupervised segmen-
tation packages, FreeSurfer has been thoroughly validated in
healthy brains and in some diseases exhibiting structural pathol-
ogy types which are more moderate and more predictable than
those encountered in TBI (Du et al., 2007; Jovicich et al., 2009).
Nevertheless, automatic tissue classification algorithms includ-
ing FreeSurfer remain imperfect and can experience inaccuracies
in skull stripping, WM/GM boundary identification, etc. even
in healthy subjects (Strangman et al., 2010). Any such defects
may require user input to (a) add control points and thereby aid
FreeSurfer to identify WM, (b) remove unlabeled voxels represent-
ing the dura mater and thereby correct skull stripping, and/or (c)
manually restore WM/GM portions which had been inappropri-
ately removed during first-pass segmentation. In addition, typical
automatic segmentation methods do not perform lesion classifi-
cation, which suggests that additional user-guided segmentation
is needed in this step as well.

In comparison to conventional tissue classification methods, a
number of sophisticated segmentation methods now exist which
have adopted more sophisticated approaches to address the task
of TBI tissue segmentation. As stated, TBI pathology is often gross
and highly heterogeneous, even in comparison to other types of
neuropathology such as AD. In some cases, pathology patterns
may present image intensities and appearance similar to those of
normal tissues (Irimia et al., 2012c), necessitating segmentation
algorithms tailored to analyzing pathology. In dealing with the
similar problem of MR volume segmentation in multiple sclero-
sis (MS), Van Leemput et al. (2001) proposed a method which
detects MS lesions as outliers with respect to a statistical model for
the healthy brain, rather than attempting to model such lesions
explicitly. The model interleaves (a) statistical classification of the
image voxels into a number of healthy tissue types, (b) evalua-
tion of whether each voxel truly belongs to healthy tissue, and (c)
estimation of intensity distribution parameters and MR bias field
parameters only based on healthy tissue voxels. Voxels not well
constrained by the statistical model for normal brain MR images
are detected as voxels containing MS lesions. Another sophisticated
approach designed specifically for TBI (Irimia et al., 2012c; Wang
et al., 2012) employs multimodal neuroimaging data from multi-
ple time points to improve segmentations and to describe changes
in healthy tissue and pathology. Their framework utilizes several
semi-automatic segmentation tools available within 3D Slicer, a
freely available software environment for image processing where
automatic segmentation can be complemented by additional user
evaluation (Irimia et al., 2011). Examples of semi-automatic seg-
mentations obtained using such workflows are shown in Figure 1.

Similar algorithms have been derived from approaches for the MR
analysis of brain sclerosis and tumors, which present problems
similar to those of TBI lesion segmentation (Prastawa et al., 2003,
2004). Other algorithms such as the one developed by Wu et al.
(2006) use multimodal MRI to classify MS lesions into several
subtypes, each of which can be analyzed to represent different
outcome measurements.

Finally, because standard registration and segmentation meth-
ods do not account for changes in image appearance across time,
sophisticated methods have been developed to jointly estimate
a space deformation and a change in image appearance which
can lead to the construction of a spatiotemporal trajectory which
smoothly transforms the structural volume acquired from the
patient at one time point into the volume acquired at a subsequent
time point. In particular, algorithms such as that of Niethammer
et al. (2011) have the ability to explain changes in image appear-
ance by (a) a global deformation, (b) a deformation within a
geometric model, and (c) an image composition model. The devel-
opment of such longitudinal registration methods is motivated by
the challenge to predict long-term effects of TBI based on longi-
tudinal changes in tissue types and in their spatial configuration,
which may provide further clinical insight into the prediction of
tissue fate and patient outcome.

The wealth of MR segmentation algorithms is an indication
that segmentation, at least in the case of TBI, is a complicated
task which can be solved through many approaches. However, this
wealth, arguably, is also an indication that no single approach
has been demonstrably superior. Many of these methods, in fact,
still require user intervention and post processing. Therefore,
automatic segmentation may be an appropriate problem for the
neuroinformatics community to address by means of data mining
and novel workflow designs.

CONNECTIVITY NEUROIMAGING APPROACHES
As discussed in the previous section, conventional structural neu-
roimaging methods enable the calculations of volumetrics and
morphometrics, which can reveal important information on gross
anatomy changes effected by brain injury upon the brain in general
and upon cortical structures in particular. By contrast, the advent
of modern neuroimaging methods which allow the observation
of neuronal circuitry in vivo (such as diffusion tensor imaging,
DTI) has perpetuated the interest in connectivity mapping, and
further allows investigation of connectivity changes in brain injury
patients. The benefit of DTI in contrast to dissection and to WM
staining is that the former can be used noninvasively in human
patients, which is a major advantage in human studies. Techniques
such as DTI tractography enable the mapping of macroscopic WM
connections, which can yield descriptive metrics of brain con-
nectivity, including fiber bundle length and connectivity density
(Wang et al., 2012).

The ability of DTI tractography methods to reconstruct area-
to-area connectivity in TBI has been the topic of multiple
validation studies (Mori and van Zijl, 2002; Dauguet et al., 2007;
MacDonald et al., 2007; Skudlarski et al., 2008), including one
study by the present authors, where area-to-area connectiv-
ity counts obtained via DTI using purpose-built software were
independently validated by three researchers with experience in
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FIGURE 1 |Three-dimensional models of semi-automatically segmented

healthy-appearing and pathology-affected tissues are displayed for a

sample patient with severeTBI within a neuroinformatics framework.

Representative slices of the T 1 volume acquired 3 days after injury are
superimposed. Models of edematous and hemorrhagic tissues are colored in
cyan and dark red, respectively. The WM surface was segmented

automatically using FreeSurfer, demonstrating the capabilities of this software
package to perform automatic tissue classification of healthy-appearing
tissues. The WM model is translucent in each brain view to facilitate the
visibility of anatomic details obviated in the MR volume slice displayed. See
Irimia et al. (2011) for a detailed description of the neuroinformatics
methodology used to generate these visualizations.

neuroanatomy (Van Horn et al., 2012). Whereas DTI is certainly
not as accurate for reconstructing area-to-area connectivity as
some invasive methods (e.g., post-mortem dissection and WM
staining), its ability to capture connectivity information accurately
has been found to be quite reasonable provided that the size of each
brain parcel denoting a graph node is sufficiently large compared
to the DTI voxel size (Irimia et al., 2011; Irimia et al., 2012c; Van
Horn et al., 2012).

It has been acknowledged (Meythaler et al., 2001) that 40–50%
of TBI patients exhibit diffuse axonal injury (DAI), a mechanism
of brain injury which is microscopic in nature such that con-
ventional CT and MRI are typically insufficient to capture it in
detail. DTI, on the other hand, is more ideally suited to non-
invasively measure the diffusion of molecules through biological
tissue. Whereas diffusion of water along healthy axons is predom-
inantly anisotropic, studies using DTI have indicated that DAI

may be detected as a reduction in diffusion anisotropy (Arfanakis
et al., 2002). With the advancement of such techniques, the goal
of characterizing TBI-related changes in brain connectivity can be
pursued by using brain water diffusion data to reconstruct WM
tracts three-dimensionally, to visualize fiber cluster integrity and
to locate gross anatomy changes prompted by injury.

To study WM changes prompted by TBI, neuroimaging
researchers have adopted various mathematical approaches to aid
in data analysis, the most prominent of these being network theory.
This approach typically focuses upon the task of reconstructing
brain networks using graphs, which are mathematical representa-
tions consisting of nodes (vertices) and links (edges) between pairs
of nodes. Such representations have long been used to represent
brain networks (Strogatz, 2001), though their popularity for the
purpose of systematic connectivity mapping in humans via non-
invasive techniques such as DTI has only increased appreciably
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throughout the past decade (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010). In the context of neural connectivity, nodes
represent brain regions which exhibit some given functional or
anatomical pattern. Links, on the other hand, denote the presence
or absence of connections, and can be weighted to represent the
strengths of neural connections between distinct areas (Strogatz,
2001; Rubinov and Sporns, 2010). The manner in which nodes and
links are defined can vary substantially, depending on the set of
conventions used to parcellate the brain. In many cases, parcella-
tion schemes are used to delineate gyri and sulci into homogenous
regions which correspond to graph nodes (Thirion et al., 2010;
Stanley et al., 2013). The advantage of this approach is that each
graph node corresponds to an anatomical region whose identity
and spatial extent have been well documented by neuroanatomists
(Irimia et al., 2012c; Van Horn et al., 2012).

The application of network theory within TBI neuroinfor-
matics has increased in recent years (Achard et al., 2012; Irimia
et al., 2012c; Van Horn et al., 2012; Wang et al., 2012), with a
special focus upon identifying network patterns which can offer
insight into the long-term effects of TBI. A study by Pandit et al.
(2013), for example, utilizes the tools of network theory to inves-
tigate changes in brain network topology following TBI, to the
effect that the victims of this condition exhibit abnormalities with
respect to normal controls from the standpoint of several global
network-theoretic measures, including total connectivity, average
path length and network efficiency. Thus, one advantage of DTI
which is highly beneficial to the study of TBI is the fact that this
imaging modality allows the extraction of network-theoretic con-
nectivity information from which patient-specific measures can
be computed, including metrics of centrality, assortativity, node
degree, etc. (Achard et al., 2012; Irimia et al., 2012a). Statistical
comparison of such measures between TBI patients and healthy
control subjects can outline the nature, extent and location of TBI
damage upon neural pathways, and may also reveal information
which can be useful when formulating personalized rehabilitation
strategies.

Network metrics can be used to investigate patterns of connec-
tivity changes in TBI patients and to inform clinicians who wish
to incorporate the use of this knowledge into the process of treat-
ment formulation. This trend is already under way in the study of
other disorders of the nervous system; for example, previous stud-
ies have found significant differences in network-theoretic metrics
(e.g., spatial pairwise clustering and intra-nodal homogeneity)
when comparing healthy adults to schizophrenics (Zalesky et al.,
2012), AD patients, and to normal aging. Thus, the informatics
relevant to these studies offers new ways to quantitatively char-
acterize changes in anatomical network patterns, including the
means to relate WM network topology to brain function. These
techniques are particularly relevant in TBI due to the well-known
facts that (a) brain injury can cause dramatic changes in WM
connectivity (Kinnunen et al., 2011; Irimia et al., 2012a) and that
(b) such changes often result in the deterioration of cognitive
function (McDowell et al., 1997; Chen and D’Esposito, 2010).
Because cognitive deficits incurred as a result of injury may either
ameliorate or deteriorate over time depending on a variety of fac-
tors (Hoofien et al., 2001; Kraus et al., 2007), neuroinformatics
approaches designed for professionals in the field of TBI (e.g., TBI

clinicians, epidemiologists, public health professionals, etc.) are
well-suited for providing clinicians and researchers with advanced
tools for investigating the temporal evolution of TBI WM lesion
profiles. This may lead to an improvement of current understand-
ing on how neurological damage leads to functional impairment,
and may also spur the development of pathology-tolerant neu-
roimage analysis tools which can be applied to other types of brain
injury, such as stroke and MS.

Despite the widespread application of diffusion imaging over
the years, several fundamental technical challenges remain only
partially resolved. One persistent difficulty has been the chal-
lenge of correcting for head movement in the MR scanner. Head
motion not only interferes with image acquisition, but may also
lead to errors in the calculation of diffusion tensor scalars such as
fractional anisotropy (FA) and mean diffusivity (MD), as shown
in a number of studies (Ling et al., 2012; Van Dijk et al., 2012).
It should be noted that head motion is not unique to connec-
tivity neuroimaging and that it is also a concern in structural
neuroimaging. Approaches to mitigating head motion in non-
head injury patients have included the use of anesthesia (Karlik
et al., 1988; Holshouser et al., 1993), which is often used when
neuroimaging data are acquired from acute injury patients in
a neurointensive care setting. Naturally, however, this approach
may not be suitable in all TBI cases, and therefore the integra-
tion of motion correction algorithms into post-processing steps
remains critical to the usability of the acquired data. Investi-
gators have systematically examined the residual effects of head
motion in diffusion imaging, and have reported the impact of
head motion upon the calculation of diffusion metrics. Tijssen
et al. (2009) found a positive bias between head motion and
FA in regions with low anisotropy; in regions with higher
anisotropy, head motion was found by these authors to artifactu-
ally decrease FA. Ling et al. (2012) reproduced these findings and
expanded on the findings of Tijssen et al. by examining the resid-
ual effects of motion following conventional motion correction
frameworks (i.e., image registration, gradient table adjustment,
diffusion weighted image removal). This is especially problematic
in TBI studies where diffusion metrics may incorrectly repre-
sent the presence or absence of pathology-affected tissue. Thus,
further research into the development of effective motion cor-
rection algorithms is particularly critical in the context of TBI
research.

Another challenge resides in the somewhat limited ability of
tracking algorithms to correctly infer the continuity of fibers
from voxel to voxel. One drawback of probabilistic tractography
which can affect TBI studies with predilection is that the latter
is more likely to reconstructs short fibers, which can increase
the probability that WM located near GM or near a lesion is
assigned an inappropriately large number of tracts (Kuceyeski
et al., 2011). Connectivity assessment may further be complicated
by the presence of edematous or hemorrhaging tissue, where
the appreciable isotropy of water diffusion interferes with the
ability of DTI to capture fiber directionality. Yet another fac-
tor which TBI neuroinformatics tools should aim to account for
is the difficulty of detecting crossing fiber bundles, particularly
in peri-lesional regions. This phenomenon, which is tradition-
ally known to be caused by limitations in current approaches
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for reconstructing fiber trajectories (Iturria-Medina et al., 2007;
Bullmore and Sporns, 2009), can be particularly challenging to
account for in TBI where changes in anisotropy are often prompted
within and surrounding lesion sites.

A final concern for TBI connectivity analysis is the increasing
need for versatile data visualization tools. While a large num-
ber of these exist, many of them, as Margulies et al. (2013) point
out, are limited by the necessity to compromise and prioritize
the representation of information in terms of anatomic vs. con-
nectomic, aesthetics vs. informational content, and thoroughness
vs. readability. For example, although TrackVis is intended for
whole brain tractography visualization, its strength is primarily
in data visualization rather than data processing and computa-
tion. By comparison, OpenWalnut is more tailored towards data
processing due to the modularity of its software environment
design and pipelining engine. However, while both of these tools
fulfill the need for anatomic visualization, very few workflows
exist which offer comprehensive summaries (i.e., anatomy, func-
tion, connectivity) of the human connectome as reconstructed via
neuroimaging.

Research on mapping and visualizing cortical connections has
a relatively long history, beginning with animal model studies.
Scannell and Young, in particular, have performed extensive work
on the cat cerebral cortex in representing neural connectivity
using a variety of graph depiction strategies (Scannell and Young,
1993; Scannell et al., 1995). Irimia et al. (2012a) have developed a
graphical approach for representing TBI connectivity alterations,
illustrating the location and extent of WM change over time in
TBI patients. This visualization paradigm generates connectivity
representations called “connectograms” using an informatically
driven software package which allows brain connectivity informa-
tion to be depicted within a circle of radially aligned elements.
A connectogram from a sample TBI patient created using this
approach is shown in Figure 2. The purpose of this figure is to
illustrate the presence of appreciable atrophy due to TBI. Each
circular wedge element represents a specific cortical region and
is positioned on either side of the vertical axis, corresponding
to the left or right hemisphere, respectively. The location of
each fiber extremity is associated with the appropriate cortical
parcellation of a sulcus or gyrus. Inter-region connectivity is rep-
resented by a link of variable opacity drawn the between radially
aligned elements, and depends on fiber density as well as upon
pathology severity. This mode of representation emphasizes the
presence of atrophy, which is substantially more severe in TBI
than in healthy aging, particularly over a 6-month period. For this
reason, in contrast to Figure 2, it is to be expected that the con-
nectogram displaying longitudinal changes in connectivity for a
healthy adult would reveal considerably fewer and weaker changes
over a 6-month period, particularly for a young or middle-aged
adult.

The connectogram as a graphical representation method offers
a succinct means of displaying longitudinal differences in WM
connections and highlights the current impetus for incorpo-
rating neuroinformatics approaches into the development of
brain connectivity visualization methods (Margulies et al., 2013).
Advances in robust connectivity visualization and representation
methods could encourage longitudinal studies, which depend

on neuroinformatically driven workflows to process the large
amounts of data associated with capturing and quantifying
connectivity changes across multiple time points. Armed with
measurements of morphologic and connectomic alterations over
time, customized publication database search strings may addi-
tionally be crafted and submitted to PubMed or Google Scholar
to return literature relevant to damage in the affected areas, the
effects on connectivity, and putative treatment options (Irimia
et al., 2012a). Recent approaches to information retrieval, extrac-
tion and analysis of the neuroimaging literature, such as those
of Bug et al. (2008) and Keator et al. (2013) may provide addi-
tional starting points for the development of flexible tools for
the description and retrieval of neuroscience-relevant resources,
as pioneered by the Neuroscience Information Framework
(NIF).

FUNCTIONAL IMAGING AND NEUROPHYSIOLOGICAL
APPROACHES
Functional neuroimaging modalities and electrophysiological
recordings allow researchers to investigate behavioral deficits as
well as the pathophysiological responses of the brain follow-
ing injury. The techniques most frequently employed include
functional MRI (fMRI), electroencephalography (EEG), magne-
toencephalography (MEG), and PET. Each of these techniques
possesses varying levels of applicability with inherent strengths
and weaknesses depending on the aims of the study, as well as on
the condition of the patient. Accordingly, it would be beneficial to
develop data mining, processing and analysis approaches which
can facilitate the optimization of information usage acquired
across various functional imaging modalities.

Whereas fMRI is useful in post-injury investigations of cerebral
activation patterns during the performance of cognitive tasks, its
reliability in diagnostic applications may be impeded by factors
such as increased intracranial pressure, which can alter hemody-
namic responses and, subsequently, its measure of cerebral activity
(Hillary et al., 2002). In such cases, the use of EEG may be prefer-
able to that of fMRI or PET due to the high temporal resolution
of the former (in the millisecond range), and to the fact that EEG
does not rely on indirect measures of activity such as the hemody-
namic response. Nevertheless, it is useful to note that the temporal
resolution gap between fMRI and EEG may be partially alleviated
through the use of novel multi-band methods for fMRI, which
involve shorter acquisition times and thus greater temporal reso-
lution (Moeller et al., 2010; Ugurbil, 2012). One limitation of EEG
to consider, however, is the fact that the structural changes and
presence of pathology prompted by TBI may increase the diffi-
culty of localizing pathophysiological activity recorded after acute
brain injury. Specifically, electrical source localization is a prob-
lematic task due to the ill-posed nature of the bioelectric inverse
problem. The latter refers to the task of localizing the sources
of brain activity based on scalp EEG measurements. By contrast,
the calculation of electric potentials produced at the scalp due to
current sources in the brain is known as the forward problem of
bioelectricity (Lima et al., 2006; Irimia et al., 2013a). Additionally,
appreciable cancellation of cortical signals occurs in EEG (Goh
et al., 2013; Irimia et al., 2013a,b). Accurate localization of corti-
cal activity depends on a number of factors, one of which is the
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FIGURE 2 | Circular connectogram representation graphically displays

WM atrophy over a 6 month period. The left and right halves of the
connectogram correspond to the left and right hemispheres, respectively.
Each hemisphere of the brain is divided into frontal, insular, limbic, temporal,
parietal and occipital lobes, as well as into subcortical structures, cerebellum,
and the brain stem; the latter three are represented at the bottom of the
circle. Each lobe is further divided into parcels (gyri and sulci in the case of the
cortex) and is assigned a unique identifying color. Radially aligned, concentric
rings represented using various color schemes depict various attributes of
each corresponding brain parcel. From the outermost to the innermost one,
the rings contain wedges which encode GM volume, surface area, cortical

thickness, curvature, and degree of connectivity. A link of variable opacity is
drawn between certain pairs of brain parcels, reflecting structural connectivity
properties between regions. In the case of the connectogram displayed, links
displayed indicate connections which suffered from large atrophy from the
acute baseline to the chronic follow-up time point. Link transparency encodes
the percentage change � in fiber density, in the range [min(�), max(�)], with
larger changes (more negative values of �) being encoded by more opaque
hues of blue. The lowest color opacity corresponds to the smallest absolute
value of the percentage change which is greater than the selected threshold
of 30%, and the highest opacity corresponds to the maximum absolute value
of the change in fiber density. See Irimia et al. (2012a) for details.

anatomic faithfulness of the head model used in the forward cal-
culation of electric potentials (Gencer and Acar, 2004; Goh et al.,
2013). EEG localization studies involving models which account
for the presence of lesions and cavities have shown that the lat-
ter can have significant qualitative and quantitative effects upon

the computed electric potentials (He et al., 1987). Thus, from an
informatics standpoint, it is necessary to develop data process-
ing tools which incorporate realistic head model generation and
which can account not only for head anatomy and tissue conduc-
tivity profiles, but also for the effects of tissue conductivity changes
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due to TBI. Comparatively, MEG presents advantages which are
unique and often complementary to EEG. For example, a single
head volume model is typically sufficient in MEG forward mod-
eling, partly because the biomagnetic fields of the brain are far
more dependent on tissue permeability rather than conductivity.
Whereas conductivity can vary considerably across biological tis-
sues, their permeability is always very nearly equal to that of free
space (μ0), such that the use of a single head volume is justified.
An immediate consequence of this fact is that, whereas the spatial
distribution of electric potentials over the scalp is smeared and
attenuated due to the high resistivity of the skull, magnetic field
recordings are nowhere near as strongly affected by the conductiv-
ity profile of the head, which is advantageous in MEG experiments
(Lima et al., 2006; Sharon et al., 2009; Irimia et al., 2012b). In addi-
tion, the number of sensors used for MEG recordings (e.g., 306
sensors in the Elekta Neuromag® MEG scanner) is often higher
than that of EEG montages, where fewer than 256 sensors are
typically used. Finally, MEG sensors can usually sample brain sig-
nals at higher frequencies and signal-to-noise ratios than EEG
electrodes. Nonetheless, MEG scanners are available only at a
handful of brain research centers, and data acquisition costs for
this modality are prohibitively higher than for EEG. Future data-
processing tools devised for acquiring and analyzing brain signals
from TBI patients should aim to be user-friendly, regardless of
whether EEG or MEG is used. In this context, the requirement
of user friendliness implies that the approaches for data acqui-
sition and analysis should be intuitive to grasp and easy to use
by clinicians and by other health professionals who are unfamil-
iar with the complexities of anatomical modeling and of inverse
localization methods for EEG-based neurophysiological signal
analysis.

Although a variety of functional neuroimaging and electro-
physiological techniques can and have been used in neurotrauma
research, a large number of functional TBI studies are uni-modal
in the sense that they employ only a single technique to obtain
quantitative values of a specific measure. Naturally, it would be
more advantageous to combine multiple modalities in order to

achieve a more comprehensive view of how brain injury leads to
subsequent functional losses. An insufficient number of studies
have accomplished this, however, due to the difficulty associ-
ated with integrating data acquired across various measurement
modalities. Research involving the localization of brain activity
after TBI using EEG includes three recent studies (Goh et al., 2013;
Irimia et al., 2013a,b) where the combined use of MRI and EEG is
demonstrated. In both of these studies, cortical electrical activity
is inversely mapped over the cortex with clinical applications to
the localization of epileptogenic foci in post-traumatic epilepsy
(PTE). An example of this approach is shown in Figure 3. In
these studies, the effects of pathology upon forward modeling
and inverse source localization were explored in the context of
a semi-automatic, multimodal neuroimaging approach involv-
ing anatomically faithful TBI head models containing 25 tissues
types, including six types accounting for TBI-related pathology.
The multimodal aspects of these studies highlight the combined
use of structural and functional imaging data using an inverse
localization algorithm subject to anatomic constraints provided
by MRI.

In a general sense, neuroimaging-based methodologies have
not yet addressed the paucity of strategies for integrating multi-
variate connectivity data with other imaging modalities including
fMRI, PET, EEG, and MEG. The ability to extract meaningful
information from multimodal data must often make use of dimen-
sionality reduction techniques, as well as multivariate statistical
inference methods which can allow researchers to test statisti-
cal hypotheses based on large descriptive feature vectors. One
study which illustrates the integration of functional neuroimaging
modalities to the benefit of TBI research is by Storti et al. (2012),
who integrated fMRI and EEG to evaluate PTE in patients with
pharmacologically resistant epilepsy. During MRI scanning, the
patients who participated in this study were additionally equipped
with an MR-compatible EEG amplifier and cap arranged in the
10/20 montage. The combined use of these modalities allowed
the authors to compare clinical semiology, BOLD activation, and
source localization which could only be obtained as a result of

FIGURE 3 | Example of EEG inverse localization in a sample acuteTBI

patient using an integrative pipeline. The cortical sources responsible for
the generation of recorded EEG waveforms are determined using the
application of a minimum norm inverse localization method. (A) EEG
potentials recorded over the scalp (i.e., in “sensor space”) are inversely
localized onto the cortical surface (i.e., into “source space”). The inverse
estimate of the cortical activity responsible for the generation of EEG signals

is plotted using t scores, which indicate the likelihood for each cortical
location to be electrically active. The magnitude of t indicates whether the
localized electric current is oriented out of (t > 0, red hues) or into (t < 0, blue
hues) the cortex. (B) The interpolated values of the potentials measured at
each sensor location are mapped over an idealized, circular representation of
the scalp to generate a topographic map. Color indicates the magnitude of the
recorded electric potential � in μV. See Irimia et al. (2013b) for further details.
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the advantages offered by the complementary nature of combined
fMRI/EEG. As previously stated, conventional fMRI alone offers
high spatial resolution, but poor temporal resolution, whereas
EEG alone offers high temporal resolution but relatively poor spa-
tial resolution in the absence of inverse localization. Multimodal
neuroimaging is ideally suited for TBI clinical care because differ-
ent modalities can reveal distinct information about injury. For
example, an MRI FLAIR sequence can reveal the presence and
spatial extent of brain edema, whereas an SWI sequence is ide-
ally suited for the detection of microhemorrages. Thus, the fusion
of such multimodal information can provide substantial insight
into the structural profiles of lesions, thereby helping to formulate
clinical interventions. Nevertheless, despite the trend toward inte-
gration of modalities to study TBI across all its stages, it has been
proposed that the use of fMRI and PET is more appropriate dur-
ing the sub-acute to chronic stages, as opposed to the acute phase
where the presence of increased intracranial pressure is likely and
may lead to misleading measurements (Hillary et al., 2002). In
chronic TBI, by contrast, metrics of brain function derived from
fMRI and PET have been used by various researchers to investi-
gate neuropsychiatric performance (Kasahara et al., 2011; Palacios
et al., 2013).

The motivation for diversifying the range of functional neu-
roimaging modalities which are typically included in analyses of
brain structure has increased considerably as neuroimaging anal-
ysis methods have become more sophisticated. In this respect, one
key point to address in functional TBI neuroimaging studies is the
fact that large volumes of data are often generated in the course
of neuroimage acquisition and analysis. Specifically, data acquired
using modalities such as fMRI, EEG and MEG incorporate a time
dimension: (a) in the case of multiband fMRI, the additional 3D
nature of this modality can make data storage a very substantial
challenge; (b) in the cases of EEG and MEG, the high temporal
resolution (in the MHz range, though typically down-sampled to
the kHz range or lower) can also raise storage-related challenges.
Collectively, these properties of functional neuroimaging data can
result in substantial storage demands from dedicated databases
and repositories (Van Horn and Toga, 2009). An examination of
fMRI articles from representative issues of the journal Neuroimage
found that since 1995, the amount of data collected has doubled
approximately every 26 months (Van Horn and Toga, 2009, 2013).
At this rate, it is projected that data storage requirements may
exceed 20 GB per published study by the year 2015. Consequently,
it is vital that funding agencies should support the computational
infrastructure needed to accommodate multimodal data, and that
hardware resource availability should develop alongside at the
same pace. Next-generation neuroinformatics approaches to the
management of multimodal data should also be developed, par-
ticularly for the purpose of inter-institutional collaborations and
data sharing.

An important recent trend in the consideration of functional
TBI neuroimaging has been the proliferation of approaches involv-
ing data-intensive discovery – rather than hypothesis testing – in
TBI research (Akil et al., 2011). The net result of this trend has
been the need for centralized databases to assist the research com-
munity in terms of hardware infrastructure and efficiency of data
mining. Whereas a number of neuroimaging databases exist which

are dedicated to the gathering and dissemination of neuroimaging
data for various types of diseases including ADNI (Jack et al., 2008;
Jack et al., 2010; Weiner et al., 2012), such large-scale database sys-
tems are only now becoming available for the purpose of TBI
neuroimaging research, including the informatics system of the
Federal Interagency Traumatic Brain Injury Research (FITBIR, fit-
bir.nih.gov). In addition to FITBIR, the NIF (www.neuroinfo.org)
is another useful resource established to survey and compile a list of
neuroscience databases, tools, and materials so that researchers can
efficiently search across a variety of smaller, individual databases.

For FITBIR, NIF and other resources and databases dedicated
to the task of disseminating data and functional neuroimaging
analysis software to the research community, one challenge which
requires careful consideration is the need for data sharing and
storage mechanisms to accommodate large collaborations across
multiple research centers with wide geographic distributions. The
intrinsic necessity for multidimensionality in TBI neuroimaging
data sets entails the reality that inter-institutional TBI research may
require hardware data storage capabilities in excess of those needed
by other large neuroimaging collaborative efforts such as ADNI,
for example, which does not need to rely as heavily as TBI research
does upon data multimodality. Furthermore, it would be highly
beneficial for researchers to benefit from neuroinformatics-driven
data sharing capabilities which can facilitate collaborations among
researchers from various institutions as well as among clinical and
research staff responsible for acquiring TBI neuroimaging data
(Manley and Maas, 2013).

DISCUSSION
Despite the emerging trend towards the use of multimodal imag-
ing by TBI experts, the capacity to acquire and process large
amounts of neuroimaging data remains dependent upon the
availability of sophisticated imaging hardware and large-scale
computational resources to store and manage such data. Addi-
tionally, extracting meaningful and clinically useful information
from multimodal neuroimaging data can necessitate advanced
neuroimaging processing software packages which are capable
of handling their multi-dimensionality and inherent complexity.
Although improvement of TBI treatment and rehabilitation pro-
tocols by means of multimodal neuroimaging remains a critical
goal to healthcare providers, much of the ability to accomplish
this aim is dependent upon the identification of clinical biomark-
ers which are predictive of TBI pathology progression, and the
future of TBI neuroinformatics must therefore accommodate the
use of statistical prediction models which aid in forecasting TBI
clinical outcome.

Computational neuroanatomy can aid TBI outcome prediction
by providing quantitative metrics for further analysis rather than
by resorting to the task of discerning voxel intensity differences
visually or to similar types of qualitative observations. By defini-
tion, quantitative structural imaging studies utilize mathematical
computations which can be reliably reproduced and applied across
entire cohorts, and such undertakings can be facilitated through
the use of neuroinformatics. Nevertheless, when considering the
task of performing inferential statistical analyses of neuroimaging-
derived structural metrics in TBI, it is also critical to incorporate
statistical techniques which can accommodate and account for the
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attrition rates encountered in longitudinal studies of this condi-
tion. Specifically, one-third to one-half of TBI study participants
are lost to follow-up primarily due to low socioeconomic status,
substance abuse history, and violent injury etiology (Corrigan
et al., 2003). This can be detrimental to the validity of outcome
studies, and data processing workflows tailored for structural
neuroimaging analyses should therefore implement biostatistical
techniques for addressing the problem of missing measurement
data in order to account for the attrition rates encountered in
longitudinal studies of this population.

The wealth of information which can be extracted from con-
nectivity analyses has spurred the development of graph-theoretic
quantitative approaches to describe brain network organization
following TBI. The methodologies of classical graph theory have
lent their power to the study of complex networks such as those in
the brain, and the resulting approaches have been beneficial to the
task of quantifying the networks of the brain with high reliability
and reproducibility using a manageable number of neurobiolog-
ically meaningful and easily computable quantitative measures
(Rubinov and Sporns, 2010). Furthermore, network-theoretic
metrics can be robust to the use of distinct cortical parcellations
across studies as well as to various approaches for quantifying func-
tional connectivity. This is particularly useful in the case of TBI
because investigating relationships between brain structure, neu-
rological damage, and functional impairment is essential when
attempting to formulate patient-specific rehabilitation protocols.

The goals of numerous TBI neuroimaging studies can be greatly
facilitated by the use of neuroinformatics protocols to stream-
line and perform data analysis, but the availability solutions to
facilitate the study of brain structure, function and connectivity
remains insufficient. This is partly due to the intricate complex-
ities of the human brain and its functions, and partly due to the
fact that neuroimaging-based methodologies for its study have
not yet fully matured. Structural, connectomic, and functional
data are highly multidimensional, which frequently demands the
use of sophisticated statistical methods for multivariate analysis.
Current data processing efforts for their joint analysis continue to
be hampered by the need for considerable manual customization
steps which are often needed to bridge compatibility gaps between
the various software environments employed. For instance, to per-
form anatomically faithful forward/inverse calculations in EEG,
head model generation requires not only the segmentation of
healthy-appearing tissues – which can be performed more or less
automatically – but also the segmentation of pathology-affected
tissues, which is often performed manually, as outlined in the
first section. However, because little compatibility typically exists
across software environments and the algorithms used for each of
these processing steps, neuroinformatically informed strategies are
necessary to invoke the integration of neuroimage segmentation
tools with forward model generation modules, inverse localiza-
tion algorithms, and other methodologies for the analysis of brain
functional data.

In conclusion, next-generation TBI neuroinformatics must
address the need to develop integrative workflows which (a) per-
form automatic tissue segmentation of TBI pathology, (b) lead to
a reduction in the number of algorithmic approaches and software
environments required for connectomic and functional analysis,

(c) minimize the amount of time and effort devoted by the user to
manual intervention, and which (d) promote knowledge extrac-
tion leading to targeted clinical intervention. Such integration can
allow researchers to generate strategies for analyzing brain func-
tion after injury, for extracting clinically useful information from
each modality, for combining information obtained from each
modality, and for gaining insight into the relationships between
brain metabolism, cerebral blood flow, and cortical electrical
activity underlying successful recovery in TBI.
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