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Recent advances in neuroimaging technology and molecular genetics provide the unique
opportunity to investigate genetic influence on the variation of brain attributes. Since the
year 2000, when the initial publication on brain imaging and genetics was released, imaging
genetics has been a rapidly growing research approach with increasing publications every
year. Several reviews have been offered to the research community focusing on various
study designs. In addition to study design, analytic tools and their proper implementation
are also critical to the success of a study. In this review, we survey recent publications using
data from neuroimaging and genetics, focusing on methods capturing multivariate effects
accommodating the large number of variables from both imaging data and genetic data.
We group the analyses of genetic or genomic data into either a priori driven or data driven
approach, including gene-set enrichment analysis, multifactor dimensionality reduction,
principal component analysis, independent component analysis (ICA), and clustering. For
the analyses of imaging data, ICA and extensions of ICA are the most widely used
multivariate methods. Given detailed reviews of multivariate analyses of imaging data
available elsewhere, we provide a brief summary here that includes a recently proposed
method known as independent vector analysis. Finally, we review methods focused on
bridging the imaging and genetic data by establishing multivariate and multiple genotype-
phenotype-associations, including sparse partial least squares, sparse canonical correlation
analysis, sparse reduced rank regression and parallel ICA. These methods are designed to
extract latent variables from both genetic and imaging data, which become new genotypes
and phenotypes, and the links between the new genotype-phenotype pairs are maximized
using different cost functions. The relationship between these methods along with their
assumptions, advantages, and limitations are discussed.
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INTRODUCTION
While most genetic studies have focused on phenotypes as
diagnoses and clinical symptoms, it is relatively recent that
intermediate phenotypes have become an ever increasing focus.
Intermediate phenotypes refer to biological trait phenotypes con-
veying relatively closer association or higher penetration than
traditional phenotypes (Meyer-Lindenberg and Weinberger, 2006;
Rasetti and Weinberger, 2011). The best examples of approaches
leveraging intermediate phenotypes come from studies of psychi-
atric disorders for which diagnoses are based mainly on clinical
observations and interviews. Intermediate phenotypes derived
from neuroimaging and signals directly assessing brain struc-
ture and function not only reduce the phenotypic heterogeneity
common to many psychiatric disorders, but also increase detec-
tion power, given the genetic effects are not expressed directly
as behaviors but as molecular and cellular functions mediating
brain development and processes (Gottesman and Gould, 2003;
Rose and Donohoe, 2013). The pioneer studies utilizing neu-
roimaging features to identify genetic impact were in the year 2000
(Bookheimer et al., 2000; Heinz et al., 2000; Small et al., 2000).
They signified the birth of a new research approach using imaging
genetics. As defined (Hariri et al., 2006; Meyer-Lindenberg et al.,
2008; Silver et al., 2011; Meyer-Lindenberg, 2012), it combines

genetic information and neuroimaging data in the same subjects
to discover neuromechanisms linked to psychiatric disorders.
The overall strength of imaging genetics and its impact on psy-
chiatric disorder studies or broader have been stated clearly in
several reviews (Meyer-Lindenberg and Weinberger, 2006; Glahn
et al., 2007; Bigos and Weinberger, 2010; Meyer-Lindenberg, 2010;
Rasetti and Weinberger, 2011).

The overwhelming growth of imaging genetics in recent years
as summarized in recent studies (Roffman et al., 2006; Bigos and
Weinberger, 2010), while providing abundant promising results,
also reveals challenges embedded within study designs such as
validity of candidate genes, control of non-genetic confounding
factors, and selection of tasks to stimulate brain specific pro-
cesses. Bigos and Weinberger (2010) have provided an excellent
review with applications to demonstrate the principles in design-
ing an imaging genetic study. Another big challenge faced by both
imagers and geneticists is how to properly analyze the collected
data, since both neuroimaging and genetics tend to generate a
large amount of data. Different strategies, processing approaches,
and validation methods such as false positive control (Silver et al.,
2011) have been implemented and tailored for different condi-
tions. But there is an even greater need in the future for the
methodology development as pointed by Mayer-Lindenberg in
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his recent review (Meyer-Lindenberg, 2012), where complexity
of epistasis, pleiotropy and genetic by environment interactions
should been considered in particular in large scale genomic stud-
ies. The availability of imaging genetic analytic tools and their
proper implementation are critical for both success of individual
studies and the continuing growth of imaging genetics.

The earliest imaging genetic studies focused on candi-
date genetic variants using either a single or a few variables
(Bookheimer et al., 2000; Heinz et al., 2000; Small et al., 2000;
Egan et al., 2001). For example, the dopamine transporter gene
(SLC6A) was analyzed with neuroimaging data from single-
photon emission computed tomography (Heinz et al., 2000).
Variation within the APOE gene was associated with activities in
memory function affected by Alzheimer’s disease (Bookheimer
et al., 2000). COMT Val allele carriers showed increased activ-
ities in the prefrontal cortex compared to Met allele carriers
(Egan et al., 2001). In parallel, the intermediate phenotypes from
neuroimaging techniques can also be specified within selected
brain regions or particular processes. Straightforward univariate
analyses are often used and well suited for these studies. Candi-
date gene and candidate imaging phenotype studies in the last
decade have proven the validity of imaging genetic approach as
recapitulated in (Meyer-Lindenberg, 2012). But with the com-
pletion of human genome sequence and multimodal imaging
practices, in conjunction with increased evidence of polygenic-
ity and pleiotropy (Purcell et al., 2009; Sivakumaran et al., 2011;
Whalley et al., 2012; Smoller et al., 2013), multivariate analysis
methods are becoming more and more demanding. For instance,
thousands of genetic variants have been suggested to be linked
with the risk for schizophrenia (Purcell et al., 2009). Methods
to capture the interactive or integrated genetic effects of a set of
genetic variants, methods to extract brain networks formed from
individual voxels or regions, and methods to detect, possibly, mul-
tiple genotype-phenotype connections have been developed with
their limitations and advantages (Hardoon et al., 2009; Liu et al.,
2009b; Vounou et al., 2010; Le Floch et al., 2012). We expect to see
continued development of such powerful methods to face the chal-
lenges and promises from genome-wide whole brain association
studies.

In this review, we focus on analysis approaches and, more
specifically, on the multivariate analysis approaches. We will first
give an overview of analysis strategies. Then, we will survey the
methods and organize them according to their multivariate nature
on genetic data, neuroimaging data or both.

OVERVIEW OF ANALYSIS STRATEGIES IN IMAGING
GENETICS
While various strategies can be applied to design and perform
imaging genetic studies, several aspects of such studies require
particular caution. Firstly, when an imaging feature is selected
as the intermediate or endophenotype, useful criteria should be
applied or at least considered. As summarized in (Gottesman and
Gould, 2003) intermediate phenotypes should show association
with illness in a population, certain level of heritability, and state-
independent characters. A proper preprocessing or controlling
for possible confounding factor should also be in place, such
as scanning effects, age or gender difference, brain size, etc.

The most often used software packages to process brain imaging
data, particularly for magnetic resonance imaging (MRI) images,
include FSL1 , SPM2, and AFNI3 for functional and structural
voxel-wise preprocessing, and FreeSurfer4 for brain regional vol-
ume and cortical thickness. Secondly, genetic data either from
single genetic mutation or genomic variants should be checked
for family structure, population structure, and ethnicity differ-
ences. A rationale to pull samples together should be justified
through, for instance, from a homogenous group, no indication
of population structure, or a proper control of ethnicity differ-
ence. The most often used software package for single nucleotide
polymorphism (SNP) data is plink5, which provides tools to do
various quality control, sample relatedness tests, filtering and
population stratification. The most often used software pack-
ages (freely available) for calling copy number variation (CNV)
include PennCNV6, and BirdSuite7. Even though the effect of
CNVs on brain imaging phenotypes is understudied now, it has
been predicted to be an important extension in the future (Meyer-
Lindenberg, 2012). Thirdly, methods to test the relation between
genetics and imaging phenotypes heavily rely on the dimension-
ality of data, as explained explicitly in next paragraph. Finally,
the interpretation of results depends on the study design and
analysis approaches. Keep in mind that most imaging genetic
studies test the association between genetic variants and imag-
ing phenotypes, as the analytical method itself reveals later on.
Any causal relation and underlying biological mechanism is only
suggestive. Particular caution should be given to genome-wise
association studies which result in a set of genetic variants interac-
tively associated with imaging phenotypes. The interaction among
them, linear, non-linear, dominate, recessive, two-way or n-way,
etc., needs to be carefully explained and some methods test the
overall effect without knowing the detailed interrelations. The
verification or at least certain levels of cross evaluation for such
findings as described in (Le Floch et al., 2012) plays a very crucial
role.

Depending on the dimensionality of investigated genotypes
and imaging intermediate phenotypes, we can classify imaging
genetic studies into four categories, which is a concept bor-
rowed from Vounou et al. (2010). As plotted in Figure 1, the
first one includes studies with candidate phenotypes and can-
didate genotypes, where a direct univariate association test is
applied to assess the hypothesized connection. A control for
possible confounding factors (scanner, age, gender, medication,
etc.) should be considered for imaging phenotypes. The second
type includes studies investigating multiple genetic variants, rang-
ing from a few to 100s of 1000s of variables in a genome-wide
setting. Univariate tests corrected for multiple comparisons are
straightforward (Potkin et al., 2009), but it may miss the well

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
2http://www.fil.ion.ucl.ac.uk/spm/
3http://afni.nimh.nih.gov/afni/
4https://surfer.nmr.mgh.harvard.edu/
5http://pngu.mgh.harvard.edu/∼purcell/plink/
6http://www.openbioinformatics.org/penncnv/
7http://www.broadinstitute.org/scientific-community/science/programs/medical-
and-population-genetics/birdsuite/birdsuite
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FIGURE 1 | Overview of imaging genetic studies and methods applied.

Category 1: candidate genotype with candidate phenotype. Category 2:
sets of genotypes with candidate phenotype. Category 3: candidate
genotype with multiple imaging phenotypes. Category 4: sets of
genotypes with multiple imaging phenotypes. Methods written in bold are
multivariate analysis methods. GSEA: gene set enrichment analysis; GRS:
genetic risk score; MDR: multifactor dimensionality reduction; PCA:
principal component analysis; ICA: independent component analysis; IVA:
independent vector analysis; MULM: mass univariate linear model; PLS:
partial least square; CCA: canonical component analysis; RRR: reduced
rank regression.

documented gene–gene interactions. Data driven multivariate
methods and a priori based gene-set or pathway analyses are
the two main analytical approaches to capture the interactive or
integrated genetic effect (Liu et al., 2010b; Walton et al., 2013).
What type of interactive relation among genes can be captured
depends on the analytic methods or specifically, the models that
the methods are built on. The third type includes studies inves-
tigating multiple imaging phenotypes, which may come from
one or more imaging modalities, such as structural, functional
MRI, magnetic resonance spectroscopy, etc. The imaging pheno-
types may cover whole brain or many brain regions or voxels.
Except for voxel-wise analyses with multiple comparison correc-
tion, the strategy to analyze such phenotypes usually is to extract
brain networks formed by interactive brain regions or voxels,
thus not only accommodating interrelations but also reducing
the number of tested phenotypes (Calhoun and Adali, 2006).
The last group of studies involves associations between mul-
tiple genotypic variables and multiple phenotypic variables. A
typical example is genome-wide whole brain studies. Although
massive univariate approaches have been implemented such as
a mass-univariate linear model (MULM) in studies (Stein et al.,
2010), most utilize data reduction and factorization methods to
effectively capture the interactive and complex relations within
and between datasets. In the following, we present the analyti-
cal methods implemented in studies of the last three categories,
category 2: sets of genotypes with candidate phenotype, cate-
gory 3: candidate genotype with multiple imaging phenotypes,

and category 4: sets of genotypes with multiple imaging phe-
notypes. We focus on the multivariate approaches for each
category.

A priori BASED MULTIVARIATE ANALYSES ON
GENETIC/GENOMIC DATA (CATEGORY 2)
Gene set enrichment analysis (GSEA) is a computational method
that determines whether a prior defined set of genetic variants
shows statistically significant differences between two biologi-
cal states (Mootha et al., 2003; Subramanian et al., 2005) or,
more generally, significant associations with phenotypes com-
pared to the null hypothesis. The GSEA was first introduced in
cancer research and thereafter various modified versions have
been introduced in studies of different diseases that includes
psychiatric disorders (Subramanian et al., 2005; Holden et al.,
2008; Suarez-Farinas et al., 2010; Oh et al., 2011; Weng et al.,
2011). The basic principle of GSEA is that sets of genetic vari-
ants are first selected for tests. We will use SNPs as an example
of genetic variants without loss of generality in this review. A
set of SNPs are selected based on common biological attributes
(gene ontology or pathways), chromosome location, or reported
results in the literature. Then the overrepresentation, or “enrich-
ment,” of phenotype-association of this set of SNPs as one unit
is calculated against the null hypothesis of normally distributed
phenotype-association. Among many ways to decide the signif-
icance of enrichment (Abatangelo et al., 2009), the two most
common methods are Fisher’s exact test and enrichment score
test (Subramanian et al., 2005). Fisher’s exact test is fast but needs
a pre-defined threshold, while enrichment score does not need
a threshold but needs a permutation to get empirical p values.
Specific issues associated, such as gene size bias (Mirina et al.,
2012), linkage disequilibrium (LD) between adjacent SNPs, have
been addressed by various modified versions (Liu et al., 2010b; Li
et al., 2011). The rationale to select the set of SNPs comes from
prior information, so this approach is indeed a priori driven test
for the overall effect of multiple variables, without modeling the
exact interaction among them. Another similar approach pro-
posed by Walton et al. (2013) is to compute a cumulative genetic
risk score (GRS = ∑N

i=1 wixi), which combines the additive
effects of multiple SNPs selected from the continuously updated
meta-analysis of genetic studies. The authors showed that this
multivariate score combined the impact of many genes with
small effects, accounting for 3.6% of the total variance of brain
activity at dorsal lateral prefrontal cortex (Walton et al., 2013).
Similar approaches using polygenic risk scores have been imple-
mented in several other studies (Whalley et al., 2012; Smoller et al.,
2013).

DATA DRIVEN MULTIVARIATE ANALYSES ON
GENETIC/GENOMIC DATA (CATEGORY 2)
Unlike the approaches above, some studies have implemented
purely data driven analyses without prior information, empha-
sizing the genetic patterns embedded in the datasets to capture
the epistasis and polygenicity. Multifactor dimensionality reduc-
tion (MDR) was developed to identify combinations of gene–gene
and gene-environmental factors that are predictive of a pheno-
type (Hu et al., 2011; Gui et al., 2013; Pan et al., 2013). The heart
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of MDR is an attribute construction algorithm that creates a
new variable by pooling genotypes from multiple SNPs (Moore
et al., 2010). In brief, values from any combination of multi-
ple SNPs are classified into two distinct groups, high risk and
low risk, effectively reducing the dimensionality from multidi-
mensional to one-dimensional. Subsequently, the new variables
are used to identify, from all potential combinations, the specific
combination of SNPs showing the strongest association with the
phenotype. This method with no particular model assumption
is well suited for capturing epistasis and has been used in genet-
ics studies of various disease status (Ritchie et al., 2001; Moore
and Williams, 2002; Ma et al., 2005; Lou et al., 2007; Gui et al.,
2011). Extensions of the method have been developed for quanti-
tative phenotypes and genome-wide data (Lou et al., 2007; Pattin
et al., 2009; Cattaert et al., 2011; Oh et al., 2012; Winham, 2013).
It is expected to see more broad applications of this method even
in imaging genetics (Papassotiropoulos and de Quervain, 2011).
Within the same line of estimating aggregated effect of multiple
genetic variants, but based on a linear additive model, multi-
ple regression and its penalized or modified versions have been
implemented to assess the explanation power of gene variables
(from a couple to genome-wide) to various of phenotypes (Wang
and Abbott, 2008; Wu et al., 2009; Cule et al., 2011). Penalized
regression, specifically LASSO multiple regression, are also often
used to downsize variables (voxels or SNP) for further analyses
(Vounou et al., 2012).

Other types of data-driven approaches, as reviewed in (Jom-
bart et al., 2009), mainly include principal component analysis
(PCA), principal coordinate analysis, non-metric dimensional
scaling, and correspondence analysis, belonging to the category
of matrix decomposition and extracting factors/components of
weighted genetic variants. An addition to the review is indepen-
dent component analysis (ICA). PCA provides a set of linearly
orthogonal principal components, explaining maximal variance,
while ICA is designed to extract statistically independent com-
ponents (and thus uses higher order statistical information).
PCA is often used in genome-wide SNP data, and the top PCs
extracted most likely present the population structure helpful
for population stratification (Price et al., 2006; Liu et al., 2010a).
ICA has proven successful in a variety of biological inquiries
when applied to gene expression data (Kong et al., 2008), includ-
ing identifying tumor-related pathways (Saidi et al., 2004; Sheng
et al., 2011), classifying disease datasets (Huang and Zheng, 2006)
and mining human gene expression modules (Engreitz et al.,
2010).

The value of clustering methods has been established in vari-
ous genetic studies, as reviewed by Jiang et al. (2004), as a means
to group genetic variants according to their functional relatedness
(D’haeseleer, 2005). In an example of using imaging as pheno-
types, Sloan et al. (2010) applied a hierarchical clustering analysis
on 834 SNPs and clinical and imaging phenotypes, including left,
right hippocampal volume and gray matter density. The associ-
ation between each SNP and each endpoint was first computed,
and then the clustering was performed on the results, wherein
both genotypes and phenotypes were grouped based on similarity.
Subsequently, p-values for each cluster were estimated using boot-
strap resampling. This study showed that (1) SNPs are frequently

associated with imaging phenotypes and rarely associated with
clinical scores and (2) most of the genes found within clusters
are associated with either beta-amyloid production or apoptosis
(Sloan et al., 2010). A noteworthy point of this study is that it com-
bined a pathway-based approach and clustering analyses together,
first by selecting SNPs based on pathways and then applying clus-
tering on genotypes and phenotypes, and demonstrated that priori
driven and data driven approaches can be integrated into one
study.

COMPONENT-BASED ANALYSES ON IMAGING DATA
(CATEGORY 3)
Not only does the development of various neuroimaging tech-
niques improve the precision of measurement of brain attributes,
but it also stimulates the growth of analysis approaches. The
most common imaging modalities include functional MRI
(fMRI), measuring the dynamic brain activity based on blood-
oxygenation-level dependent contrast; structural MRI, assessing
the volume and density of gray matter, white matter, and
cerebrospinal fluid; diffusion (tensor) imaging, depicting the
white matter tract connections; and magnetic resonance spec-
troscopy, obtaining biochemical information about the tissues
of brain. Furthermore, collecting multiple types of imaging
data from the same individuals becomes a common practice
in the hope of revealing additional information and increas-
ing our knowledge. Thus, methods for multimodal analyses
have also emerged and developed rapidly. Here, we limit our-
selves to the component-based multivariate analysis approaches
applied to imaging data, though there are many other multi-
variate approaches, such as unsupervised clustering, supervised
pattern recognition, classification and projection, and others
(Dimitriadou et al., 2004; Demirci et al., 2008; Hinrichs et al., 2009;
Filipovych and Davatzikos, 2011).

ICA with various implementation algorithms (Cardoso, 1997;
Hyvirinen and Oja, 1999; Bingham and Hyvarinen, 2000) and
its modifications and extensions (Bach and Michael, 2002; Beck-
mann and Smith, 2004; Calhoun et al., 2005; Hong et al., 2005;
Lin et al., 2010) are the most popular methods for multivari-
ate analyses on imaging data. Several reviews have been offered
to the imaging field (McKeown et al., 2003; Calhoun and Adali,
2006; Calhoun et al., 2009). Here, we briefly summarize the main
points. A typical ICA model assumes that the source signals are
not observable, statistically independent and non-Gaussian with
an unknown but linear mixing process. Consider an observed
M–dimensional random vector denoted by X = [x1, x2,...,xM ]T ,
which is generated by the ICA model: X = AS, S is the source
matrix. The goal of ICA is to estimate an unmixing matrix W
such that Y given by Y = WX is a good approximation to the
“true” sources. Y is called the component matrix. In the con-
text of imaging data, components are the independent brain
networks embedded in the observed voxels. Furthermore, when
MRI data from multiple subjects, each with their own temporal
dynamics, are of interest, several ICA based multi-subject analysis
approaches have been proposed (Calhoun et al., 2001; Schmithorst
and Holland, 2004; Beckmann and Smith, 2005; Esposito et al.,
2005; Erhardt et al., 2011; Calhoun and Adali, 2012). We refer to
recent studies by Calhoun and Adali (2012); (Calhoun et al., 2009)
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for a more detailed explanation. A recent addition is indepen-
dent vector analysis (IVA), which is a generalization of ICA for
analysis of multiple datasets (Kim et al., 2006). It takes a model
of X[m] = A[m]S[m], Y[m] = W[m]X[m], where M is the number
of datasets. Its cost function, the Kullback–Leibler divergence
between two functions of dependence (joint probability density
function of components and the product of marginal probability
density function of components), allows maintaining the inde-
pendency among components while increasing dependency of
components between datasets (Lee et al., 2008a,b). Based on sim-
ulation (Lee et al., 2008b; Dea et al., 2011), IVA shows excellent
performance in capturing inter-subject variability and the perfor-
mance enhancement increases when the spatial variation of a given
component across subjects is substantial.

For multimodal imaging analyses, a set of solutions with dif-
ferent emphases have been proposed and extensive reviews of
these methods are also available (Biessmann et al., 2011; Sui et al.,
2012a). Biessmann et al. (2011) reviewed the multimodal analy-
ses from a variety of perspectives, including multimodal imaging
study setup, the advances achieved in basic research and clinical
applications, the methods for artifact removal, data-driven and
model-driven analyses, and univariate and multivariate fusion.
Sui et al. (2012a) focused on comparisons of the multivariate
multimodal fusion methods rooted in ICA, canonical component
analysis (CCA), and partial least squares (PLS) analysis. Similarity
between methods fusing multimodal imaging data and multivari-
ate analyses to bridge imaging and genetics are discussed in the
next section.

MULTIVARIATE ANALYSES BRIDGING IMAGING AND
GENETICS (CATEGORY 4)
Given the characteristics of imaging and genetic data, multivari-
ate multiple regression is a natural choice, where genetic variants
are predictors along with other influencing factors such as age
and gender, and imaging variables (regions or voxels of brain)
are response variables. In practice with a set of SNPs and brain
voxels (they are usually not independent to each other), reg-
ularization or modification of traditional multivariate multiple
regression has to be taken in place. Wang et al. (2012a) proposed
a group sparse regularization on multivariate regression. SNPs
are grouped based on genes or LD blocks. A group sparsity to
reduce to only genes or LD blocks relevant to all imaging pheno-
types, and an individual sparsity to select only important SNPs
are all enforced. Lin et al. (2012) presented a projection regres-
sion model that is also suitable for imaging genetics. The key
of this model is to estimate the principal components of heri-
tability (covariance between multiple phenotypes and genetics of
interest), followed by a multivariate regression on the principle
components.

When facing a very large number of genetic variants, such
as genomic SNPs, and a large number of voxels in the brain,
researchers in imaging genetics, very interestingly, has focused on a
series of very closely related methods to capture interactive or inte-
grated effects and possibly many genotype-phenotype pairs. These
methods include PLS, CCA, reduced rank regression (RRR), and
ICA (Hardoon et al., 2009; Liu et al., 2009b; Vounou et al., 2010,
2012; Le Floch et al., 2012; Meda et al., 2012; Chi et al., 2013).

They are designed to simultaneously extract latent variables from
both genetic and imaging data, which become new genotypes and
phenotypes, and the connections of new geno-pheno variables are
maximized using different cost functions.

We can use a typical imaging genetic example to illustrate the
relation of these methods. We denote by X an n × p matrix of
genetic SNP data, and by Y an n × q matrix of imaging data,
where n is the sample size, p is the size of SNP loci, q is the size of
voxels, and n << p or q. The latent variables are obtained through
projecting the X or Y to new directions formed by the vectors in
U or V matrices. Figure 2 plots the cost function of each method
and the condition under which two different methods become
equivalent. PLS maximizes the covariance between latent vari-
ables of the two modalities, while CCA maximizes the correlation
between them. In a high-dimensional problem where the number
of variables is significantly larger than the number of samples, it
is common to assume that the covariance matrices of X and Y are
diagonal (Vounou et al., 2010; Le Floch et al., 2012). Under such a
condition, CCA and PLS become equivalent. The RRR model takes
a more general formation that begins from a multivariate linear
regression from X to Y, and reduces the rank of the project matrix,
a product of UV ′. Through minimizing the regression error noted
as(Y − XUV ′)�(Y − XUV ′)′, RRR obtains the project matrices
U and V. When the function of � is the identify matrix, RRR is
equivalent to PLS, and when the function of � is the inverse of
covariance matrix Y′Y, RRR is equivalent to CCA. Note that the
core computations of PLS, CCA and RRR all involve single value
decomposition so that the latent variables or projection vectors
within one modality (genetic or imaging) are orthogonal to each
other. In contrast, ICA emphasizes that latent variables (compo-
nents) are maximally independent from each other, which can be
optimized through many forms of statistical measures, including
minimization of mutual information and maximization of non-
Gaussianity. One extension of ICA methods applied to imaging
genetics is parallel ICA, which simultaneously maximizes both the
independence of components and correlations between projection
vectors of the two modalities (Liu et al., 2008b).

Parallel ICA was first introduced into imaging genetics in 2009
(Liu et al., 2009b) when applied to a genetic study of schizophrenia

FIGURE 2 | Cost functions of four multivariate association methods,

and their relation and extensions for a large number of variables.
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with a 384 SNP array and auditory oddball fMRI data. Since then,
this method has been made available for the public through the
fusion ICA toolbox8. This approach has been utilized by various
other groups (Jagannathan et al., 2010; Meda et al., 2010, 2012;
Meier et al., 2012). A noteworthy point is that parallel ICA can
also be applied onto other types of data in addition to genetics
and images (Liu and Calhoun, 2007; Liu et al., 2009a; Wu et al.,
2011; Meier et al., 2012). A simulation study showed that par-
allel ICA performs better within a certain range of sample size
vs. genetic variable ratio (Liu et al., 2008a). When a genome-
wide high-density large genetic array (e.g., >100K SNP loci) is
in place with a relatively small sample size, new extensions of
parallel ICA are proposed to improve the performance by incor-
porating prior information about genetic or imaging data called
parallel ICA with reference (Liu et al., 2012a; Chen et al., 2013).
As showed by Chen et al. (2013), this approach leverages prior
knowledge of known genetic functions to guide ICA for specific
components. Thus, a specific SNP factor centered at gene ANK3,
which is a schizophrenia susceptibility gene (Ripke et al., 2011),
was extracted from a large SNP array (>700K loci). While this
method does help extract particular genetic components, which
may not be extracted otherwise (Liu et al., 2012a; Chen et al.,
2013), its performance relies on the accuracy of reference (Liu
et al., 2012a).

As noted above, PLS, CCA, and RRR are closely related. They
all introduced the sparse version of algorithms – sparse PLS
(Le Floch et al., 2012), sparse CCA (Boutte and Liu, 2010; Chi
et al., 2013), and sparse RRR (Vounou et al., 2010, 2012) – when
applied onto a large number of variables in imaging genetics.
Not only does the increase of sparsity make the interpretation
more plausible, but also strengthens the stability of results by
avoiding the over-fitting problem. Le Floch et al. (2012) showed
through simulation that different levels of regularization on spar-
sity may produce different results for CCA and PLS, and the two
methods converge together with the corresponding regulariza-
tion strength. Similarly, for RRR, sparsity affects the performance
(Vounou et al., 2010), and how to choose sparsity is critical in
real applications. Up to now, only sparse PLS (combined with a
filtering step) and sparse RRR have been applied to real imag-
ing genetic data with larger than 100k loci (Le Floch et al., 2012;
Vounou et al., 2012).

The differences among these methods besides mathematical
models listed above also include settings in practice. First, the
number of latent variables (components or ranks) to test is chosen
differently. CCA, PLS, and RRR extract same numbers of compo-
nents for genetic and imaging data, and pair-wise connections are
tested. Though guidance is discussed for the choice of component
number, users of these methods tend to be very conservative. Sil-
ver et al. (2012) only investigated the components from first rank
in their RRR application, and Vounou et al. (2010, 2012) inves-
tigated the top three ranks. In the application of CCA, Hardoon
et al. (2009) tested the top pairs of components, and Le Floch et al.
(2012) examined the first two pairs of components for both CCA
and PLS methods. In contrast, parallel ICA, following the principle
of Infomax ICA (Bell and Sejnowski, 1995; Cardoso, 1999), first

8http://mialab.mrn.org/software/fit

estimates the number of components embedded in genetic and
imaging data. Estimation is either based on information theory
(Akaike, 1974; Li et al., 2007) or stability (Chen et al., 2012a), with
the goal of reliably, maximally explaining the variance of data.
The number of components for genetic and imaging data can be
different, and the pairs of related components between the two
modalities are driven by data. Sometimes pair-wise correlations
are not necessary (Meda et al., 2012). Judging from this aspect,
parallel ICA carries advantage of exploring more possible connec-
tions between the two modalities, while other methods target only
the top correlated components.

Second, all methods are limited in handling a large number of
variables (particularly SNP loci). CCA, PLS, and RRR methods
may run into over-fitting problems, where cross evaluation per-
formance drops (Le Floch et al., 2012). Parallel ICA fails to identify
the connections between modalities (Liu et al., 2008a). The ways
to overcome this limitation are also different. Pre-filtering SNP
loci to reduce the dimensionality is successfully implemented for
CCA and PLS. Le Floch et al. (2012) presented a comprehensive
comparison of PLS and CCA combined with different filtering
methods. They showed that incorporating a filtering step before
the multivariate association test (with the goal of removing irrele-
vant SNPs) can improve the performance for both methods. Their
real data application makes clear that the dimension reduction
(which reduced 700k SNPs down to 1000 SNPs) is an impor-
tant step for avoiding over-fitting with such large genetic data.
Although various means can be used to pre-filter SNPs, we rec-
ommend leveraging large population genetic data as a reference,
such as Psychiatric Genomics Consortium9. For RRR, enhancing
the sparsity to select only a small number of SNPs is an effec-
tive way to increase stability. Yet, the choice of sparsity is not
easy (Vounou et al., 2010). N-fold cross evaluation can be used
to decide the best parameter. Vounou et al. (2012) chose to test
a range of sparsity settings and select resultant SNPs with high
probability. Parallel ICA leverages prior information (a referential
SNP set) to increase chances of extracting relevant genetic compo-
nents associated with imaging phenotypes from large SNP data.
The difficulty with this approach lies in how to decide the ref-
erence. In particular, what we should do when we do not have
any prior knowledge about genetics regarding a particular pheno-
type? While prior information helps interpret the genetic result in
a degree, parallel ICA need to threshold the resultant latent vari-
able to select the most weighted SNPs, since no sparsity is in place
(Chen et al., 2013).

Third, verification of results from latent variables is very impor-
tant to guard against false discoveries. N-fold cross evaluation has
been utilized for CCA and PLS, and sub-sampling is used in RRR,
not exactly verification but increasing the stability (Silver et al.,
2012; Vounou et al., 2012). Permutation and leave-one-out evalu-
ation are used in parallel ICA (Liu et al., 2009b; Chen et al., 2012b).
We strongly recommend future users to incorporate certain verifi-
cation steps in their studies, given the complexity of the methods
mentioned. To date, only parallel ICA has a ready-to-use package
available10.

9https://pgc.unc.edu/
10http://mialab.mrn.org/software/fit/
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Except for multivariate analyses based on latent variables,
methods in machine learning category, i.e., training algorithms
with known knowledge and using them to predict the unseen
data, have also been applied to imaging genetics. For instance,
support vector machine on ICA factors of genetic and fMRI
data together achieved better separation of schizophrenia patients
from controls than using either type of data alone, suggesting
that genetic and brain functions capture different, but partially
complementary schizophrenic features (Yang et al., 2010). Within
the same line, Wang et al. (2012b) proposed a multimodal mul-
titask learning algorithm that combines genetic and multimodal
imaging features to predict simultaneously diagnoses and cogni-
tive function. In this algorithm, classification and regression are
performed jointly, and a group L1-norm regularization is used
for feature selection to integrate heterogeneous imaging genetic
data. One of strengths of this approach is that genetic markers
and imaging biomarkers relevant for both diagnosis and cognitive
function are identified. Another new application of learning algo-
rithms in imaging genetics is random forest on distance matrices,
where by employing distance measures between input variables,
various interactions (away from original space) are modeled and
random forest search is used for selection of best sets of fea-
tures (Sim et al., 2013). While it provides promising results, the
requirement for intensive computation and sophisticated mod-
eling may hinder further applications, which is true for other
methods too.

CHALLENGE AND FUTURE DEVELOPMENTS
During the last decade, imaging genetics has rapidly developed
into a promising, high impact research field and extended into a
body of studies on mental disorders, including both human and
animal studies. As Meyer-Lindenberg (2012) stated, future imag-
ing genetic studies have to confront the complexity of epistasis,
pleiotropy and gene-by-environment interactions, and this issue
will become even more pressing as the field moves into whole
genome sequencing. Although methods reviewed here attempt to
tackle this complex problem, limitations are clear. For example,
none of the methods can really address the genome-wide whole
brain association without filtering or dimension reduction. Some
multivariate methods such as MDR and prior knowledge guided
approaches have not been fully incorporated into imaging genetics
yet. Methods of CCA, PLS and RRR, facing over-fitting issues when
handling large genetic variables, may be improved by leveraging
prior information. Methods of parallel ICA may need to enhance
sparsity within the independent genetic components. Such lim-
itation in fact relates to a common problem across multivariate
analyses, which is the difficulty in interpreting results (i.e., results
are lack of direct biological meaning). For instance, GSEA does not
model the exact interaction among SNPs. The latent component
does not necessarily hold direct biological reason why multiple
genetic variants form into one factor, or why hundreds of voxels
group into one brain network. One way to alleviate this problem
is to incorporate additional information, such as known biologi-
cal information, cellular level information, or behavioral specific
information, into analyses. Further developing current methods
and integrating more information will continue to be an important
research frontier.

As matter of fact, another pressing demand raised by Meyer-
Lindenberg (2012) in the future of imaging genetics is to integrate
various types of data relevant to imaging genetics, beyond just
two modalities. The new data can be proteomic, gene expression,
epigenetic, behavioral and environmental variables. Studies have
shown their relevance to brain structural and functional changes,
genetic mutations, and psychiatric disorders (Clark et al., 2006;
Serretti et al., 2007; Maric and Svrakic, 2012; Liu et al., 2013). The
relationship among these data is by no means simple and pair-
wise. To date, very few methods have been applied in imagine
genetics to tackle the relation beyond two modalities (expect for
post hoc analyses with behavior or diagnosis). It is very promising
to see that some studies have stepped into this direction, though
only for multimodal imaging data (Correa et al., 2010; Sui et al.,
2012b). How to integrate such data in a systemic way with embed-
ded biological hierarchy is still an untouched land. Methods and
models incorporating multiple levels of biological variables (here
including behavioral or environmental variables) into broader
imaging genetics are another research direction of great potential
and impact.

To date, very few studies focused on CNV’s effect on brain-
based phenotypes (Yeo et al., 2011; Boutte et al., 2012; Liu et al.,
2012b), even though many studies have identified a relation-
ship between CNVs with psychiatric disorders (McCarroll and
Altshuler, 2007; Bassett et al., 2008; Guilmatre et al., 2009). Meyer-
Lindenberg (2012) has indicated that the future of imaging
genetics will recognize the importance of the sizeable amount of
variation in CNVs. Given the low incidence of individual CNVs, in
particular large and rare CNVs, such studies are more likely from
multi-site collaborations, where increasing numbers of imaging
genetic studies are heading for (Schumann et al., 2010; Thomp-
son et al., 2014). Methods to encompass data from multi-sites,
controlling for not only different equipments or experiments but
also different local populations or environments, are in great
need, which have to consider both computational feasibility and
mathematical (model) validity.

Given that the future focus of imaging genetics is expected
to be multi-site, large scale, genome-wide whole brain, multiple
level association studies, we believe that more effort should be
focused on the development of methods that can confront these
challenges.
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