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1. INTRODUCTION

Brain imaging is a natural intermediate phenotype to understand the link between genetic
information and behavior or brain pathologies risk factors. Massive efforts have been
made in the last few years to acquire high-dimensional neuroimaging and genetic data
on large cohorts of subjects. The statistical analysis of such data is carried out with
increasingly sophisticated techniques and represents a great computational challenge.
Fortunately, increasing computational power in distributed architectures can be harnessed,
if new neuroinformatics infrastructures are designed and training to use these new tools
is provided. Combining a MapReduce framework (TomusBLOB) with machine learning
algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with
non-parametric statistics on high-dimensional data. End-users describe the statistical
procedure to perform and can then test the model on their own computers before
running the very same code in the cloud at a larger scale. We illustrate the potential
of our approach on real data with an experiment showing how the functional signal
in subcortical brain regions can be significantly fit with genome-wide genotypes. This
experiment demonstrates the scalability and the reliability of our framework in the cloud
with a 2 weeks deployment on hundreds of virtual machines.

Keywords: machine learning, neuroimaging-genetic, cloud computing, fMRI, heritability

three-dimensional images, that represent e.g., either the amount

Using genetics information in conjunction with brain imaging
data is expected to significantly improve our understanding of
both normal and pathological variability of brain organization.
It should lead to the development of biomarkers and in the
future personalized medicine. Among other important steps, this
endeavor requires the development of adapted statistical methods
to detect significant associations between the highly heteroge-
neous variables provided by genotyping and brain imaging, and
the development of software components with which large-scale
computation can be done.

In current settings, neuroimaging-genetic datasets consist of
a set of (1) genotyping measurements at given genetic loci,
such as Single Nucleotide Polymorphisms (SNPs) that repre-
sent a large amount of the genetic between-subject variability,
and (2) quantitative measurements at given locations (voxels) in

of functional activation in response to a certain task or an
anatomical feature, such as the density of gray matter in the corre-
sponding brain region. These two sets of features are expected to
reflect differences in brain organization that are related to genetic
differences across individuals.

Most of the research efforts so far have been focused on design-
ing association models, while the computational procedures used
to run these models on actual architectures have not been consid-
ered carefully. Voxel intensity and cluster size methods have been
used for genome-wide association studies (GWAS) (Stein et al.,
2010), but the multiple comparisons problem most often does
not permit to find significant results, despite efforts to estimate
the effective number of tests (Gao et al., 2010) or by paying the
cost of a permutation test (Da Mota et al., 2012). Working at the
genes level instead of SNPs (Hibar et al., 2011; Ge et al,, 2012) is
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a promising approach, especially if we are looking at monogenic
(or few causal genes) diseases.

For polygenic diseases, gains in sensitivity might be provided
by multivariate models in which the joint variability of sev-
eral genetic variables is considered simultaneously. Such models
are thought to be more powerful (Meinshausen and Bithlmann,
2010; Vounou et al., 2010; Bunea et al., 2011; Kohannim et al.,
2011; Floch et al., 2012), because they can express more com-
plex relationships than simple pairwise association models. The
cost of unitary fit is high due to high-dimensional, potentially
non-smooth optimization problems and various cross-validation
loops needed to optimize the parameters; moreover, permuta-
tion testing is necessary to assess the statistical significance of
the results of such procedures in the absence of analytical tests.
Multivariate statistical methods require thus many efforts to be
tractable for this problem on both the algorithmic and implemen-
tation side, including the design of adapted dimension reduction
schemes. Working in a distributed context is necessary to deal
efficiently with the memory and computational loads.

Today, researchers have access to many computing capabilities
to perform data-intensive analysis. The cloud is increasingly used
to run such scientific applications, as it offers a reliable, flexible,
and easy to use processing pool (Vaquero et al., 2008; Jackson
etal., 2010; Hiden et al., 2012; Juve et al., 2012). The MapReduce
paradigm (Chu et al., 2006; Dean and Ghemawat, 2008) is the
natural candidate for these applications, as it can easily scale the
computation by applying in parallel an operation on the input
data (map) and then combine these partials results (reduce).
However, some substantial challenges still have to be addressed
to fully exploit the power of cloud infrastructures, such as data
access, as it is currently achieved through high latency protocols,
which are used to access the cloud storage services (e.g., Windows
Azure Blob). To sustain geographically distributed computation,
the storage system needs to manage concurrency, data placement
and inter-site data transfers.

We propose an efficient framework that can manage infer-
ences on neuroimaging-genetic studies with several pheno-
types and permutations. It combines a MapReduce framework
(TomusBLOB, Costan et al., 2013) with machine learning algo-
rithms (Scikit-learn library) to deliver a scalable analysis tool. The
key idea is to provide end-users the capability to easily describe
the statistical inference that they want to perform and then to test
the model on their own computers before running the very same
code in the cloud at a larger scale. We illustrate the potential of
our approach on real data with an experiment showing how the
functional signal in subcortical brain regions of interest (ROIs)
can be significantly predicted with genome-wide genotypes. In
section 2, we introduce methodological prerequisites, then we
describe our generic distributed machine learning approach for
neuroimaging-genetic investigations and we present the cloud
infrastructure. In section 3, we provide the description of the
experiment and the results of the statistical analysis.

2. MATERIALS AND METHODS

2.1. NEUROIMAGING-GENETIC STUDY

Neuroimaging-genetic studies test the effect of genetic variables
on imaging target variables in presence of exogenous variables.

The imaging target variables are activation images obtained
through functional Magnetic Resonance Imaging (fMRI), that
yield a standardized effect related to experimental stimulation
at each brain location of a reference brain space. For a study
involving n subjects, we generally consider the following model:

Y =XB1+ZB + e,

where Y is a n X p matrix representing the signal of n subjects
described each by p descriptors (e.g., voxels or ROIs of an fMRI
contrast image), X is the n x ¢q; set of q; explanatory variables and
Z the n x q; set of g, covariates that explain some portion of the
signal but are not to be tested for an effect. #; and B, are the fixed
coefficients of the model to be estimated, and € is some Gaussian
noise. X contains genetic measurements and variables in Z can be
of any type (genetic, artificial, behavioral, experimental, ... ).

2.1.1. The standard approach

It consists in fitting p Ordinary Least Square (OLS) regressions,
one for each column of Y, as a target variable, and each time per-
form a statistical test (e.g., F-test) and interpret the results in term
of significance (p-value). This approach suffers from some limita-
tions. First, due to a low signal-to-noise ratio and a huge number
of tests, this approach is not sensitive. Moreover, the statistical
score only reflects the univariate correlation between a target and
a set of g explanatory variables, it does not inform on their
predictive power when considered jointly. Secondly, with neu-
roimaging data as a signal, we are not in a case vs. control study. It
raises the question whether the variability in a population can be
imputed to few rare genetic variants or if it is the addition of many
small effects of common variants. Unfortunately, the model holds
only if n>> (q1 + q2), which is not the case with genome-wide
genotypes.

2.1.2. Heritability assessment

The goal of our analysis is to estimate the proportion of dif-
ferences in a trait between individuals due to genetic variabil-
ity. Heritability evaluation traditionally consists in studying and
comparing homozygous and dizygous twins, but recently it has
been shown that it can be estimated using genome-wide geno-
types (Lee et al., 2011; Lippert et al., 2011; Yang et al., 2011b).
For instance, common variants are responsible of a large por-
tion of the heritability of human height (Yang et al., 2010) or
schizophrenia (Lee et al., 2012). These results show that the vari-
ance explained by each chromosome is proportional to its length.
As we consider fMRI measurements in an unsupervised setting
(no disease), this suggests to use regression models that do not
enforce sparsity. Like the standard approach, heritability has some
limitations. In particular, the estimation of heritability requires
large sample sizes to have an acceptable standard error (at least
4000 according to Lee et al., 2012). Secondly, the heritability is the
ratio between the variance of the trait and the genetic variancein a
population. Therefore, for a given individual, a trait with an heri-
tability at 0.6 does not mean it can be predicted at 60% on average
with the genotype. It means that a fraction of the phenotype vari-
ability is simply explained by the average genetic structure of the
population of interest.
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2.1.3. High-dimensional statistics

The key point of our approach is to fit a model on training
data (train set) and evaluate its goodness on unseen data (test
set). To stabilize the impact of the sets for training and testing,
a cross-validation loop is performed, yielding an average predic-
tion score over the folds. This score yields a statistic value and a
permutation test is performed to tabulate the distribution of this
statistic under the null hypothesis and to estimate its significance
(p-value). In practice, this corresponds to swapping the labels
of the observations. As a prediction metric we generally choose
the coefficient of determination (R?), which is the ratio between
the variance of the prediction and the variance of the pheno-
types in the test set. If we consider all the genotypes at the same
time, this approach is clearly related to heritability, but focuses on
the predictive power of the model and its significance. Through
cross-validation, the estimation of the CV-R? with an acceptable
standard error does not require as large sample sizes as for the
estimation of heritability (Yang et al., 201 1a).

”Ytest _ Xtestﬁ{min _ Ztestﬂéminnz
”Ytest _ anﬂémmllz

CV-RP=1- mMean train, test) € split(n)

2.2. GENERIC PROCEDURE FOR DISTRIBUTED MACHINE LEARNING

If one just wants to compute the prediction score for few phe-
notypes, a multicore machine should be enough. But, if one is
interested in the significance of this prediction score, one will
probably need a computers farm (cloud, HPC cluster, etc.) Our
approach consists in unifying the description and the computa-
tion for neuroimaging-genetic studies to scale from the desktop
computer to the supercomputing facilities. The description of the
statistical inference is provided by a descriptive configuration in
human-readable and standard format: JSON (JavaScript Object
Notation). This format requires no programming skills and is far
easier to process as compared to the XML (eXtensible Markup
Language) format. In a sense, our approach extends the Scikit-
learn library (cf. next paragraph) for distributed computing, but
focuses on a certain kind of inferences for neuroimaging-genetic
studies. The next paragraphs describe the strategy, framework
and implementation used to meet the heritability assessment
objective.

2.2.1. Scikit-learn

Scikit-learn is a popular machine learning library in
Python (Pedregosa et al, 2011) designed for a multicore
station. In the Scikit-learn vocabulary, an estimator is an
object that implements a fit and a predict method. For
instance a Ridge object (lines 12—13 of Figure 1) is an estimator
that computes the coefficients of the ridge regression model
on the train set and uses these coefficients to predict data
from the test set. If this object has a transform method, it is
called a transformer. For instance a Selectkbest object (lines
10-11 of Figurel) is a transformer that modifies the input
data (the design matrix X) by returning the K best explana-
tory variables w.r.t. a scoring function. Scikit-learn defines a
pipeline (lines 8-13 of Figure 1) as the combination of several
transformers and an final estimator: It creates a combined
estimator. Model selection procedures are provided to evaluate
with a cross-validation the performance of an estimator (e.g.,

cross_val_score) or to select parameters on a grid (e.g.,
GridSearchCV).

2.2.2. Permutations and covariates

Standard machine learning procedures have not been designed
to deal with covariates (such as those assembled in the
matrix Z), which have to be considered carefully in a permutation
test (Anderson and Robinson, 2001). For the original data, we fit
an Ordinary Least Square (OLS) model between Y and Z, then we
consider the residuals of the regression (denoted &) as the target
for the machine learning estimator. For the permutation test, we
permute &y, (the permuted version is denoted y,*), then we fit an
OLS model between ry.* and Z, and we consider the residuals as
the target for the estimator (Anderson and Robinson, 2001). The
goal of the second OLS on the permuted residuals is to provide an
optimal approximation (in terms of bias and computation) of the
exact permutation tests while working on the reduced model.

2.2.3. Generic problem

We identify a scheme common to the different kinds of infer-
ence that we would like to perform. For each target phenotype
we want to compute a prediction score in the presence of covari-
ates or not and to evaluate its significance with a permutation
test. Scikit-learn algorithms are able to execute on multiple CPU
cores, notably cross-validation loop, so a task will be executed on
a multicore machine: cluster nodes or multicore virtual machine
(VM). As the computational burden of different machine learn-
ing algorithms is highly variable, owing to the number of samples
and the dimensionality of the data, we thus have to tune the
number of tasks and their average computation time. An opti-
mal way to tune the amount of work is to perform several
permutations on the same data in a given task to avoid 1/O
bottlenecks. Finally, we put some constraints on the descrip-
tion of the machine learning estimator and the cross validation
scheme:

e The prediction score is computed using the Scikit-learn
cross_val_score function and the folds for this cross valida-
tion loop are generated with a shufflesplit object.

e An estimator is described with a Scikit-learn pipeline with one
or more steps.

e Python can dynamically load modules such that a program
can execute functions that are passed in a string or a config-
uration file. To notify that a string contains a Python module
and an object or function to load, we introduce the prefix
DYNAMIC_IMPORT: :

e To select the best set of parameters for an estimator, model
selection is performed using Scikit-learn Gridsearchcv and a
5-folds inner cross-validation loop.

2.2.4. Full example (cf. script in Figure 1)

e General parameters (Lines 1-3): The model contains covariates,
the permutation test makes 10,000 iterations and only one per-
mutation is performed in a task. 10,000 tasks per brain target
phenotypes will be generated.

o Prediction score (Lines 4-7): The metrics for the cross-validated
prediction score is R?, the cross-validation loop makes 10
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Score (outer CV loop)

<(Phenotype ID, Permutation ID),
data>
+
configuration file

—_~—

"extract cov": true,
"n perm total": 10000,
"n perm per mapper": 1,
"cross val score": {
"score func":
"ShuffleSplit": {
"test size": 0.2,
"pipeline": [
["FastFilterColinear",
["SelectKBest",
"score func":
["Ridge",
"fit intercept":
"GridSearchCv":
"SelectKBest k"
"Ridge alpha"

"random_ state": 0,

true}l],

[10, 100, 10007,
[0.0001, 0.001,

FIGURE 1 | Top: Representation of the computational framework: given
the data, a permutation and a phenotype index together with a
configuration file, a set of computations are performed, that involve two
layers of cross-validation for setting the hyperparameters and evaluate
the accuracy of the model. This vyields a statistical score associated
with the given phenotype and permutation. Bottom: Example of
complex configuration file that describes this set of operations. General
parameters (Lines 1-3): The model contains covariates, the permutation
test makes 10,000 iterations and only one permutation is performed in

"DYNAMIC IMPORT::sklearn.metrics.r2 score"},
"n iter":
"gstat.data.utils.FastFilterColinear",
"sklearn.feature selection.SelectKBest", { 10
"DYNAMIC IMPORT::sklearn.feature selection.f regression"}1, 11
"sklearn.linear model.Ridge",

["sklearn.grid search.GridSearchCv",

0.01,

Grid Search (inner CV loop)

<(Phenotype ID, Permutation ID),
prediction score>

10},

O 0NN B W~

{1,

{ 12
13

{y, [A 14

15

0.1, 1.1}11} 16

a task. Prediction score (Lines 4-7). The metrics for the cross-validated
prediction score is R?, the cross-validation loop makes 10 iterations,
20% of the data are left out for the test set and the seed of the
random generator was set to 0. Estimator pipeline (Lines 8-13): The
first step consists in filtering collinear vectors, the second step selects
the K best features and the final step is a ridge estimator. Parameters
selection (Lines 14-16): Two parameters of the estimator have to be
set: the K for the SelectKBest and the alpha of the Ridge regression.
A set of 3 x5 parameters are evaluated.

iterations, 20% of the data are left out for the test set and the
seed of the random generator was set to 0.

e Estimator pipeline (Lines 8—13): The first step consist in filtering
collinear vectors, the second step selects the K best features and
the final step is a ridge estimator.

e Parameters selection (Lines 14—16): Two parameters of the esti-
mator have to be set: the K for the selectksest and the alpha
of the Ridge regression. A set of 3 x 5 parameters are evaluated.

2.3. THE CLOUD COMPUTING ENVIRONMENT
Although researchers have relied mostly on their own clusters
or grids, clouds are raising an increasing interest (Jackson et al.,
2010; Simmbhan et al., 2010; Ghoshal et al., 2011; Hiden et al.,
2012; Juve et al., 2012). While shared clusters or grids often
imply a quota-based usage of the resources, those from clouds are
owned until they are explicitly released by the user. Clouds are
easier to use since most of the details are hidden to the end user
(e.g., network physical implementation). Depending on the char-
acteristics of the targeted problem, this is not always an advantage
(e.g., collective communications). Last but not least, clouds avoid
owning expensive infrastructures—and associated high cost for
buying and operating—that require technical expertise.

The cloud infrastructure is composed of multiple data cen-
ters, which integrate heterogeneous resources that are exploited

seamlessly. For instance, the Windows Azure cloud has five sites
in United States, two in Europe and three in Asia. As resources
are granted on-demand, the cloud gives the illusion of infinite
resources. Nevertheless, cloud data centers face the same load
problems (e.g., workload balancing, resource idleness, etc.) as
traditional grids or clusters.

In addition to the computation capacity, clouds often provide
data-related services, like object storage for large datasets (e.g.,
S3 from Amazon or Windows Azure Blob) and queues for short
message communication.

2.4. NEUROIMAGING-GENETICS COMPUTATION IN THE CLOUD

In practice, the workload of the A-Brain application ! is more
resource demanding than the typical cloud applications and could
induce two undesirable situations: (1) other clients do not have
enough resource to lease on-demand in a particular data center;
(2) the computation creates performance degradations for other
applications in the data center (e.g., by occupying the network
bandwidth, or by creating high number of concurrent requests
on the cloud storage service). Therefore, we divide the workload
into smaller sub-problems and we select the different datacenters
in collaboration with the cloud provider.

Thttp://www.irisa.fr/kerdata/abrain/
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For balancing the load of the A-Brain application, the compu-
tation was distributed across four deployments in the two biggest
Windows Azure datacenters. In the cloud context, a deployment
denotes a set of leased resources, which are presented to the user
as a set of uniform machines, called compute nodes. Each deploy-
ment is independent and isolated from the other deployments.
When a compute node starts, the user application is automati-
cally uploaded and executed. The compute nodes of a deployment
belong to the same virtual private network and communicate with
the outside world or other deployments either through public end-
points or using the cloud storage services (i.e., Windows Azure
Blob or Queue).

TomusBlobs (Costan et al., 2013) is a data management sys-
tem designed for concurrency-optimized PaaS-level (Platform
as a Service) cloud data management. The system relies on the
available local storage of the compute nodes in order to share
input files and save output files. We built a processing frame-
work (called TomusMapReduce) derived from MapReduce (Chu
et al., 2006; Dean and Ghemawat, 2008) on top of TomusBlobs,
such that it leverages its benefits by collocating data with com-
putation. Additionally, the framework is restricted to associa-
tive and commutative reduction procedures (Map-IterativeReduce
model Tudoran et al., 2012) in order to allow efficient out-of-
order and parallel processing for the reduce phase. Although
MapReduce is designed for single cluster processing, the lat-
ter constraint enables straightforward geographically distributed
processing. The hierarchical MapReduce (which is described
in Costan et al., 2013) aggregates several deployments with
MapReduce engines and a last deployment that contains a
MetaReducer, that computes the final result, and a Splitter, that
partitions the data and manages the overall workload in order to
leverage data locality. Job descriptions are sent to the MapReduce
engines via Windows Azure Queue and the MetaReducer collects
intermediate results via Windows Azure Blob. For our applica-
tion, we use the Windows Azure Blob storage service instead of
TomusBlobs for several reasons: (1) concurrency-optimized capa-
bilities are not relevant here; (2) for a very long run, it is better to
rely on a proven storage; (3) TomusBlob storage does not support

yet multi-deployments setting. An overview of the framework is
shown in Figure 2.

For our application, the Map step yields a prediction score for
an image phenotype and a permutation, while the reduce step
consists in collecting all results to compute statistic distribution
and corrected p-values. The reduce operation is trivially commu-
tative and associative as it consists in searching the maximum of
the statistic for each permutation (Westfall and Young, 1993). The
upper part of Figure 1 gives an overview of the generic mapper.

2.5. IMAGEN: A NEUROIMAGING-GENETIC DATASET

IMAGEN is a European multi-centric study involving adoles-
cents (Schumann et al., 2010). It contains a large functional
neuroimaging database with fMRI associated with 99 different
contrast images for 4 protocols in more than 2000 subjects, who
gave informed signed consent. Regarding the functional neu-
roimaging data, we use the Stop Signal Task protocol (Logan,
1994) (SST), with the activation during a [go wrong] event, i.e.,
when the subject pushes the wrong button. Such an experimental
contrast is likely to show complex mental processes (inhibition
failure, post-hoc emotional reaction of the subject), that may be
hard to disentangle. Our expectation is that the amount of Blood
Oxygen-Level Dependent (BOLD) response associated with such
events provides a set of global markers that may reveal some
heritable psychological traits of the participants. Eight differ-
ent 3T scanners from multiple manufacturers (GE, Siemens,
Philips) were used to acquire the data. Standard preprocessing,
including slice timing correction, spike and motion correction,
temporal detrending (functional data) and spatial normaliza-
tion (anatomical and functional data), were performed using
the SPM8 software and its default parameters; functional images
were resampled at 3 mm resolution. All images were warped in
the MNI152 coordinate space. Obvious outliers detected using
simple rules such as large registration or segmentation errors
or very large motion parameters were removed after this step.
BOLD time series was recorded using Echo-Planar Imaging,
with TR = 2200 ms, TE = 30 ms, flip angle = 75° and spatial
resolution 3 x 3 x 3 mm. Gaussian smoothing at 5 mm-FWHM

FIGURE 2 | Overview of the multi site deployment of a hierarchical
Tomus-MapReduce compute engine. (1) The end-user uploads the data
and configures the statistical inference procedure on a webpage. (2) The
Splitter partitions the data and manages the workload. The compute
engines retrieves job information trough the Windows Azure Queues.

[ 4 1
ll Global [l ~ 4 LRI Dorioyment
1 ucer B Compute Engine !
: : 1 Deployment 2 :
“-----------------
Sear 1 il Splitter : 2 : 7 Compute Engine: !
apper Deployment 1 1
»l » 1
Browser 1 i W Reducer no
<@ | \ind | <E— L -
—_— 4 1 Y 1 3 1 Wind | L
1 Bz“ o =l Mapper Yo Bt
| S A
Deployment

(3) Compute engines perform the map and reduce jobs. The
management deployment is informed of the progression via the Windows
Azure Queues system and thus can manage the execution of the global
reducer. (4) The user downloads the results of the computation on the
webpage of the experiment.
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was finally added. Contrasts were obtained using a standard
linear model, based on the convolution of the time course of
the experimental conditions with the canonical hemodynamic
response function, together with standard high-pass filtering
procedure and temporally auto-regressive noise model. The esti-
mation of the first-level was carried out using the SPM8 soft-
ware. T1-weighted MPRAGE anatomical images were acquired
with spatial resolution 1 x 1 x 1 mm, and gray matter proba-
bility maps were available for 1986 subjects as outputs of the
SPM8 New Segmentation algorithm applied to the anatomical
images. A mask of the gray matter was built by averaging and
thresholding the individual gray matter probability maps. More
details about data preprocessing can be found in Thyreau et al.
(2012).

DNA was extracted from blood samples using semi-
automated process. Genotyping was performed genome-wide
using [llumina Quad 610 and 660 chips, yielding approximately
600,000 autosomic SNPs. 477,215 SNPs are common to the
two chips and pass plink standard parameters (Minor Allele
Frequency >0.05, Hardy-Weinberg Equilibrium P < 0.001, miss-
ing rate per SNP <0.05).

3. AN APPLICATION AND RESULTS

3.1. THE EXPERIMENT

The aim of this experiment is to show that our framework
has the potential to explore links between neuroimaging and
genetics. We consider an fMRI contrast corresponding to events
where subjects make motor response errors ([go wrong] fMRI
contrast from a Stop Task Signal protocol). Subjects with too
many missing voxels or with bad task performance were dis-
carded. Regarding genetic variants, 477,215 SNPs were available.
Age, sex, handedness and acquisition center were included in the
model as confounding variables. Remaining missing data were
replaced by the median over the subjects for the correspond-
ing variables. After applying all exclusion criteria 1459 subjects
remained for analysis. Analyzing the whole brain with all the
genetic variants remains intractable due to the time and mem-
ory requirements and dimension reduction techniques have to be
employed.

3.1.1. Prior neuroimaging dimension reduction

In functional neuroimaging, brain atlases are mainly used to
provide a low-dimensional representation of the data by consid-
ering signal averages within groups of neighboring voxels. In this
experiment we focus on the subcortical nuclei using the Harvard—
Oxford subcortical atlas. We extract the functional signal of 14
regions of interest, 7 in each hemisphere: thalamus, caudate,
putamen, pallidum, hippocampus, amygdala and accumbens (see
Figure 4). White matter, brain stem and ventricles are of no inter-
est for functional activation signal and were discarded. This prior
dimension reduction decreases the number of phenotypes from
more than 50,000 voxels to 14 ROIs.

3.1.2. Configuration used (cf. script in Figure 3)

e (Lines 1-3): covariates, 10,000 permutations and 5 permuta-
tions per computation unit (mapper).

o (Lines 4-7): 10-folds cross-validated R.

o (Lines 9—11): The first step of the pipeline is an univariate fea-
tures selection (K = 50, 000). This step is used as a dimension
reduction so that the next step fits in memory.

e (Lines 12—13): The second and last step is the ridge estimator
with a low penalty (alpha = 0.0001).

The goal of the experiment described by this configuration file
is to evaluate how the 50,000 mostly correlated genetic variants,
once taken together, are predictive of each ROI and to associate a
p-value with these prediction scores. Note that more than 50,000
covariates would not fit into memory. This configuration gener-
ates 28,000 map tasks (14 x 10, 000/5), but we can set to 1 the
number of permutations per task, which means that the compu-
tation can use up to 140,000 multicore computers in parallel, and
thus millions of CPU cores.

3.1.3. The cloud experimental setup

The experiment was performed using the Microsoft Windows
Azure Paa$ cloud in the North and West US datacenters, that were
recommended by the Microsoft team for their capacity. We use
the Windows Azure storage services (Blob and Queue) in both
datacenters in order to take advantage of the data locality. Due to
our memory requirements, the Large VM type (4 CPU cores, 7
GB of memory and 1000 GB of disk) is the best fit regarding the
Azure VMs offer?.

3.1.4. TomusBlobs

We set up two deployments in each of the two recommended sites
for a total of four deployments. It used 250 large VM nodes, total-
izing 1000 CPUs: each of the 3 MapReduce engines deployments
had 82 nodes and the last deployment used 4 nodes. The reduc-
tion process was distributed in approximately 600 reduce jobs.

3.2. RESULTS

32.1. Cloud aspects

The experiment timespan was 14 days. The processing time for
a single map job is approximately 2h. There are no notice-
able time differences between the execution times of the map
jobs with respect to the geographical location. In large infras-
tructures like the clouds, failures are possible and applications
need to cope with this. In fact, during the experiment the Azure
services became temporary inaccessible %, due to a failure of a
secured certificate. Despite this problem, the framework was able
to handle the failure with a fault tolerance mechanism which sus-
pended the computation until all Azure services became available
again. The monitoring mechanism of the Splitter, that supervises
the computation progress, was able to restore aborted jobs. The
IterativeReduce approach eliminates the implicit barrier between
mappers and reducers, but yields negligible gains due to the huge
workload of the mappers. The effective cost of the experiment
was approximately equal to 210,000 h of sequential computation,
which corresponds to almost $20,000 (VM pricing, storage and
outbound traffic).

Zhttp://msdn.microsoft.com/fr-fr/library/windowsazure/dn197896.aspx
3 Azure Failure Incident: http://readwr.it/tAq
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FIGURE 3 | Configuration used for the experiment. (Lines 7-3): Covariates,
10,000 permutations and five permutations per computation unit (mapper).
(Lines 4-7): 10-folds cross-validated R?. (Lines 9-11): The first step of the

{"extract cov": true, 1
"n perm total": 10000, 2
"n perm per mapper": 5, 3
"cross val score": { 4

"score func": "DYNAMIC IMPORT::sklearn.metrics.r2 score"}, 5
"ShuffleSplit": { 6
"test _size": 0.2, "random state": 0, "n iter": 10}, 7
"pipeline": | 8
["SelectKBest", "sklearn.feature selection.SelectKBest", { 9
"score func": "DYNAMIC IMPORT::gstat.stats.utils.f regression", 10

"k": 50000}71, 11
["Ridge", "sklearn.linear model.Ridge", { 12
"fit intercept": true, "alpha": 0.0001}]11} 13

pipeline is an univariate features selection (K = 50, 000). This step is used as a
dimension reduction so that the next step fits in memory. (Lines 12-13): The
second and last step is the ridge estimator with a low penalty (alpha = 0.0001).

ROI name CV-R? fwe corr. _@0'10
p-value  20.06
Thalamus left  0.026 1.107% 80 02
right  0.038 1.107* ’
Caudate left  0.003 2.1074
right —0.012 3.1074
Putamen left  0.019 1.1074
right  0.006 2.1074
Pallidum left  0.018 1.107*
right —0.010 3.10~*
Hippocampus  left  0.010 2.1074
right  0.020 1.1074
Amygdala left  0.016 1.1074
right  0.015 1.1074
Accumbens left  0.022 1.10~*
right —0.002 2.1074

FIGURE 4 | Results of the real data analysis procedure. (Left)
predictive accuracy of the model measured by cross-validation, in the
14 regions of interest, and associated statistical significance obtained
in the permutation test. (Up right) distribution of the CV-R? at

Il One parcel
I Max over all parcels

-0.8

-0.7 -0.6 -0.5 —-04 —-0.3 —0.2

CV-R? (under null hypothesis)

-0.1 0.0

Thalamus
Caudate
Putamen
Pallidum
Hippocampus
Amygdala
Accumbens

UaooueEn

chance level, obtained through a permutation procedure. The
distribution of the max over all ROIs is used to obtain the
family-wise error corrected significance of the test. (Bottom right)
outline of the chosen ROls.

3.22. Application side

Figure 4 shows a summary of the results. Despite the fact that
some prediction scores are negative, the activation signal in each
ROI is fit significantly better than chance using the 50,000 best
genetic variants over the 477,215. The mean BOLD signal is bet-
ter predicted in the left and right thalamus. The distribution of the
CV-R? is also very informative, showing that by chance the mean
prediction score is negative (familywise-error corrected or not).
While this phenomenon is somewhat counter-intuitive within the
framework of classical statistics, it should be pointed out that
the cross-validation procedure used here opens the possibility of
negative R?: this quantity is by definition a model comparison

statistic that takes the difference between a regression model
with a non-informative model; in high-dimensional settings, a
poorly fitting linear model performs (much) worse than a non-
informative model. Hence a model performing at chance gets
a negative score: This is actually what happens systematically
when the association between y and X is broken by the per-
mutation procedure, even if we consider the supremum over
many statistical tests (Westfall and Young, 1993). A slightly neg-
ative value can thus be the marker of a significant association
between the variables of interest. Twin and SNP-based studies
suggest high heritability of structural brain measures, such as
total amount of gray and white matter, overall brain volume and
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addiction-relevant subcortical regions. Heritability estimates for
brain measures are as high as 0.89 (Kremen et al., 2010) or even
up to 0.96 (van Soelen et al., 2012) and subcortical regions appear
to be moderately to highly heritable. One recent study on subcor-
tical volumes (den Braber et al., 2013) reports highest heritability
estimates for the thalamus (0.80) and caudate nucleus (0.88) and
lowest for the left nucleus accumbens (0.44). Despite the fact that
the CV-R? metric is not exactly an heritability measurement, our
metric evaluates the predictability of the fitted model (i.e., how
well it predicts the activation signal of a brain region with genetic
measurements on unseen data) which is a good proxy for heri-
tability. Thus, our results confirm that brain activation signals are
an heritable feature in subcortical regions. These experiments can
be used as a basis to further localize the genetic regions (pathways
or genes) that are actually predictive of the functional activation.
An important extension of the present work is clearly to extend
this analysis to the cortical regions.

4. CONCLUSION

The quantitative evaluation of statistical models with machine
learning techniques represents an important step in the com-
prehension of the associations between brain image pheno-
types and genetic data. Such approaches require cross validation
loops to set the hyper-parameters and to evaluate performances.
Permutations have to be used to assess the statistical significance
of the results, thus yielding prohibitively expensive analyses. In
this paper, we present a framework that can deal with such a
computational burden. It relies on two key points: (1) it wraps
the Scikit-learn library to enable coarse grain distributed com-
putation. Yet it enforces some restrictions, i.e., it solves only a
given class of problems (pipeline structure, cross-validation pro-
cedure and permutation test). The result is a simple generic code
(few lines) that provides the user a quick way to conduct early,
small-scale investigations on its own computer or at a larger scale
on a high-performance computing cluster. With JSON we pro-
vide a standard format for the description of statistical inference
so that no programming skills are required and so that it can
be easily generated from a webpage form. (2) TomusBLOB per-
mits to execute seamlessly the very same code on the Windows
Azure cloud. We could also disable some parts of TomusBLOB
to achieve a good compromise between the capabilities and the
robustness. We demonstrate the scalability and the efficiency of
our framework with a 2 weeks geographically distributed execu-
tion on hundreds of virtual machines. The results confirm that
brain activation signals are an heritable feature.
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