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As part of the ITK v4 project efforts, we have developed ITK filters for physics-based
non-rigid registration (PBNRR), which satisfies the following requirements: account for
tissue properties in the registration, improve accuracy compared to rigid registration,
and reduce execution time using GPU and multi-core accelerators. The implementation
has three main components: (1) Feature Point Selection, (2) Block Matching (mapped
to both multi-core and GPU processors), and (3) a Robust Finite Element Solver. The
use of multi-core and GPU accelerators in ITK v4 provides substantial performance
improvements. For example, for the non-rigid registration of brain MRIs, the performance
of the block matching filter on average is about 10 times faster when 12 hyperthreaded
multi-cores are used and about 83 times faster when the NVIDIA Tesla GPU is used in Dell
Workstation.
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INTRODUCTION
Image-guided Neurosurgery (IGNS) is a system that can track
in real-time the movement of the surgical tools in the patient
space and report the movement to surgeons via the trajectory in
the image space based on the established transform between the
patient space and the image space. The transform is established
before operations via routine point-based registration; however,
during craniotomy, due to the drainage of the cerebrospinal
fluid (CSF) and the operations, including tumor resection or
retraction, the brain of the patient is deformed, which leads
to inaccuracy in the preoperatively established transform. To
recover the transform, the preoperatively acquired navigation
image must be deformed accordingly. To achieve this end, a non-
rigid registration can be used to align the preoperative image
with the intra-operative modalities, such as Laser Range Scanning
image, intra-operative ultrasound (iUS), or Magnetic Resonance
Imaging (iMRI).

A clinically practical non-rigid registration method should
consider the following factors: speed, robustness, and accuracy.
The registration should be done within a short time period to
provide timely responses to the surgeons. The registration results
should not be susceptible to image intensity inhomogeneity and
artifacts. The registration results should also realistically reflect
the physical deformation of the tissue. Recently, Ur Rehman
et al. (2008) presented a 3D non-rigid registration via optimal
mass transport on the GPU. In this work, they presented a new

computationally efficient numerical scheme for the minimizing
flow approach for optimal mass transport and implemented this
scheme on GPU. The results showed that this method is order
of magnitude faster than previous work. Wang et al. (2010) pre-
sented a block matching based non-rigid registration method,
in which the block matching was adapted and implemented on
GPU. The resulting displacement vector field was smoothed by
Gaussian and served to regularize the matching using normalized
cross correlation. This method was applied to 4D lung CT images
registration and planning CT and Daily Cone Bean CT regis-
tration. The landmark-based evaluation for both experiments
showed the proposed GPU-based implementation achieved com-
parable registration accuracy, and compared to the CPU-based
AtamaiWarp program, the GPU-based implementation is about
25 times faster.

In this paper, we parallelize a physics-based non-rigid reg-
istration (PBNRR) method (Clatz et al., 2005) based on our
previous work (Chrisochoides et al., 2006; Liu et al., 2009) and
integrate this fast, robust, and accurate non-rigid registration
into the National Library of Medicine Insight Segmentation and
Registration Toolkit (ITK). This work does not explicitly deal with
tumor resection. If users want to use this method to find the
deformation induced by tumor resection, they need to provide
a tumor segmented mask image. The work specific for the tumor
resection can be found in Drakopoulos et al. (2014). The registra-
tion method includes three components: feature point selection,
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block matching, and a robust Finite Element solver. All these com-
ponents have been re-implemented in ITK in this work. ITK is a
multi-platform open-source image analysis library serving many
researchers and engineers worldwide. ITK collects many funda-
mental and cutting-edge image analysis algorithms, providing a
platform for advanced product development. ITK has been in
use for Visible Human project (The Visible Human Project1) and
many commercial applications of the technology.

This paper makes the following contributions:

(1) Four ITK filters, including one main filter and three sub-
filters, are developed. The three sub-filters can be used, inde-
pendent of the registration, for feature point selection, block
matching, and a robust Finite Element solver, respectively.
The main filter is used to combine these three sub-filters
together to provide a user-friendly interface for non-rigid
registration.

(2) Both multi-core and GPU parallelization of block matching,
a computationally intensive component of the registration,
are developed to make optimal use of multi-core and GPU
processors available to average computing platforms like
desktops and laptops.

In the following sections, we first briefly describe the principle
of the sequential non-rigid registration method and then present
the details on the ITK implementation in section Materials and
Methods. In the section Results, we present our experimental
results of five clinical cases regarding performance and accuracy.
After discussion of the correct usage of this method in clinical
setting, we conclude our paper.

MATERIALS AND METHODS
In this section, we first describe a PBNRR method including three
critical components. We then present the ITK implementation of
these components and a main ITK filter to connect these three
components.

PHYSICS-BASED NON-RIGID REGISTRATION METHOD
Given preoperative MRI and intraoperative MRI, we aim to
find the deformation between them and then deform the
preoperative MRI according to the deformation. The main
idea of the PBNRR method (Clatz et al., 2005) is to use
the known displacement vector associated with sparse fea-
ture points in the brain to estimate the entire brain defor-
mation with a brain biomechanical model. The biomechani-
cal model is represented by a series of PDEs (Bathe, 1996),
which describe the physical deformation of the brain. To find
the numerical solution of the PDEs, Finite Element Method
is employed by first discretizing the brain with a tetrahedron
mesh and then using the displacements associated with the
mesh nodes to represent the unknown continuous displacement
field.

The registration method proposed in Clatz et al. (2005)
includes three critical components:

1The Visible Human Project. Available online at: http://www.nlm.nih.gov/
research/visible/visible_human.html

(1) Feature point detection: identify small image blocks that have
rich structural information in the preoperative MRI.

(2) Block matching: calculate displacement for each image block
to generate a sparse deformation field.

(3) Robust Finite Element solver: estimate entire brain defor-
mation based on the sparse deformation field estimated
above.

Feature point selection
The relevance of a displacement estimated with a block match-
ing algorithm depends on the existence of highly discriminative
structures within a block. We use the variance of the image inten-
sity within the block region to measure its relevance and only
select a fraction of all potential blocks based on a predefined
parameter of the algorithm. To avoid redundancy produced by the
overlapping of blocks (i.e., eliminate blocks which are too close
to each other), a parameter of prohibited connectivity is used.
Three connectivity patterns are supported in the ITK implemen-
tation: 6-connectivity, 18-connectivity, and 26-connectivity (see
section Synthetic Data Evaluation). The prohibited connectivity
allows the feature point selection to exclude neighboring fea-
ture points, which are connected to the current feature point via
the prohibited connectivity. Thus, a higher connectivity pattern
will exclude more neighboring feature points, therefore reducing
the redundancy. To address the aperture problem (Poggio et al.,
1985; Shimojo et al., 1989), the structural tensor of the block is
calculated. The structural tensor reflects the distribution of the
edge detections within the block, which will be incorporated into
the Finite Element solver to make the estimated node displace-
ment favor the reduction of the deviation along the direction
orthogonal to the edge direction. To avoid finding false corre-
spondence (e.g., the tumor resection cavity), the block selection
utilizes a mask image when necessary to exclude certain por-
tions of the image while searching for the feature points (e.g.,
in the case of tumor resection). The mask image is the segmen-
tation result of the preoperative MRI. In this work, we use a
Brain Extraction Tool (BET) (Smith, 2002) to extract the brain
out of the skull and then manually refine the segmentation result.
Users can use their own in-house segmentation tools or pub-
lic tools to do the segmentation. After we get the mask image,
we only perform feature point selection for blocks located in
the mask image. There is no need to do segmentation for the
intra-operative MRI.

Block matching
Block matching is a well-known technique widely used in
motion coding, image processing and compression (Bierling,
1988; Stefano et al., 2007; Yuan and Shen, 2008). Block matching
is based on the assumption that a complex non-rigid transfor-
mation can be approximated by point-wise translations of small
image regions. Considering a block B(Ok) in a floating image cen-
tered in Ok and a predefined search window Wk in a reference
image, the block matching algorithm (as illustrated in Figure 1)
searches for the position Om in Wk that maximizes a similar-
ity measure M. Similarity measures in this task include mean
square difference of intensity (MSD), mutual information (MI),
and normalized cross correlation (NCC).
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FIGURE 1 | (A) Block matching. For a small block in the floating image, find
its corresponding block in a predefined search window in the reference or
fixed image, then the displacement associated with the block can be
calculated. The block can be specified in both floating and reference images

depending on the application. (B) Block matching results. The arrow points to
the direction of the displacement and the color scale encodes the magnitude
of the displacement. The metric is NCC and for clarity, only 1% of the dense
displacement field is shown.

Om = arg max
Oi∈Wk

[M(B(Ok), B(Oi))] (1)

We implemented NCC in itk::BlockMatchingImageFilter.
Through exhaustive search, the location of the block that max-
imizes the similarity is obtained. By assembling the individual
displacement vectors, one can create a sparse displacement
field D, which is used by the solver to estimate the unknown
displacement vector associated with the mesh nodes, i.e., the
dense deformation field.

Finite element solver
The unknown dense displacement field U can be estimated by
minimizing the energy function,

W(U) = UTKU + (HU − D)TS(HU − D) (2)

where the first regularization term describes the strain energy of a
linear elastic biomechanical model, and the second term describes
the error between the simulated displacements and the real dis-
placements D. U is the unknown node displacement vector with
a size of 3n · n is the number of nodes of the mesh. K is the mesh
stiffness matrix of size 3 × 3n The assemblage of K has been well-
documented in Bathe (1996). H is the linear interpolation matrix
of size 3p × 3n, where p is the number of the registration points.
S is the matching stiffness matrix of size 3 × 3p. The time for the
assemblage of matrix K and H depends on the size of the mesh.
For brain registration, the time is around several seconds for the
mesh size satisfying the registration accuracy (Liu et al., 2009).

K describes the stiffness of the whole biomechanical sys-
tem represented by a geometrical mesh and associated physical
attributes, and S incorporates the stiffness, the balance parameter,
matching confidence, and the local structure distribution of the
feature points. S is a block-diagonal matrix whose 3 × 3 subma-
trix Sk is defined as λck

n
p S

avg
k , where λ is the balance parameter;

ck is the cross correlation computed from block matching for the
k-th feature point. n

p akes the matching term independent of the

numbers of the vertices and the feature points. S
avg
k is the average

stiffness tensor for the k-th feature point (Clatz et al., 2005). S
avg
k

makes the registration point behavior like an elastic node of the
finite element model, leading to the same measurement unit as
the regularization term of function Equation (2).

The biomechanical finite element model is helpful in enforc-
ing a realistic deformation on the brain. As a result, our priori
knowledge about the stiffness of the intra-cranial structures can
be introduced to the registration to estimate the deformation in
the region far away from the feature points and regularize the
deformation in the region near the feature points.

The sparse displacement field D is characterized by sparsity
and outliers, which compromises the accuracy of the estimation
of the dense deformation field U. To address the issue of spar-
sity of the deformation field, the estimation of U is regularized
by a biomechanical model, which is capable of describing the
physical deformation based on quite few data, i.e., the boundary
condition. To make the estimation robust again outliers, U is esti-
mated via Least Trimmed Squares (LTS) regression (Rousseeuw
and Leroy, 1987). More specifically, we estimate U at each itera-
tion, first without any outliers, then identify the points with larger
error as outliers, and finally remove outliers from the data and
re-estimate U. The above approximation formulation (Equation
2) performs well in the presence of outliers but suffers from an
approximation error. Alternatively, solving the exact interpola-
tion problem based on noisy data is not adequate. The robust
solver developed in Clatz et al. (2005) can take advantage of
both approximation and interpolation to iteratively estimate the
deformation from the approximation to the interpolation while
rejecting outliers. The gradual convergence to the interpolation
solution is achieved through the use of an external force F, leading
to the following iterative scheme,

Fi ⇐ KUi

Ui + 1 ⇐ [K + HTSH]−1[HTSD + Fi] (3)

The iterative scheme is derived as follows:
Taking derivative on both sides of Equation (2) and letting

∂W
∂U = 0, we obtain,

[K + HTSH]U = HTSD (4)
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Equation (4) represents the balance between the internal mesh
stress and the external force. Because the regularization term
UTKU (from the energy point of view) or the internal stress
KU (from the force point of view) prevents the solution U from
approaching the exact solution of the interpolation problem, we
add an external force Fi ⇐ KUi on the right side of Equation (4)
at each iteration to balance the internal stress, which leads to the
iterative scheme Equation (3).

ITK IMPLEMENTATION
The ITK implementation of the PBNRR method contains three
filters: MaskFeaturePointSelection, BlockMatchingImageFilter,
and FEMScatteredDataPointSetToImage-Filter, which corre-
spond to the above mentioned three components: feature point
selection, block matching, and robust finite element solver,
respectively. These three filters can function independently
or be connected together to perform non-rigid registration.
Block matching is parallelized using ITK v4 multithread-
ing/GPU framework (OpenCL), for both multi-core and GPU,
to accelerate the computation. The robust solver is enhanced
to allow the accommodation of different geometry elements
in dealing with linear elastic problems by simply providing
appropriate mesh. To implement non-rigid registration and
achieve ease-of-use, the three filters are combined into a single
registration filter, PhysicsBasedNonRigidRegistrationMethod, as
shown in Figure 2. This registration filter receives fixedImage,
movingImage, maskImage, and an optional mesh as input and

produces the dense deformation field as output. If users do not
provide a mesh, a built-in hexahedral or rectangle mesh will be
used.

ITK feature point selection filter
MaskFeaturePointSelectionFilter (see Figure 2) generates a list of
feature points selected from a masked input image. It takes an
Image and a mask Image as inputs and generates a PointSet of
feature points as output. The feature points are physical centers
of a small image blocks with higher variance. Optionally, a struc-
ture tensor may be computed and stored as a pixel value for each
feature point. The following optional parameters can be set:

• NonConnectivity: defines connectivity pattern (VERTEX_
CONNECTIVITY, EDGE_CONNECTIVITY or FACE_
CONNECTIVITY) to a feature point. The default is
VERTEX_CONNECTIVITY;

• BlockRadius: radius measured in voxels over which the vari-
ance is computed, its default value is 1;

• SelectFraction: fraction of points to select out of total eligible
points, default is 0.05.

After the filter is created and inputs are set using SetInput and
SetMaskImage, the Update method triggers calculation. After the
Update, the method GetOutput returns a PointSet that contains
coordinates of feature points as Point values and (optionally)
structure tensors as Pixel values.

FIGURE 2 | The main filter PhysicsBasedNonRigidRegistration

Method. This filter takes the fixed, moving, and mask images as
the necessary inputs (solid line); takes the mesh as the optional

input (dashed line); and outputs a deformation fieldImage/deformed
moving image. Figures 3A,B elaborate on the two highlighted
compononets.
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ITK block matching filter
BlockMatchingImageFilter (see Figure 2) computes displace-
ments of given points from one image to another. This filter is
parallelized using ITK multithreading and GPU. See Figure 3A
for the flowchart of one thread/kernel. This filter takes fixed and
moving Images, along with a PointSet of feature points, as inputs.
The feature points are expected to lie at least SearchRadius +
BlockRadius voxels from the image boundary. This is usually
achieved by using an appropriate mask during selection of fea-
ture points. The default output (0) is a PointSet with displacement
vector stored as the pixel value. Additional output (1) is a PointSet
containing similarities, i.e., the NCC value. The number of points
in the output PointSet is equal to the number of points in the
input PointSet.

The following optional parameters can be set:

• BlockRadius: radius over which variance is computed,
default is 1.

• SearchRadius: radius of the search window, default is 3.

After the filter is created and inputs are set using SetFixedImage,
SetMovingImage, and SetFeaturePoints, the Update method

triggers the calculation. The method GetDisplacements returns
a PointSet that contains coordinates of feature points as Point
values and displacement vectors as Pixel values. GetSimilarities
returns a PointSet that contains coordinates of feature points as
Point values and similarity values as Pixel values.

After Feature point selection and block matching, three point
sets are available: feature point set with the structure tensor as the
pixel value, block matching point set with the displacement as the
pixel value, and the confidence point set with the similarity value
as the pixel value. Block matching point set is a necessary input,
and the other two are optional. These three point sets will be
used by the FEMScatteredDataPointSetToImageFilter to perform
scattered data approximation.

ITK scattered data approximation filter
The class RobustSolver implements the solver presented in sec-
tion Finite Element Solver. This solver is a subclass of itk::Solver,
which takes the FEMObject as input and output. FEMObject is
an ITK data object to store all Finite Element related containers,
such as mesh node container, mesh element container, landmark
container, etc. We usually prefer a mesh and a feature point
set as inputs and a deformation field image as the output. To

FIGURE 3 | (A) The flow chart of one thread/kernel of block matching. (B) The
flow chart of RobustSolver. RobustSolver includes two parts: outlier rejection
and approximation to interpolation. Outlier rejection proceeds as a LTS
regression (Liu et al., 2009): resolve U first, then detect outliers, remove
outliers, and resolve U again. The F is used to reset the strain energy to

enable the mesh to be deformed further. The difference between the two
parts is the absence of outlier rejection in the approximation to interpolation
part. RobustSolver supports both VNL solver and Itpack solver to resolve the
linear system of equations. Compared to VNL solver, Itpacks runs faster,
which is the default LS solver in RobustSolver.
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use the RobustSolver with these natural inputs, we warp the
RobustSolver in a FEMScatteredDataPointSetToImageFilter
as shown in Figure 2. The FEMScatteredDataPointSet-
ToImageFilter takes the mesh and feature point as inputs,
converts these inputs into a FEMObject for the RobustSolver,
and then generates a deformation field image based on
the output FEMobject from the RobustSolver. Moreover,
FEMScatteredDataPointSetToImageFilter provides a built-in 2D
quadrilateral and 3D hexahedron mesh if the input mesh is not
available.

Given a 2- or 3-D scattered and noisy point set, in which
each point is associated with a 2-D or 3-D displacement,
RobustSolver is able to approximate the data while rejecting
outliers, advance toward interpolation, and ultimately output a
deformed FEMObject, as outlined by the flowchart in Figure 3B.
RobustSolver also takes into account two optional point sets: the
confidence and the structural tensor. The confidence point set
describes our confidence for each feature point using a value
between 0 and 1 (0: not trustful, 1: completely trustful), which will
make the solver behavior like a weighted Least Squares. The tensor
point set describes the distribution of the edge direction within a
small block surrounding the feature point, in order to avoid the
aperture problem (Poggio et al., 1985; Shimojo et al., 1989).

RESULTS
In this section, we present our evaluation results for 2D syn-
thetic and 3D MRI data. For the 2D synthetic experiment,

we use the built-in rectangle mesh implemented in the
FEMScatteredDataPointSetToImageFilter. The user needs to pro-
vide the spacing (physical unit) of the rectangle mesh, 20 mm
in our experiment. The generation of the rectangle mesh is
very straightforward. For the 3D MRI data, we use our in-
house tetrahedron mesh generator presented in Liu et al. (2010).
This mesh generation includes two steps: first produce a coarse
Body-Centered Cubic (BCC) mesh based on the segmented mask
image, and then compress the surface of the coarse BCC mesh
to the boundary of the mask image. Users can refer to Liu et al.
(2010) for details.

SYNTHETIC DATA EVALUATION
In this section, we use a lung image of a rat provided by ITK
to evaluate FEMScatteredData-PointSetToImageFilter. The size
of the lung image is 128 × 128, and the spacing is 1 × 1 mm2.
This filter estimates the deformation field image based on the
sparse deformation field. The approximated deformation field
image can be further utlilized with itk::WarpImageFilter to pro-
duce an aligned image. To produce a sparse deformation field,
we perform deformable registration on the lung images of a rat
(see Figures 4A,B) using itk::BSplineDeformableTransform. The
resulting deformation field image (ground truth) is shown in
Figure 4C. We then perform edge detection in the fixed image
(Figure 4A) to produce the edge image using the ITK canny edge
detector. Finally, for all edge points, we perform interpolation
in the deformation field to produce a sparse deformation field,

FIGURE 4 | Synthetic evaluation of FEMScatteredDataPointSetToImage

Filter. (A) the undeformed lung image, (B) the deformed lung image according
to (C), (C) the deformation field image (ground truth), (D) the estimated

deformation field image, (E) the checkboard before regsitation, (F) the
checkboard after registration. The red bounding box highlights the region with
significant improvement of the accuracy after registration.
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which is represented by itk::PointSet. Since the edge detection is
performed on the fixed image, the edge has the same origin as the
fixed image. The displacement associated with the edge point can
be directly obtained. Note that we focus on the assessment of the
FEMScatteredDataPointSetToImageFilter in estimating the defor-
mation field image from a sparse deformation field rather than
on how to produce the input sparse deformation field. Users can
use the tools they have to produce the sparse deformation field,
not necessarily following the procedures presented in this paper.
Figure 4D shows the estimated deformation field image, which
is very similar with Figure 4C by visual inspection. Figures 4E,F
show the checkerboard comparison before and after registration.

To quantitatively evaluate the accuracy, we calculated the error
using ‖A − B‖, in which A is the displacement in the estimated
deformation field image, and B is the displacement in the ground
truth. The mean ± SD, min and max errors are 0.7 ± 0.4, 0.0, and
2.1 mm, respectively.

MRI EVALUATION
We conducted experiments on the registration between preoper-
ative MRI and the intra-operative MRI (iMRI). The five datasets
come from public cases from SPL of Harvard medical school
(Talos and Archip, 2007). Table 1 lists the patient information
including the gender, tumor location, and histopathology.

The MRI of the five public cases were acquired with a pro-
tocol of whole brain sagittal 3D-SPGR (slice thickness 1.3 mm,

Table 1 | Patient information of five cases from SPL of Harvard

medical school.

Case no. Gender Tumor location Histopathology

1 F R occipital Anaplastic
oligodendroglioma
WHO III/IV

2 F L posterior temporal Glioblastoma
WHO IV

3 N/A R frontal Oligodendroglioma
WHO II/IV

4 N/A R occipital N/A

5 F R frontal Oligoastrocytoma
WHO II/IV

TE/TR = 6/35 ms, FA = 75◦, FOV = 24 cm, matrix = 256 ×
256) (Archip et al., 2007). In Table 2 we show the registration
accuracy of the PBNRR filter for the five cases. As a measure of
the registration accuracy, we used the one directional Hausdorff
Distance (HD) as it is implemented in the vtkHausdorffDistan-
cePointSetFilter. The HD(1 → 2) before PBNRR corresponds to
the error between edge points in preoperative MRI and intra-
operative MRI, while the HD(1 → 2) after PBNRR corresponds
to the error between canny edge points in warped preoperative
MRI and intra-operative MRI.

HD evaluation might be affected by outliers in the edge points,
so we also performed landmark based evaluation. For each case,
four landmarks were selected to calculate the accuracy of the
method. These four landmarks include the morphologically spe-
cial point in the vicinity of the resection region such as the
vascular bifurcation points with obvious intensity enhancement,
the frontal horn, and occipital horn of lateral ventricle and the
choroid plexus of the triangular region of lateral ventricle. We
selected four landmarks in the preoperative MRI, aligned pre-
operative MRI and iMRI, respectively, and there were totally 4
landmarks × 3 images × 5 patients = 60 landmarks selected. We
use norm-2 of the displacement to calculate the error. Before reg-
istration, the error is calculated as ‖C − A‖, and after registration
the error is ‖C − B‖, where A, B, and C represent the position
of the landmark in the preoperative MRI, the aligned preoper-
ative MRI, and the iMRI, respectively. For each case, the mean
error serves as the evaluation of the method. The results are listed
in Table 2. For case 2 and 5, it seems that BSpline based NRR
degrades the accuracy regarding HD evaluation, but the land-
mark evaluation discloses that it might not be degradation but
the influence of outliers.

We compared PBNRR with a popular BSpline based NRR
(Cross-Correlation as the metric) in 3DSlicer (please see Table 2).
For all five cases, PBNRR shows better results than BSpline based
NRR regarding both HD and landmark evaluation.

In Figure 5 we present the results of the PBNRR filter and
the BSpline based registration for the same five cases we used
throughout this evaluation.

In Table 3, we summarize the running time of the registration
on three workstations. The running time includes the time for the
PBNRR filter and the time for creating and writing the warped
preoperative MRI, but does not include the time for generating

Table 2 | The registration accuracy evaluated by HD and landmarks for five cases.

Case no. Before registration PBNRR BSpline NRR PBNRR improvement BSpline NRR improvement

1 25.980 (12.874) 20.099 (8.522) 25.199 (10.853) 22.6 (33.8) 3.0 (15.7)

2 9.110 (7.490) 4.690 (2.073) 9.695 (6.539) 48.5 (72.3) −6.4 (12.7)

3 9.433 (5.542) 5.385 (2.768) 8.124 (4.922) 42.9 (50.1) 13.9 (11.2)

4 9.695 (5.881) 7.000 (4.002) 9.434 (5.306) 27.8 (32.0) 2.7 (9.8)

5 6.708 (4.773) 4.123 (2.128) 7.141 (3.020) 38.5 (55.4) −6.5 (36.7)

The landmark evaluation results are listed in the parenthesis. A BSpline based non-rigid registration in 3DSlicer served as the comparison with the PBNRR. The

parameters for PBNRR for all cases are: Block radius: [1,1,1], Window radius: [5,5,5], Selection fraction: 0.05, Rejection fraction: 0.25, Num of outlier rejection steps:

10, Num of approximation steps: 10, Young modulus: 694 Pa, Poisson’s ratio: 0.45. The parameters for BSpline based registration are: Iteration: 20, Grid size: 18,

Histogram bins: 100, Spatial samples: 50,000. Registration unit: mm, improvement unit: %.
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FIGURE 5 | The Qualitative results for the five cases of the PBNRR filter. Each column corresponds to a different case, and each row from the top to the bottom:
the preoperative MRI, the intra-operative MRI, and the warped preoperative MRI using PBNRR and the warped preoperative MRI using BSpline based NRR.

Table 3 | The running time (second) of five cases for 3 workstations.

Case Dell 1 Dell 2 Cray XK7

1 thread 12 threads GPU 1 thread 12 threads GPU 1 thread 16 threads GPU

1 54.53 37.73 33.50 54.40 37.83 33.62 136.72 116.25 105.46

2 60.36 41.49 37.60 59.72 41.44 37.57 155.70 126.70 120.95

3 52.19 35.79 32.25 52.45 35.90 32.38 131.51 111.05 102.54

4 65.14 44.60 40.24 65.54 45.60 40.75 173.15 145.60 135.79

5 52.36 35.44 32.20 52.50 35.59 32.55 129.22 111.17 101.42

Dell 1: one Intel ® Core™ i7 CPU 260 @ 2.80 GHz, NVIDIA Quadro 6000 card, and 8 GB RAM. Dell 2: Intel(R) Xeon(R) CPU X5690 @ 3.47 GHz, Quadro 6000, and

96 GB RAM. Cray XK7: one AMD 6276 Interlagos Processor with 8 Bulldozer cores, 32 GB RAM, and NVIDIA Tesla K20X.

the canny edge points and the calculation of the HD. Two Dell
workstations are loacted in Old Dominion University (ODU)
and one Cray XK7 workstation is loacated in National Center
for Supercomputing Applications (NCSA). The running time of
block matching of CPU and GPU is listed in Table 4.

In the three components, the block matching and FEM solver
dominate the calculation of PBNRR. In this work, we only present
the parallelization of the block matching in ITK. The paralleliza-
tion of the FEM solver using PETSc can be found in our previous
work (Liu et al., 2009). Due to license issue of PETSc, we do not
parallelize the FEM solver in ITK. Comparing column 12 threads

and column GPU with column 1 thread, we find the acceleration
is not as large as the number of cores. This can be explained by
the Amdahl’s law that the sequential fraction limits the bound of
the acceleration.

DISCUSSION
In this section, we will discuss the issues on how to apply the
PhysicsBasedNonRigid-RegistrationMethod to the registration of
preoperative MRI and intra-operative MRI for IGNS. One issue
is how to specify the fixed image and moving image. Our pur-
pose is to align the preoperative MRI to the intra-operative
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Table 4 | Block matching running time (second) using CPU and GPU.

Case Intel Intel(R) Xeon Quadro 6000 GPU AMD 6276 Tesla K20X GPU

1 thread 12 threads 1 thread 16 threads

1 19.06 1.83 0.49 31.29 3.32 0.37

2 21.08 1.96 0.54 34.57 3.58 0.41

3 18.88 1.96 0.50 30.98 3.27 0.37

4 23.43 2.65 0.60 38.19 3.96 0.45

5 18.97 1.77 0.48 28.13 3.29 0.37

Average speedup 10.07 38.85 9.35 82.70

The speedup is with respect to 1 thread.

MRI and then use the warped preoperative MRI to guide the
surgery.Therefore, the preoperative MRI should be the moving
image and the intra-operative MRI should be the fixed image.
Another issue concerns which image can be used to build the
physical model. The proposed PBNRR method relies on a phys-
ical model to estimate the entire brain deformation. Building
this model requires brain segmentation and mesh generation.
Usually, we can perform these operations on the fixed image and
then use the DeformationField, pointing from the fixed image to
the moving image, to get the warped moving image. However,
when we perform the registration in IGNS, there is no a suffi-
cient amount of time to allow us to perform brain segmentation
and mesh generation on the fixed image (intra-operative MRI)
in the operating room, so we need to preoperatively finish these
operations on the preoperative MRI. In this way, the resulting
deformationField points from the preoperative MRI to the intra-
operative MRI. To get the warped preoperative MRI, we have to
invert the deformation field. To get the warped preoperative MRI,
we provide a method CreateDeformedImage in the PhysicsBased-
NonRigidRegistrationMethod to faciliate the calculation of the
deformed preoperative MRI.

CONCLUSION
We present an ITK implementation of a PBNRR method.
The three filters: MaskFeaturePointSelection, BlockMatching
ImageFilter, and FEMScatteredDataPointSetToImage-Filter can
be used separately or combined together to conduct registra-
tion. MaskFeaturePointSelection identifies small blocks with rich
structure information. BlockMatchingImageFilter finds the dis-
placement associated with these blocks in order to produce a
sparse deformation field, which is used by FEMScatteredData
PointSetToImageFilter to find the deformation field image. For
each block, MaskFeaturePointSelection stores the structure ten-
sor, and BlockMatchingImageFilter stores the confidence, i.e., the
cross-correlation value. Both structure tensor and confidence are
incorporated into the FEMScatteredDataPointSetToImageFilter
to deal with aperture problem. To reduce the computational time,
block matching is parallelized on multi-core and GPU. Data from
the experiments of five brain MRI demonstrate the effectiveness
of the non-rigid registration method.

FUTURE WORK
Although a default rectilinear mesh is provided inside, we strongly
suggest users providing an anatomically adapted mesh as the

input for the PBNRR due to its advantages in the accurate descrip-
tion of the geometry of the object and a small number of mesh
nodes (unknowns). In the future, we plan to provide a web-
service for image-to-mesh conversion to generate the mesh of the
images over the WEB. This service can maintain new function-
ality as we better understand the needs of the ITK community.
Moreover, due to the influence of the outliers to the HD eval-
uation, we intend to use a modified HD method presented in
Garlapati et al. (2012) and the landmark to do more rigorous eval-
uation. Also, we are collecting more clinical MRI data to increase
the number of test cases.
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