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TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence
of clinical, systems, and theoretical neuroscience in the analysis, visualization and
modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator
for neural dynamics measured across scales from local populations to large-scale
dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG)
and functional magnetic resonance imaging (fMRI), and core analytic and visualization
functions, all accessible through a web browser user interface. A datatype system
modeling neuroscientific data ties together these pieces with persistent data storage,
based on a combination of SQL and HDF5. These datatypes combine with adapters
allowing TVB to integrate other algorithms or computational systems. TVB provides
infrastructure for multiple projects and multiple users, possibly participating under multiple
roles. For example, a clinician might import patient data to identify several potential
lesion points in the patient’'s connectome. A modeler, working on the same project,
tests these points for viability through whole brain simulation, based on the patient’s
connectome, and subsequent analysis of dynamical features. TVB also drives research
forward: the simulator itself represents the culmination of several simulation frameworks
in the modeling literature. The availability of the numerical methods, set of neural mass
models and forward solutions allows for the construction of a wide range of brain-scale
simulation scenarios. This paper briefly outlines the history and motivation for TVB,
describing the framework and simulator, giving usage examples in the web Ul and Python

scripting.
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1. INTRODUCTION

Neuroscience has evolved through extensive interactions among
disciplines to advance our appreciation of the relation between
brain and behavior. The interdisciplinary nature of the field
presents formidable challenges for effective collaboration.

These challenges call for two kinds of solutions. First, there is
a need for comprehensive, modern computational libraries writ-
ten in widely used and available programming languages; current
examples include MNE-Python (Gramfort et al., 2013), a Python
package for treating M/EEG data via time-frequency analyses and
inverse solutions and the Brain Connectivity Toolbox (Rubinov
and Sporns, 2010) for analyzing the graph theoretic properties
of structural and functional connectivity. Second, there is a need
for the implementation of collaborative infrastructure for sharing
not only data, but expertise; CARMEN (Austin et al., 2011) and
G-Node (Herz et al., 2008) are two such examples of developing
platforms for collaborative work and data sharing, in the domains
of cellular and systems neurophysiology.

TheVirtualBrain (TVB) provides new tools to facilitate the
collaboration between experimentalists and modelers by expos-
ing both a comprehensive simulator for brain dynamics and an

integrative framework for the management, analysis, and simula-
tion of structural and functional data in an accessible, web-based
interface. The choice of Python was made based on its wide
use as the high-level language in scientific programming, the
unparalleled open-source libraries and tools available, and strong
software engineering culture. This choice was confirmed by the
publication of the first issue of Python in Neuroscience and has
made it possible for the entirety of TVB from the numerical
algorithms to the web server to be written in Python.

In the following, we briefly outline the scope of TVB, how to
use it before detailing aspects of the architecture and simulator.

1.1. OVERVIEW

TVB consists of a framework and a simulator. The framework
manages projects involving various data, subjects, and users and
the different roles that the users might play in the projects (mod-
eler, clinician, etc.). The framework also maintains a database of
the different operations performed by the users in each project
as well as the various data associated with those operations, such
as structural and functional neuroimaging data. The simulator
provides numerical methods to construct and simulate models
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based on human cortical and sub-cortical anatomy and dynam-
ics. It employs principally a neural mass approach, incorporated
realistic long-range (delayed) and short-range connectivity ker-
nels, as well as stochastic fluctuations. To make the connection
with experimental data, it provides forward solutions to com-
pute neuroimaging data (fMRI, M/EEG) from the underlying
neural dynamics. Finally, an graphical interface allows users to
take advantage of the framework and simulator. These compo-
nents have been described previously by Sanz-Leon et al. 2013 in
a general overview of TVB.

1.2. OBTAINING AND USING TVB

The easiest way to get started with TVB is to download a distri-
bution!, which is available for Windows, Mac OS X and Linux.
This distribution includes all of pieces, from the simulator to the
web interface, and has no requirements other than a modern web
browser supporting WebGL, SVG and HTML5.

Alternatively, because TVB is licensed under the GPL v. 2, the
sources may be readily obtained from the public Git repositories
hosted on GitHub? (Dabbish et al., 2012). In order to use the sim-
ulator, only the standard scientific Python packages are required
(NumPy and SciPy). The framework and web interface depend on
a few more packages.

Documentation including an installation guide, web inter-
face and console user guides as well as other information are
available online®. We provide an API doc, built from the docs
strings using Sphinx. User’s, Contributor’s and Developer’s man-
uals are also provided with TVB distributions in PDF format.
The source files (in .rst) are available from the Git repositories.
In addition, IPython notebooks (Pérez and Granger, 2007) for
interactive tutorials are provided. These are based on the demon-
stration scripts provided with the scientific library, and include a
more detailed description of the scientific goal (if applicable), the
components and stages of a simulation as well as a brief descrip-
tion in the case of reproducing previous work. Users interacting
with TheVirtualBrain GUI may also benefit from these tutorials.
Finally, the user interface provides an online help overlay, that
pulls information from the User’s manual.

2. ARCHITECTURE

TVB’s architecture, illustrated in Figure 1, was designed for the
integration of disparate computational tools, allowing different
kinds of data to be managed within one system, and different
routines and processes to work with the kinds of data in the
system. To facilitate this integration, two abstractions have been
introduced, around which the framework is oriented: datatypes
and adapters, serving, briefly, as heavily annotated structures
and functions allowing for programmatic interoperation with
the database and generation of and interaction with the user
interface.

2.1. DATATYPES
Concretely, a TVB datatype is a Python class with one or more
attributes that are fraits, where a trait specifies both the kind of

Uhttp://www.thevirtualbrain.org
Zhttps://github.com/the-virtual-brain
3http://the-virtual-brain.github.io

data expected for the corresponding attribute, as well additional
metadata to aid in storage and user interface construction.

During the development of the datatype and traits system,
existing implementations of the concepts of traits were con-
sidered, notably Enthought’s extensive implementation designed
to accelerate the design of graphical scientific applications and
IPython’s lighter-weight system designed, to a large extent, to pro-
vide a robust configuration system. In both cases, the traits are
used to explicitly specify types, allowing runtime values’ types to
be validated, as well as other forms of introspection. This is the
case for TVB’s traits as well, however, Enthought’s implementa-
tion has significant compiled extensions (where TVB is intended
to be pure-Python); IPython’s implementation does not provide
support for arrays, and neither provides integration or mapping
to a database. Lastly, Nipype (Gorgolewski et al., 2011) provides
an approach specifically targeted toward neuroimaging, but is
focused on data processing, whereas TVB required database and
Ul integration. For these reasons, it was judged useful to develop
a system adapted to the needs of TVB.

class Point2D (MappedType) :
x = Float(label="x",
doc="horizontal position of point™")
y = Float(label="y",

doc="vertical position of point")

Code 1: Example of a simple datatype modeling a point in two
dimensions.

Listing 1 shows a datatype modeling a point in two dimen-
sions, consisting of two floating point values, x and y. This class
derives from MappedType whose metaclass, before creating the
class object, filters attributes for trait instances or types and cre-
ates a corresponding SQLAlchemy model, which results in map-
ping instances of Point2D to a corresponding table in TVB’s
SQL database. The trait base class implements a data descrip-
tor protocol, i.e., __set__ in addition to __get__ methods,
which, for a MappedType instance, forwards calls to the get and
set methods to the corresponding SQLAlchemy method, in turn,
interacting with the database.

When methods of such a class with annotated attributes are
invoked, they may use the traited attributes directly, accessing
either a default value or one given during the instantiation of
the object. Additionally, this allows the web-based user interface
to introspect a class for all of its attributes and their descrip-
tions, to provide help and choose the proper display form. The
explicit typing also allows such classes to be nearly automatically
mapped to storage tables, providing persistence, when the stor-
age layer is enabled. Lastly, because such metadata is used to build
the docstring of a class, the console user also may obtain exten-
sive descriptions of class, attributes, methods and arguments in
the usual way. Table 1 lists the various parts of a traited attribute
and how they are used.

Several trait types are built into TVB’s traits system, such
as dictionaries, tuples, lists and arrays, and in most cases, a
string representation of the trait value is stored in the database.
Persisting arrays in SQL, however, is relatively inefficient, and for
this case the data are automatically stored in HDF5 files. Such
options as well as fine-tuning the presentation of different traits
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FIGURE 1 | TVB Architecture. TheVirtualBrain integrates various scientific libraries through its flexible datatype and adapter abstractions, which allow web and
console users to drive work flows in a generic way as well as persistence in a hybrid relation and HDF5 data store.
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Table 1| TVB currently available traited attributes.

Keyword name

Description

default
console_default
range

label

doc

required
locked

options
filters_ui
select_multiple

order

use_storage
file_storage

Default value for current attribute. Will be set on any new instance if not specified otherwise in the constructor
Define how a default value can be computed for current attribute, when console interface is enabled

Specify the set of accepted values for current attribute. Mark that this attribute is usable for parameter space exploration
Short text to be displayed in Ul, in front of current attribute

Longer description for current attribute. To be displayed in Ul as help-text

Mark current attribute as required for when building a new instance of the parent class

When present and True, current attribute will be displayed as read-only in the web interface

Used for attributes of type Enumerate, specifying the accepted options as a list of strings

SQL filters on other attributes, to be applied in Ul

When True, current attribute will be displayed as a select with multiple options in Ul (default is single-select)
Optional number identifying the index at which current attribute will be displayed in Ul

When negative, the attribute is not displayed at all. Ascending order for indices is considered when displaying
When False, current attribute is not stored in database or file storage

Valid values for this attribute are: None , HDF5, or expandable_HDF5,

When None, current attribute is not stored in the file-storage at all. When HDF5, we use regular HDF5 file storage
When expandable_HDF5 value is set, a HDF5 stored in chunks is used

in the user interface are also specified by keyword arguments to
the trait specification. Table 1 describes several of these keywords
used throughout the various datatypes in TVB.

In TVB, the datatype classes must typically implement sig-
nificant functionality with respect to the user interface, such as
filtering instances based on a user’s criterion, as well as scientific
methods, such as computing the geodesic distance on a surface.
To facilitate the organization of the code, a base class declaring
the traited attributes is created, followed by two subclasses for

framework and scientific methods, and a final class that uses the
framework and scientific classes as mixins. The advantage of this
scheme is that the domain data models can be grouped, and the
framework and scientific code may be separated.

2.2. ADAPTERS

The adapter pattern allows arbitrary processes to be invoked by
a generic framework by detailing the required input data, the
outputs, and providing a method for invoking the process. The
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input and output data are described in terms of TVB’s datatypes,
which allows processes with different data formats to interact as
long as an intermediate, common datatype is available. In TVB,
this abstraction extends not only to computational processes such
as simulation and analysis, but data import, export and, notably
visualizations.

class DistanceAdapter (ABCAdapter) :

def get_input_tree(self):

return '‘p’: Point2D(), ‘q’: Point2D()

def get_output(self):
return [Float]

def launch(self, x, y, sgrt=math.sqrt):

return sqgrt((p.x - g.X)**2 + (P.Y - Q.Vy)**2)

Code 2: Example of a minimal adapter.

Listing 2 presents a minimal example that computes the dis-
tance between two points. Descriptions of the inputs and outputs
are provided by the get_input_tree and get_output
methods, and the computation itself is set off by the method.
In practice, additional methods are used on adapters to provide
for more complex initialization and to obtain more information
about the space and time requirements of the computation.

This approach scales up to more complex computations, and
notably, the simulator itself is integrated with the web inter-
face through via a SimulatorAdapter. Additionally, due to
the wide-variety of toolboxes available for the MATLAB envi-
ronment, an adapter was created to allow arbitrary code to be
called on any given data type. This adapter works by filling out
a template driver script to handling loading and saving data
and launching the desired code within a try-except clause. This
script is with MATLAB or Octave via a call to the os.system
function.

Several alternatives to this approach are possible, such as
invoking the MATLAB engine directly via ctypes and the
MATLAB Engine API, or compiling the MATLAB functions with
the MATLAB Compiler. Each, including our approach, has advan-
tages and disadvantages. In our case, when configuring TVB, the
administrator is asked to provide the path to the MATLAB or
Octave executable, and TVB attempts to verify that this executable
can be invoked. Beyond this, no other verification or protection is
currently provided against problematic situations, in part because
we have found it to be sufficiently robust.

Launching MATLAB can be a relatively slow operation (cold
startup 8 s, cached 1 s; on a Linux workstation), and where Octave
is available, it is faster (0.1s). For our use cases, e.g., launching
analyses, this works without problems in a single user situation. In
the case that many operations are necessary, they can be batched
into the same script such that MATLAB is called but once.

One of the uses of this adapter, employs a well-known tool-
box for characterizing anatomical and functional connectivity,
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). In
TVB, the set of functions, their inputs and outputs are summa-
rized in an XML file, which is read by a generic adapter, which
handles the data appropriately.

2.2.1. Analysis and visualizers

TVB does not intend to provide fully featured, complex data
analysis techniques, which have been well covered by other pack-
ages. Instead, we offer a minimal set of standard algorithms to
quickly validate simulation results or compare with imported
patient data; these include principal and independent component
analyses, Fourier and wavelet spectral analyses, correlation and
coherence analyses.

TVB visualizers employ different techniques, depending on the
nature of the data to display and degree of interactivity required,
including WebGL, D3.js generated SVG, Matplotlib’s HTML5
Canvas backend, as well as other HTML5 Canvas Javascript
libraries for simpler, static graphs. In each case, an adapter is
developed to abstract over the differences between these tech-
niques, allowing the framework to treat it without knowing the
details.

Interaction-intensive tools that combine several techniques
have been developed for specific purposes, for example working
with connectivity matrices, configuring the phase space structure
of the mass model, or designing spatiotemporal stimuli. These are
built upon the same abstractions and have been detailed in the
general overview of TVB (Sanz-Leon et al., 2013).

3. SIMULATOR

A significant part of TVB is simulating large-scale brain networks.
While several existing simulators could have been adapted, we
have estimated that TVB style simulations are far enough out-
side the design of other simulators to make a new development
necessary. We discuss these reasons in the following.

Existing neural network simulators typically focus either on
abstract rate neurons, modeling neurocognitive processes, or
multicompartmental neurons treating complex spatial geome-
tries, e.g., NEURON (Hines and Carnevale, 2001), modeling the
interaction of channel distributions in dendrites. More recently,
due to interest in the computational properties of spiking neu-
rons and their relevance to experimental observations, simulators
designed for spiking or oscillating neurons have become promi-
nent, including Brian (Goodman and Brette, 2009), which we
initially considered for our simulations. In TVB the network is
defined with neural mass or field models (Deco et al., 2008;
Coombes, 2010) rather than cellular models. The spatial extent
of the modeled dynamics is macroscopic and scales reasonably
to the entire cortex, and uses empirical measurements of cortico-
cortical connectivity. Several technical issues are unique to this
scale, such as efficient handling of dense N? inter-regional delays
and integration of neural field-like models and connectivity on
triangular meshes in 3D. Finally, comparison with experimental
data requires forward solutions that transform physiological sig-
nals to the commonly used imaging modalities such as EEG, MEG
and fMRI. For these reasons, TVB required a new simulator, built
around the paradigm of whole-brain scale simulation.

The simulator in TVB resembles popular neural network sim-
ulators in many fundamental ways, both mathematically and in
terms of informatics structures, however, we have found it nec-
essary to introduce auxiliary concepts particularly useful in the
modeling of large scale brain networks. In the following, we will
highlight some of the interesting principles and capabilities of
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TVB’s simulator and give rough characterization of the execution
time and memory required in typical simulations.

3.1. NODE DYNAMICS

In TVB, nodes are not considered to be abstract neurons nor
necessarily small groups thereof, but rather large populations of
neurons. Concretely, the main assumption of the neural mass
modeling approach in TVB is that large pools of neurons on
the millimeter scale are strongly approximated by population
level equations describing the major statistical modes of neural
dynamics (Freeman, 1975). Such an approach is certainly not
new; one of the early examples of this approach consist of the well
known Wilson—-Cowan equations (Wilson and Cowan, 1973).
Nevertheless, there are important differences in the assumptions
and goals from modeling of individual neurons, where the goal
may be to reproduce correct spike timing or predict the effect
of a specific neurotransmitter. A second difference lies in cou-
pling: chemical coupling is often assumed to be pulsatile, or
discrete, between neurons, whereas for mesoscopic models it is
considered continuous. Typically the goal of neural mass model-
ing is to study the dynamics that emerge from the interaction of
two or more neural masses and the network conditions required
for stability of a particular spatiotemporal pattern. In the fol-
lowing, we shall briefly discuss some of the models available
in TVB.

This modeling paradigm may be contrasted with population
density models modeling the dynamics of large populations of
neurons (De Groff et al., 1993; Knight, 2000; Omurtag et al.,
2000; Gerstner, 20005 see Deco et al., 2008 for a review). The large
number of neurons impart the state space with a probability den-
sity, and population density methods describe the evolution of
this density via the Fokker—Planck (FP) equation (Risken, 1996)
comprised of flow and dispersion terms. This approach assumes
that the afferents on neurons in one population are uncorrelated.
Neural mass models, from this paradigm, are obtained as a spe-
cial case when the full ensemble density dynamics is replaced by
a mass at one point in state space and its dynamics summarize
the movement of density in state space, losing information on the
changes in shape of the density. In the full, non-linear FP form,
different density moments can couple, even within and between
populations, meaning the membrane potential variance of one
population could affect the average of another. Neural mass mod-
els ignore this possibility by coupling only the first moments,
though this may be overcome by e.g., extending mass models with
more than one mode (Stefanescu and Jirsa, 2008, 2011). TVB does
not implement density methods via the FP equation because the
additional moments required to derive physiologically relevant
variables (such as LFP or firing rate), would add an additional
level of complexity.

In TVB, many neural mass models from the literature are
available, including the often used Jansen—Rit model of rhythms
and evoked responses arising from coupled cortical columns
(Zetterberg et al., 1978; Jansen and Rit, 1995; Spiegler et al., 2010).
David and Friston’s slightly modified form has been extensively
applied within a Bayesian framework known as Dynamic Causal
Modeling (DCM) for modeling neuroimaging data via estima-
tion of biophysical parameters of underlying network models

(David and Friston, 2003; Friston et al., 2003; David et al., 2006).
The Jansen—Rit model is a biophysical one, whose state variables
and parameters are readily interpretable with respect to experi-
ments, however, it has at least six state equations involving several
exponential expressions. For cases where it is desirable to have a
simpler and more performant model, a generic two-dimensional
oscillator model is also provided by TVB [see Strogatz (2001) and
Guckenheimer and Holmes (1983) for for generic mathematical
references on two-dimensional dynamical systems]. This model
produces damped, spike-like or sinusoidal oscillations, which,
in the context of a network, permit the study of network phe-
nomena, such as synchronization of rhythms or propagation of
evoked potentials. Other models implemented in TVB include
the Wilson—Cowan description of functional dynamics of neural
tissue (Wilson and Cowan, 1972), the Kuramoto model describ-
ing synchronization (Kuramoto, 1975; Cabral et al., 2011), two
and three dimensional statistical mode-level models describing
populations with excitability distributions (Stefanescu and Jirsa,
2008, 2011), a reduction of Wong and Wang’s (2006) model as
presented by Deco et al. (2013) and a lumped version of Liley’s
model (Liley et al., 1999; Steyn-Ross et al., 1999). Lastly, adding
a model only requires subclassing a base Model class and pro-
viding a dfun method to compute the right hand sides of the
differential equations.

3.2. NETWORK STRUCTURE

The network of neural masses in TVB simulations directly follows
from two geometrical constraints on cortical dynamics. The first
is the large-scale white matter fibers that form a non-local and
heterogeneous (translation variant) connectivity, either measured
by anatomical tracing (CoCoMac, Kotter, 2004) or diffusion-
weighted imaging (Hagmann et al., 2008; Honey et al., 2009;
Bastiani et al., 2012). The second is that of horizontal projections
along the surface, which are often modeled with a translation
invariant connectivity kernel, approximating a neural field (how-
ever, as with other parameters in the simulator, connectivity
kernel parameters that vary across space can also be used).

TVB does not assume that the network structure is constant
during the simulation, but does not currently implement the
modeling of structural modulation. This can, however, be added
during simulation.

3.2.1. Large-scale connectivity

The large-scale region level connectivity at the scale of centime-
ters, resembles more a traditional neural network than a neural
field, in that, neural space is discrete, each node corresponding to
a neuroanatomical region of interest, such as V1, etc. It is at this
level that inter-regional time delays play a large role, whereas the
time delays due to lateral, local projections are subsumed under
the dynamics of the node.

It is often seen in the literature that the inter-node coupling
functions are part of the node model itself. In TVB, we have
instead chosen to factor such models into the intrinsic neural
mass dynamics, where each neural mass’s equations specify how
connectivity contributes to the node dynamics, and the cou-
pling function, which specifies how the activity from each region
is mapped through the connectivity matrix. Common coupling
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functions are provided such as the linear, difference and periodic
functions often used in the literature.

3.2.2. Local connectivity

The local connectivity of the cortex at the scale of millimeters
provides a continuous 2D surface along horizontal projections
connecting cortical columns. Such a structure has previously
been modeled by neural fields (Amari, 1977; Jirsa and Haken,
1996, 1997; Liley et al., 1999). In TVB, surface meshes provide
the spatial discretization of neural anatomy. A neural mass is
placed on each vertex, and the geodesic distances between each
mass is computed. A local connectivity kernel assigns, for each
distance, a connection weight between masses. This kernel is
usually chosen such that it decays exponentially with distance.
The associated sampling problem has been studied in detail by
Spiegler and Jirsa (2013), which finds the approximation to be
reasonable, depending on the properties of the mesh and the
imaging modalities that sample the activity simulated on the
mesh. In fact, the implementation of the local connectivity kernel
is such that is can be re-purposed as a discrete Laplace—Beltrami
operator, allowing for the implementation of true neural field
models that use a second-order spatial derivative as their explicit
spatial term.

TVB currently provides several connectivity kernels, of which a
Gaussian is one commonly used. Once a cortical surface mesh and
connectivity kernel and its parameters are chosen, the geodesic
distance (i.e., the distance along the cortical surface) is evalu-
ated between all neural masses (Mitchell et al., 1987), and a
cutoff is chosen past which the kernel falls to 0. This results in
a sparse matrix that is used during integration to implement the
approximate neural field.

3.3. INTEGRATION OF STOCHASTIC DELAY DIFFERENTIAL EQUATIONS
In order to obtain numerical approximations of the network
model described above, TVB provides both deterministic and
stochastic Euler and Heun integrators, following standard numer-
ical solutions to stochastic differential equations (Mannella and
Palleschi, 1989; Kloden and Platen, 1995; Mannella, 2002).

While the literature on numerical treatment of delayed or
stochastic systems exists, it is less well known how to treat the
presence of both. For the moment, the methods implemented by
TVB treat stochastic integration separately from delays. This sep-
aration coincides with a modeling assumption that in TVB the
dynamical phenomena to be studied are largely determined by the
interaction of the network structure and neural mass dynamics,
and that stochastic fluctuations do not fundamentally reorganize
the solutions of the system (Ghosh et al., 2008; Deco et al., 2009,
2011, 2012).

Due to such a separation, the implementation of delays in
the regional coupling is performed outside the integration step,
by indexing a circular buffer containing the recent simulation
history, and providing a matrix of delayed state data to the
network of neural masses. While the number of pairwise con-
nections rises with nfegion, where #ye4i0, is the number of regions
in the large-scale connectivity, a single buffer is used, with a
shape (horizon, ficyar, Nregion) Where horizon = max(delay) + 1,
and 71y 1s the number of coupling variables. Such a scheme

helps lower the memory requirements of integrating the delay
equations.

3.4. FORWARD SOLUTIONS

TVB provides forward solutions to generate neuroimaging data
from simulated neural activity based on biophysical models (Jirsa
et al., 2002; Buxton et al., 2004). Practically, it is also often nec-
essary to simply reduce the size of data, especially in the case of
surface simulations. TVB implements these two functionalities in
a set of classes called Monitors, each of which receives the raw
simulation output and applies a spatial, temporal or spatiotem-
poral kernel to the output to obtain the simulation output passed
to the user or stored.

Where necessary, monitors employ more than one internal
buffer. In the case of the fMRI monitor, a typical sampling
frequency of simulation may be upward of 64 kHz, and the
haemodynamic response function may last several seconds, using
only a single buffer could require several gigabytes of memory for
the fMRI monitor alone. Given that the time-scale of simulation
and fMRI differ by several orders of magnitude, the subsequent
averaging and downsampling is justified.

In the cases of the EEG and MEG monitors, the temporal ker-
nel implements a simple temporal average, and the spatial kernel
consists of a so-called lead-field matrix as typically derived from
a combination of structural imaging data, providing the loca-
tions and orientations of the neural sources and the locations
and orientations of the EEG electrodes and MEG gradiometers
and magnetometers. As the development and implementation
of such lead-fields is well developed elsewhere (Sarvas, 1987;
Hamalainen and Sarvas, 1989; Jirsa et al., 2002; Nolte, 2003;
Gramfort et al., 2010), TVB provides access to the well-known
OpenMEEG package.

3.5. PARAMETER SWEEPS

As is often the case in modeling, there are several or many param-
eters of the simulation that may be relevant, and to facilitate the
exploration of the effects of variation of parameters, the user,
from the web interface, can select one or two parameters and
create a grid of simulations that are run in parallel on the com-
puter. Afterwards, a summary visualization of the simulations is
displayed. For example, this simple approach can be useful to
find the parameter values within a range nearest to a bifurcation
from a fixed point to a limit cycle: to each resulting time series,
the global variance is computed, and displayed as a function of
parameter values.

Nevertheless, no tools are provided to perform correct estima-
tion or fitting of the models, and this is not currently a goal for
TVB.

For this purpose, as well as more sophisticated explorations
of the parameter space it may be useful to turn to scripting the
simulator in Python, and pulling in functionality from other
libraries.

3.6. PERFORMANCE

A priority of the simulator in TVB is to attain a high level of per-
formance while remaining in pure Python. In order to see where
the simulator spends most of its time, we have profiled a set of
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eight characteristic simulations on function timing as measured
by the cProfile module of the standard library.

Measurements were performed on an HP Z420 workstation,
with a single Xeon E5-1650 six-core CPU running at 3.20 GHz,
L1-3 cache sizes 384, 1536, and 12 MB, respectively, with main
memory 4 x 4GB DDR3 at 1600 Mhz, running Debian 7.0,
with Linux kernel version 3.2.0-4-amd64. The 64-bit Anaconda
Python distribution was used with additional Accelerate package
which provides acceleration of common routines based on the
Intel Math Kernel Library. A Git checkout of the trunk branch
of TVB was used with SHA 6c644ab3Db5.

Eight different simulations were performed corresponding to
the combinations of either the generic 2D oscillator or Jansen—Rit
model, region-only or use of cortical surface, and two conduction
speeds, v. = 2.0 and v, = 20.0 (m/s). In each case, a temporal
average monitors at 512 Hz is used, and the results are discarded.
The region-only simulation was run for 1s while the surface
simulation was run for 100 ms.

As can be seen in Table 2, significant time is spent on array
manipulations written in C (marked by those function names
surrounded by angle brackets), from the NumPy and SciPy
libraries, including the spare matrix-vector multiplication used
to compute the local connectivity. In some cases, such as the
neural mass model definitions, large expressions implicitly gen-
erate many temporary arrays, which can be ameliorated by using
the numexpr module to compute the expressions element-wise:
TVB’s JansenRit model is implemented as regular Python
expressions of NumPy arrays, while a subclass JRFast uses
numexpr . evaluate, resulting in a 40% improvement in over-
all runtime.

Given that the numerical routines are written in Python to
maintain a high level of flexibility, it is expected that there are
limits on the performance, especially compared to compiled lan-
guages. Ongoing work on the simulator will take advantage of
newer programming paradigms and hardware, such as OpenCL
and graphics processing units; this sort of programming is facil-
itated by Python libraries such as PyOpenCL (Klockner et al.,
2012).

4. DISCUSSION

In this article, we have described several informatics aspects of
the implementation of a integrative platform for modeling neu-
roimaging data. Despite the currently available functionality in
TVB, in the following we wish to make several points about its
context as a modeling tool as well as future work.

4.1. MODELING GOALS

The literature on network models frequently presents work in
which a model is constructed in order to estimate structure and
parameters from experimental data, and the DCM framework
has significantly advanced methods for such estimations for both
fMRI and M/EEG data. Indeed, there are similarities in the under-
lying mathematical machinery between DCM and TVB. However,
the estimation of parameters in the case of TVB’s models is still
a challenging question and for now is not a goal of the frame-
work. For this reason, none of the requisite estimation tools are
currently provided by TVB.

Table 2 | Profiling results for several simulation types, “R” for region
level simulations, “S” for surface level.

Sim. Time (s) Module/function

R/G2D /20 1.72 <numpy.core.multiarray.array>
6.14 numpy.lib.npyio, loadtxt
5.18 tvb.simulator.simulator, __call_
3.18 numpy.lib.npyio, pack_items
2.56 numexpr .necompiler, evaluate

2 11.87 <numpy.core.multiarray.array>
6.10 numpy.lib.npyio, loadtxt
5.54 tvb.simulator.simulator, __call_
3.16 numpy.lib.npyio, pack_items
2.50 numexpr .necompiler, evaluate

JR /20 14.21 <numpy.core.multiarray.array>
9.99 tvb.simulator.simulator, _ call_
728 tvb.simulator.models, dfun
6.20 numpy.lib.npyio, loadtxt
3.24 numpy.lib.npyio, pack_items

2 14.21 <numpy.core.multiarray.array>
10.57 tvb.simulator.simulator, __ _call
740 tvb.simulator.models, dfun
6.12 numpy.lib.npyio, loadtxt
3.25 numpy.lib.npyio, pack_items

S/G2D /20 126.61 <_csc.csc_matvec>
5756 <numpy.core.multiarray.array>
56.17 <gdist.local_gdist_matrix>
9.05 <numpy .core._dotblas.dot>
756 numpy.lib.npyio, loadtxt

2 125.95 <_csc.csc_matvec>
5775 <numpy .core.multiarray.array>
56.16 <gdist.local_gdist_matrix>
12.10 <numpy .core._dotblas.dot>
737 numpy.lib.npyio, loadtxt

JR /20 126.31 <numpy.core.multiarray.array>
56.37 <gdist.local_gdist_matrix>
19.52 <numpy .core._dotblas.dot>
9.47 tvb.simulator.models, dfun
8.87 <mtrand.RandomState.normal>

2 126.09 <numpy.core.multiarray.array>
56.79 <gdist.local_gdist_matrix>
29.10 <numpy .core._dotblas.dot>
14.18 <mtrand.RandomState.normal>
9.57 tvb.simulator.models, dfun

“G2D" signifies the generic two-dimensional oscillator whereas “JR” is the
Jansen—-Rit model. Finally, either 20 m/s or 2m/s conduction velocity was used.
Time is given as the total time spent in the method or function listed in the right

column.

Related to the goal of estimating model parameters for brain
network models is the modeling of function or functional dynam-
ics itself (Erlhagen and Schoner, 2002; Eliasmith et al., 2012). TVB
allows a user to fully specify the node dynamics and connectivity,
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yet no support is currently providing for deriving a set of param-
eters that leads to a particular functional state. This, like the
estimation problem, is an open question, particularly for models
as complex as those simulated within TVB.

4.2. FUTURE WORK

Since the recent release of the 1.0 version of TVB, it has been
officially considered feature complete, however, in several cases,
the development of features has outstripped documentation and
testing. Going forward, general priorities include advancing test
coverage, improving documentation for users, and preparing
PyPI and Debian packages. In the mean time, TVB’s Google
groups mailing list continues to provide an open forum for
troubleshooting and sharing of user experiences.

While several mathematical challenges are presented by the
TVB models, one of the bottlenecks is the speed of the numeri-
cal simulation. To address this, continued optimization of C and
GPU code generation will take place, e.g., to perform parallel
parameter sweeps.

Additionally, an interface from MATLAB to TVB is being
developed to allow use of the simulator through a simple set of
MATLAB functions. As this infrastructure is based on an HTTP
and JSON AP], it will likely enable other applications to work with
TVB as well.

Lastly, as TVB was originally motivated to allow a user to move
from acquired data to simulated data as easily as possible, we
will continue to integrate several of the requisite steps that are
not currently covered, such as analysis of DSI data to produce
connectivity matrices, though in many cases, such as parcellation
and labeling of cortical areas, these steps may continue to require
interaction with other software. Altogether, TVB provides a rich
platform for integrating neuroinformatics tools with an emphasis
on analysis and modeling of human neuroimaging data.
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