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NeuroML is an XML-based model description language, which provides a powerful
common data format for defining and exchanging models of neurons and neuronal
networks. In the latest version of NeuroML, the structure and behavior of ion
channel, synapse, cell, and network model descriptions are based on underlying
definitions provided in LEMS, a domain-independent language for expressing hierarchical
mathematical models of physical entities. While declarative approaches for describing
models have led to greater exchange of model elements among software tools in
computational neuroscience, a frequent criticism of XML-based languages is that they are
difficult to work with directly. Here we describe two Application Programming Interfaces
(APIs) written in Python (http://www.python.org), which simplify the process of developing
and modifying models expressed in NeuroML and LEMS. The libNeuroML API provides
a Python object model with a direct mapping to all NeuroML concepts defined by the
NeuroML Schema, which facilitates reading and writing the XML equivalents. In addition, it
offers a memory-efficient, array-based internal representation, which is useful for handling
large-scale connectomics data. The libNeuroML API also includes support for performing
common operations that are required when working with NeuroML documents. Access
to the LEMS data model is provided by the PyLEMS API, which provides a Python
implementation of the LEMS language, including the ability to simulate most models
expressed in LEMS. Together, libNeuroML and PyLEMS provide a comprehensive solution
for interacting with NeuroML models in a Python environment.
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INTRODUCTION
In neuroscience, models based on detailed anatomy and electro-
physiology have been used for many years to help explore and
understand neural systems. Historically, these models have been
expressed using a variety of programming languages, tools, and
techniques, leading to a high degree of fragmentation (Cannon
et al., 2007). In scientific modeling, domain-specific modeling
languages have been developed to address this fragmentation,
aid with model exchange, and provide language features, such
as built-in methods and classes, which simplify modeling in that
particular domain. This is achieved by formalizing common con-
cepts with a standardized set of language expressions and rules.
Another key benefit of these languages is that they provide a com-
mon format that allows different software tools to process the
same model description. When considering models of physical
systems, scientists tend to think in terms of the relevant core
components of those systems (such as neurons, synapses, and
ion channels in the case of neural systems) and the interactions

among them. Declarative modeling languages are useful for
expressing such conceptual models, as they free the modeler from
describing the implementation details of the model, allowing
them to focus on the scientific problem. NeuroML is a declara-
tive, XML-based model description language for computational
neuroscience, which has been developed as part of an interna-
tional, collaborative initiative (Goddard et al., 2001; Gleeson et al.,
2010). In the latest version of NeuroML (version 2.0 or v2), the
structure and behavior of ion channel, synapse, cell, and network
model descriptions are based on underlying definitions provided
in LEMS, a domain-independent language for expressing hierar-
chical mathematical models of physical entities (Cannon et al.,
2012).

One potential limitation of such a declarative model descrip-
tion language is that the commonly used format for serializing
such models, XML, can be difficult to read and write and may
be overly verbose, especially for large, complex models. There can
be difficulties too when a model includes novel mechanisms that
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were not considered during the design of the description lan-
guage or when constructing large, repetitive models, which can
be expressed more tersely in a procedural language by means of
recursions or loops. Here we describe libNeuroML and PyLEMS,
which address these issues for the NeuroML and LEMS lan-
guages, respectively. A wide range of models, from point neu-
rons to morphologically detailed, conductance based cell and
network models, can be created, parsed, and saved using the
libNeuroML API. PyLEMS is a Python API for creating and work-
ing with models and model components specified directly in
LEMS.

While there are a number of Python applications for reading,
modifying and writing XML such as lxml (http://lxml.de)—the
advantage of libNeuroML and PyLEMS over these more generic
tools is that they contain sub-tools and optimizations specific to
the modeling of neural systems. Here we present a brief overview
of the current state of NeuroML and LEMS, describe the motiva-
tion for developing procedural APIs for these languages, outline
the design considerations for libNeuroML and PyLEMS, and
provide a number of examples of the usage of these libraries.
libNeuroML and PyLEMS allow a user to enjoy the benefits pro-
vided by the domain-specificity and rigor of NeuroML and LEMS,
while facilitating the use of the Python programming language for
procedural model descriptions.

OVERVIEW OF NeuroML AND LEMS
The current scope of NeuroML covers abstract, point neuron
models [e.g., leaky integrate and fire models or two-variable
spiking neuron models (Izhikevich, 2003; Brette and Gerstner,
2005)], conductance based neuron models, morphologically
detailed, multicompartmental neuron models, voltage, and cal-
cium dependent ion channel models, both fixed and plastic
synapse models, and models for networks of neurons posi-
tioned in 3D with synaptic connections among populations of
cells. Figure 1A gives an overview of the elements allowed in a
NeuroML file, and Figure 1B shows an example of a NeuroML
serialization of a model. NeuroML is being developed by an
international consortium of contributors, where the formal spec-
ification for the latest version is being developed by the NeuroML
Editorial Board (http://www.neuroml.org/editors.php).

NeuroML v1.x (Gleeson et al., 2010) focused on
conductance-based cell models, often with a corresponding
multicompartmental representation of neuronal morphology.
For these earlier versions, the mathematical descriptions of model
components, such as ion channel models based on the Hodgkin-
Huxley formalism (Hodgkin and Huxley, 1952), are specified in
user documentation (see supplementary information of Gleeson
et al., 2010). Modelers or application developers wishing to utilize
or support a feature of NeuroML were required to familiarize
themselves with the relevant documentation for that component
and ensure compliance for any model description or software
application (Figure 2A). A disadvantage of this approach is the
possibility for ambiguity in the documentation. NeuroML v2 was
designed in conjunction with a new XML-based language called
Low Entropy Model Specification language (LEMS), which can
be used for creating fully machine-readable definitions of the
structure and behavior of the model components (Figure 2B).

The elements in NeuroML v2 have corresponding structural and
mathematical definitions described in LEMS.

The LEMS language is used to formally describe the compo-
nents of models of physical systems, which may contain hier-
archical relationships. These components can have parameters,
which are fixed, and state variables, which vary according to
defined relationships. In LEMS, and hence also in NeuroML, all
parameters and state variables are dimensional quantities rather
than relying on an implicit set of units. Whenever a quantity is
expressed in a model, dimensionally correct units must be pro-
vided. It is the responsibility of the implementation to check
the units and convert to a consistent internal set of units for
calculations. Another important concept in LEMS is that of con-
tainment of components, encoding the concept that one model
element is part of another (e.g., a population of cells is part of a
network, a gate is part of an ion channel). Another key LEMS con-
cept is the ability to declare a prototype ComponentType, which
defines the generic structure and dynamics for a broad class of
models. Models can then be instantiated as Components by pro-
viding a set of parameters for a specific instance. An example
of the ComponentType concept is shown in Figure 2Bi for the
spiking cell model of Izhikevich (2003), a widely-used model in
computational neuroscience, which exhibits a diverse range of
physiologically-realistic spiking behaviors by changing a small set
of parameters in the model. Instances of the model (Components),
such as the cell defined on the left in Figure 2Bi, are specified by
providing specific values for the parameters. NeuroML and LEMS
use Fortran-like “gt” and “lt” inequality operator symbols instead
of “>” and “<.” This is done because in XML the symbols “>”
and “<” are used in the declaration of XML tags.

While any modeler is free to describe a model in LEMS,
the NeuroML initiative has developed a set of curated LEMS
definitions (e.g., Cells.xml and Synapses.xml in Figure 2B) for
commonly used models, which form the basis for NeuroML
v2. Similar classes of model types can be linked together by
using the type extension mechanism of LEMS. For example, any
object which produces a current extends the type basePointCur-
rent, while all synaptic models extend baseSynapse. This approach
also provides for user defined extensions to the core NeuroML
language.

LEMS provides complete, machine readable model defini-
tions for a broad range of cell, ion channel and synapse mod-
els in NeuroML v2 (though not yet for multicompartmental
cell models, see Discussion). Each NeuroML release includes a
W3C XML Schema Document (XSD, http://www.w3.org/XML/
Schema), which can be used to validate NeuroML documents,
i.e., check whether all required elements and attributes are
present. Simulators and other applications that aim to support
the language can choose to base their import/export functions
on the structure of the language specified by the Schema and
associated documentation, as was the case in NeuroML v1.x.
However, any simulator utilizing NeuroML should be designed
to ensure that simulated behavior complies with LEMS defini-
tions in order for that application to be NeuroML-compliant.
The LEMS ComponentType definitions are also defined in XML
format, and a LEMS-specific Schema document exists for the
purpose of validation.
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FIGURE 1 | Structure of NeuroML v2. (A) Overall structure of NeuroML v2.
The top-level element of NeuroML, neuroml, contains a number of child
elements of various types. A morphology element contains lists of segment
and segmentGroup elements defining the structure of the neuronal
morphology. Various cell types are allowed including point neurons such as
izhikevichCell, but also cell elements which can have detailed morphologies
and biophysicalProperties for ion channel densities etc. Ion channels of two
main types can be specified, based on either the Hodgkin-Huxley formalism
or using a kinetic scheme-based description. Allowed synapse models include
single and double exponential conductance waveform models. Current inputs

to cells include square pulse and sine waves. Networks contain populations
of cells, with projections between them and lists of inputs. Lines ending in
diamonds show containment of elements. Filled diamonds indicate that
multiple child elements of that type are permitted, unfilled diamonds indicate
only one child of that type is permitted. Not all elements in NeuroML v2 are
shown. A full description of all elements in NeuroML v2 is available at
http://www.neuroml.org/NeuroML2CoreTypes. (B) A partial example of a
NeuroML v2 file in XML. This model contains a cell with a morphology, an
ion channel mechanism and a synapse as well as a network with a population
of the cells and a projection for synaptic connections between them.

DECLARATIVE AND PROCEDURAL MODEL DESCRIPTIONS IN
COMPUTATIONAL NEUROSCIENCE
Procedural programming languages require a description of the
sequence of steps to be executed (or control flow) in a computer
program in terms of sequential commands. On the other hand,
declarative languages provide the information needed for compu-
tation without directly expressing the control flow. In this section
the comparative advantages and disadvantages of these paradigms
are described in the context of modeling in neuroscience.

ADVANTAGES OF DECLARATIVE MODEL DESCRIPTIONS
Declarative specification of models can be of benefit in
three principal respects: model readability, model interoperabil-
ity/validation, and the avoidance of fragmentation.

Domain-specific declarative languages are generally easier to
read and understand because they shift focus onto describing the

nature of the problem being solved rather than the details of the
specific sequence of operations used to solve that problem. A
neuroscientist with a background in biophysics and a minimal
amount of programming experience can read, understand and
modify a NeuroML model with relative ease. However, this may
not be true for an equivalent model written in a general-purpose
procedural language such as Python or C. Moreover, declarative
formats like XML also allow for an easier transformation into
more readable presentations such as HTML websites.

Declarative languages for computational modeling such as
NeuroML provide a good interchange format for different soft-
ware tools by ensuring model completeness and facilitating
machine-parsing of the models. The domain-specificity of a par-
ticular declarative language means that relationships between
model elements can be formalized (e.g., in an XML Schema),
providing a fixed framework for defining models. This facilitates
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FIGURE 2 | Relationship between NeuroML v2 and LEMS. (A) Model
definitions in NeuroML v1.x are specified as textual descriptions in
human-readable documentation. (B) In NeuroML v2, components have a
corresponding structural and mathematical definition in LEMS. A number of
examples of ComponentTypes in LEMS are shown. A ComponentType
izhikevichCell is defined in LEMS (i), and its parameters are specified as a, b,
c, d, and thresh. The Dynamics of the ComponentType defines the state
variables v and U. LEMS specifies how these vary with time. Conditions such
as when the membrane potential crosses firing threshold are also defined

using OnConditions. This example of izhikevichCell has been simplified to
remove scaling factors for unit correctness. Shortened examples of a
synapse (ii) and an ion channel model (iii) are also shown. Instances of LEMS
ComponentTypes can be created by specifying the values for each of the
parameters. These instances are represented in NeuroML files. The full
NeuroML v2 ComponentType definitions are contained in XML files (including
Cells.xml, Synapses.xml, Channels.xml as shown here), which have been
developed by the NeuroML project and are available at
http://www.neuroml.org/NeuroML2CoreTypes.
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model validation and typically makes it simpler to diagnose
errors, although it should be noted that this form of validation
indicates little about the scientific veracity of the model (Crook
et al., 2013).

As a consequence of improved readability and software
interoperability, efforts such as NeuroML also reduce the frag-
mentation in a scientific discipline. The development of com-
mon formats for specification of models accelerates progress by
encouraging model sharing and reuse, as can be seen with SBML
(the Systems Biology Markup Language Hucka et al., 2003 and
MathML Miner, 2005).

ADVANTAGES OF PROCEDURAL MODEL DESCRIPTIONS
Despite the advantages of writing models in a declarative man-
ner, procedural specification of models does have two important
benefits. First, procedural languages are generally more practi-
cal for describing models when there are aspects of the model
that can not be described with the base components of a declar-
ative modeling language. When the boundaries and concepts for
model design are not clear, a procedural language often will pro-
vide a needed degree of flexibility. As an example, if one were
designing a multicompartmental model where a particular mem-
brane conductance was only present on dendrites more distal
than the second branch point from the soma, it would proba-
bly be easier to describe this concisely using a general-purpose
language like Python or C, since NeuroML does not natively sup-
port defining regions of the cell in this way. A second advantage of
developing libraries to allow procedural model description devel-
opment is that it is easier to integrate with other libraries such
as those providing visualization utilities or analysis routines. The
libSBML API (Bornstein et al., 2008) for the SBML language has
been an important factor in the widespread support for that lan-
guage among systems biology applications (Sauro and Bergmann,
2008).

Thus, both procedural and declarative paradigms play an
important role in computational neuroscience. When working
within a widely used modeling formalism, such as Hodgkin-
Huxley type conductance based models, having the ability to
easily export it to a declarative format is useful and important.
In such a situation, declarative modeling allows for ease of devel-
opment, model interchange among software tools, and model
reproducibility. When working with novel modeling approaches
or when integrating with scientific or visualization libraries, it is
useful to use a procedural approach.

libNeuroML AND PyLEMS
To facilitate procedural model description development for the
NeuroML and LEMS languages we have developed libNeuroML
and PyLEMS. These Python modules can be imported into a
Python script to allow loading of XML files in their respective
formats, parsing and editing of the models using APIs which
closely follow the structure of the XML languages, and saving in
valid XML. libNeuroML, which parses and saves NeuroML v2,
has added functionality to use optimized representations of large
models, both internally and as serialization formats. PyLEMS
has the additional ability to simulate the dynamical behavior of
LEMS models. Figure 3 shows examples of XML from NeuroML

and LEMS and the Python code that can be used to create
the equivalent entities. More detailed overviews of the APIs for
libNeuroML and PyLEMS are shown in Figures 4, 5, respectively.
A core aim of libNeuroML and PyLEMS is to provide production-
quality, easy-to-use utilities for the manipulation of NeuroML
and LEMS, using tools and standards familiar to Python pro-
grammers that are also easy to use for those less experienced with
Python. With this core aim in mind, libNeuroML and PyLEMS
have been implemented with the design goals described below.

DESIGN GOALS SHARED BY BOTH libNeuroML AND PyLEMS
Python naming conventions and adherence to Python PEP8 style
guide
libNeuroML and PyLEMS strongly adhere to naming conven-
tions that are widely used in the Python community and cod-
ified in the PEP8 Style Guide for Python Code (http://www.

python.org/dev/peps/pep-0008/). In the case of libNeuroML,
this adherence to convention is enforced by automated con-
version from NeuroML to Python naming conventions, which
occurs during the automatic generation of the libNeuroML
object model from the corresponding NeuroML Schema (see
below). NeuroML elements have their names modified in the
libNeuroML object model to use standard Python naming con-
ventions; for instance, izhikevichCell (element) and q10Settings
(attribute) in NeuroML become IzhikevichCell (class) and
q10_settings (field), respectively in libNeuroML.

Automated XML validation
libNeuroML provides a validation utility to ensure that NeuroML
documents are well-formed (following the basic syntactic rules of
XML) and valid (following the structure defined in the NeuroML
Schema). A similar utility exists in PyLEMS for validating against
the LEMS Schema. Note that while the NeuroML ComponentType
definitions as well as XML generated by PyLEMS are valid accord-
ing to this Schema, PyLEMS is flexible enough to parse invalid
LEMS files (e.g., with reordered elements) as long as they follow
the correct containment rules for LEMS elements.

Ease of installation
libNeuroML and PyLEMS utilize the standard distutils (http://
docs.python.org/2/library/distutils.html) tool for packaging
Python programs, making installation standard and simple.
Both APIs require the lxml (http://lxml.de) Python package.
Additionally, libNeuroML requires numpy (http://www.numpy.
org), jsonpickle (https://pypi.python.org/pypi/jsonpickle),
mongodb (http://docs.mongodb.org/ecosystem/drivers/python),
and PyTables (http://www.pytables.org) packages. Both APIs
are currently tested and stable for Python versions 2.6 and
2.7. All of these packages can be obtained from the Python
Package Index (https://pypi.python.org/pypi). The full source
code for the libraries can be obtained from https://github.com/
NeuralEnsemble/libNeuroML and https://github.com/LEMS/
pylems.

ADDITIONAL DESIGN GOALS FOR libNeuroML
Auto-generation from NeuroML Schema
In libNeuroML every element (such as cell, network or pulseGen-
erator, see Figure 1A) in the NeuroML Schema corresponds to
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FIGURE 3 | Examples of NeuroML and LEMS models specified in XML

and equivalent models specified with Python using the libNeuroML and

PyLEMS APIs, respectively. The XML code on the left is generated

automatically by the Python code on the right. The NeuroML example
describes a soma segment as a 3D cylinder. The LEMS example illustrates
how a simple integrate and fire cell can be defined.

a concrete class and therefore can be instantiated as an object
by calling neuroml.<NameOfClass>(). This is is possi-
ble because the libNeuroML core object model is auto-generated
from a NeuroML Schema file via the generateDS tool (https://
bitbucket.org/dkuhlman/generateds), where the generated object
model defines all necessary type interfaces. Therefore, libNeu-
roML provides a complete and direct mapping between the
NeuroML Schema and its internal Python object model with
several advantages:

1. Maintainability. libNeuroML can be rapidly updated to reflect
the latest NeuroML Schema with little or no knowledge of

implementation or architecture. This allows libNeuroML to
be a core part of the regular NeuroML release process. New
versions of the NeuroML Schema will always be released
along with a libNeuroML version which reflects those Schema
changes.

2. Backward—support. This feature allows users to create a
Python API for handling NeuroML even if they are work-
ing with older versions of the NeuroML representation for-
mat, including versions that existed before libNeuroML.
However, the user must auto-generate this libNeuroML ver-
sion via the generateDS tool as described in libNeuroML
documentation.
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FIGURE 4 | An overview of the structure of the libNeuroML API. The API
is divided into four main modules (left), the largest of which (neuroml)
consists of Python classes generated from the NeuroML XML Schema
Document. There is roughly a one to one correspondence between the
NeuroML elements and Python classes. These classes can be split into a

number of broad classifications (right) based on the types of models they
represent. Examples of Python code using the classes is also shown on the
right. Extra modules have been created to facilitate loading or writing
NeuroML (in XML or other serialization formats) and for validating NeuroML
files.

3. Flexibility. It is possible for a user to modify the NeuroML
Schema in order to develop new components or change exist-
ing ones. A custom copy of libNeuroML can then be generated
for further testing. Such modifications can then be proposed
for inclusion in the language through discussions on the
NeuroML mailing list.

4. Saving to valid NeuroML. A key feature of generateDS and, by
extension, libNeuroML is the ability to save XML files which
are valid against the Schema used to generate the API.

5. Automatic conversion of names to Python format. While the
convention in NeuroML is to use “camel case” for naming
elements and their attributes, the generated Python class and
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FIGURE 5 | An overview of the structure of the PyLEMS API. Classes
are present for each of the main elements of the LEMS language (left).
Examples of using these in a Python script are shown on the right. The
Model class is a container which can be used to hold the model and

can export this to an XML file. Generated or other LEMS files can also
be validated through the API. More information about the LEMS
elements on which the classes above are based can be found here:
http://lems.github.io/LEMS/elements.

method names automatically are converted to Python naming
conventions.

One notable disadvantage of an auto-generated API is that it
contains syntax which is less usable than it might be for a
“hand-written” API. However, we have contributed updates to the
generateDS tool to increase usability and readability of the API,
and these will continue to be improved.

Serialization and database support
This section describes the different serialization formats provided
by libNeuroML. In this section the term NeuroML specifically
refers to the XML-based file format rather than NeuroML as a
model description language. libNeuroML supports serialization
of models into four different storage formats: NeuroML (XML),
JavaScript Object Notation (JSON) (http://www.json.org), HDF5
(http://www.hdfgroup.org/HDF5), and SWC (Cannon et al.,
1999). Of these four serialization formats, two (NeuroML and
JSON) are lossless, which is to say that they preserve all of the
NeuroML model data, and the other two (HDF5 and SWC) are
lossy and are only able to serialize a subset of the data, namely the
morphological structure of detailed neuronal reconstructions. In

the case of SWC however, the format is only suited to serializing a
small subset of morphological data and is intrinsically unable to
serialize complex models, due to the nature of the SWC format as
described below.

In addition to file-based serialization, libNeuroML pro-
vides the ability to store data in a MongoDB (http://www.

mongodb.org) database via an intermediate JSON document. All
serialization and deserialization operations, including database
operations, are carried out through the neuroml.writers
and neuroml.loaders modules of libNeuroML, respectively
(Figure 4).

NeuroML (XML). The de-facto libNeuroML serialization out-
put is the standard XML-based format in which NeuroML
models are written. Small to medium-sized NeuroML mod-
els generally should be written in this format, as these docu-
ments can be edited with standard text editors and validated
against the NeuroML Schema independently of libNeuroML.
The XML serialization is the format most widely supported
by NeuroML compliant software tools (http://www.neuroml.org/
tool_support.php). It is recommended that unless there is
a clear reason to do otherwise, users should use XML
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serialization until they encounter performance bottlenecks.
NeuroML serialization, though the slowest and least concise,
permits the use of NeuroML-compliant tools (such as morphol-
ogy viewers) and the ability to easily track changes across file
versions.

JSON. JSON is an open, text-based format for human-readable
data interchange. Any file serialized by libNeuroML to JSON
format can be loaded by libNeuroML without any loss of
information and thus can be re-serialized as NeuroML. The
jsonpickle (https://github.com/jsonpickle/jsonpickle) mod-
ule is used to serialize NeuroML documents in JSON format.
There are three primary advantages of JSON serialization:

1. Some users report that JSON is easier to read and understand
than XML.

2. Many tools exist to facilitate the use of JSON in situations
where data is transmitted over networks. This is particularly
true for web-based applications since a number of such tools
and frameworks are optimized for working with JSON.

3. When used in conjunction with the libNeuroML
arraymorph module, large-scale morphological recon-
structions require substantially less space on disk when stored
as JSON-serialized documents.

SWC. SWC is a tree-based representation used for storing mor-
phological reconstructions of neurons, and it is the data stor-
age format of the NeuroMorpho.org database of reconstructed
neurons (Ascoli et al., 2007). In SWC, each node contains
diameter and position information, and the conical frustum
between two nodes is treated as a segment of morphology. This
allows, for instance, reconstructions of dendritic arborizations of
theoretically-unlimited complexity. libNeuroML can import the
Morphology component of a cell in SWC format. However, any
other NeuroML component data such as information about the
distribution of channels or synapses with regard to the morphol-
ogy would be lost when serializing in this format.

HDF5. HDF5 (Hierarchical Data Format 5, http://www.

hdfgroup.org/HDF5) is a set of file formats and tools for stor-
ing and organizing large amounts of numerical and hierar-
chical data. HDF5 serialization is provided by libNeuroML,
although presently the level of serialization support which is
provided only extends to morphological reconstructions of neu-
rons. The main advantage of HDF5 support is the relatively
low memory footprint and support for rapid read/write opera-
tions, which is demonstrated in the benchmarks section of this
article.

MongoDB. MongoDB (http://www.mongodb.org/) is a
document-oriented “NoSQL” database which departs from
the traditional table-based relational database paradigm toward
JSON-like documents with dynamic schemas. Its document-
oriented approach is particularly suitable for storing NeuroML
documents. The MongoDB support provided by libNeuroML is
particularly useful for users wishing to store large amounts of
data on a server, such as for use with a website. Since MongoDB

is compatible with NeuroML’s arraymorph module, large
models can be stored in a MongoDB database at a fraction of
the disk requirements for equivalent NeuroML documents. One
MongoDB limitation is that JSON files exceeding 16 MB can not
be stored; large documents (more than 100,000 segments) should
therefore be stored as individual files.

Serialization file sizes. For reconstructed morphologies, the file
sizes of the different serialization formats vary linearly with the
number of segments in the morphology with NeuroML requir-
ing 316 B/segment, JSON requiring 62 B/segment, and HDF5
requiring 41 B/segment. For a typical reconstructed morphology
of 2000 segments, a NeuroML (XML) file would require 617 KB,
and the corresponding JSON and HDF5 files would require 80
and 41 KB, respectively.

OPTIMIZED INTERNAL REPRESENTATION (ARRAYMORPH)
The arraymorph module of libNeuroML provides highly
optimized representations of neuronal morphologies to
increase read/write speed and reduce memory footprint.
Neuronal morphologies are instantiated as a non-NeuroML
ArrayMorphology type, which inherits from the standard
NeuroML Morphology type but uses Numpy (http://www.

numpy.org/) arrays to represent morphologies in a way that
is transparent to the user and is highly-influenced by the
SWC format. With the arraymorph module, it remains
possible to manipulate NeuroML segment objects, and all
helper methods and properties continue to work as with the
standard NeuroML Morphology type. However, low-level
access to the arrays is also possible, although the user must
understand the internal details of implementation. The rationale
for development of this module stems from several draw-
backs of both Python and XML that can be summarized as
follows:

• Python requires a relatively large memory footprint when
instantiating objects. Representing every component in a
NeuroML file in-memory by an instantiated object can
demand an unfeasibly-large amount of memory. A typical
reconstructed morphology of 1600 segments requires 6.9 MB
in memory; a network of over 1000 cells would therefore
require over 1 GB of memory.

• XML serialization results in performance bottlenecks when
read/write operations are conducted on large XML files
because NeuroML is a relatively verbose format, and the whole
file must be loaded for even one element to be accessed.

• Because many NeuroML documents are mainly morphological
reconstructions with a very small amount of metadata, a SWC-
like format can store most of the same data with a much smaller
performance overhead.

• Recent projects in the field of computational neuroscience
such as the Blue Brain Project (Markram, 2006) and the
Brain Activity Map Project (Alivisatos et al., 2012) require
increasingly large amounts of morphological reconstruction
data.

• Some mathematical analysis methods and transformations
that can be performed on reconstructed morphologies,
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such as morphology transpositions or branching analysis,
can be performed on SWC-like flat representations more
efficiently than by recursive traversals of tree-based data
structures.

• An optimized internal morphology offers the advantage of
faster read/write operations while simultaneously hiding a lot
of the underlying complexity from the user.

• The SWC-like nature of the ArrayMorphology class pro-
vides a conceptual bridge between the component-based rep-
resentation idea underlying NeuroML and the node-based
morphology representation underlying SWC.

ADDITIONAL DESIGN GOALS FOR PyLEMS
Simulation of LEMS models
When defining a new language like LEMS, which aims to
encapsulate a broad range of dynamical model descriptions,
it is imperative to execute the models and test the results
against expected behavior. This has been a core principle for
the develoment of jLEMS (https://github.com/LEMS/jLEMS),
a Java based reference implementation of LEMS developed
in parallel with LEMS. A feature of LEMS is not consid-
ered stable by the design team unless an example can be
executed with jLEMS. Like jLEMS, PyLEMS is not only an
API for the language, but also can be used to simulate
the dynamical behavior of the models it parses. While both
jLEMS and PyLEMS feature only simple numerical integra-
tion techniques (forward Euler and additionally, in the case
of jLEMS, Runge Kutta fourth-order), both implementations
are required to produce the same model behavior for a given
model specification. While some of the advanced features of
LEMS (e.g., kinetic scheme based ion channel descriptions)
are not yet considered stable in PyLEMS, this dual test for
LEMS model behavior is invaluable in the development of the
language.

METHODS AND RESULTS
IMPLEMENTATION OF XML BINDINGS FOR libNeuroML
The generateDS Python package is used for automatic generation
of NeuroML XML-bindings in libNeuroML from the NeuroML
Schema. Full details of this conversion process are available in the
libNeuroML documentation (http://libneuromldev.readthedocs.
org/en/latest/implementation_of_bindings.html).

BENCHMARKS
libNeuroML contains a benchmarking module which presently
supports benchmarks for writing NeuroML model data to disk
in a variety of serializations. All benchmarks described here were
run on a DELL PowerEdge R815 containing a 64-core AMD
Opteron 6272 processor, 7.2K RPM Hard Drive and 128 GB
memory (16 × 8 GB 1600 MHz RDIMMs). During benchmark-
ing a range of synthetic morphologies of various sizes were
generated (sample size of 10) using the arraymorph mod-
ule and written to disk. Write-to-disk times were recorded. The
benchmark results (Figure 6) indicate that NeuroML (XML) seri-
alization of NeuroML documents with libNeuroML is relatively
slow in terms of read/write operations. However, NeuroML doc-
uments are readable by humans and a wide variety of software

FIGURE 6 | Disk write time for synthetic morphologies in different

serialization formats. Error bars represent one standard deviation (sample
size = 10).

tools, making this serialization format advisable for most use
cases. Benchmark results also show that HDF5 write opera-
tions are approximately 100 and 600 times faster than corre-
sponding JSON and XML write operations, respectively, sug-
gesting that if performance bottlenecks are encountered, HDF5
should be investigated for storing morphological reconstruction
data. JSON serialization offers a good compromise between the
speed of writing to disk provided by HDF5 and the readabil-
ity and full NeuroML language support of XML serialization.
The higher write speeds of JSON when compared to XML are
achieved due to use of the arraymorph module and the fact
that JSON-serialized NeuroML is a less verbose than the XML
equivalent.

TESTING, VALIDATION, AND CONTINUOUS INTEGRATION
libNeuroML development follows modern software develop-
ment practices, including a stable release cycle, version control,
testing, and continuous integration. Each libNeuroML stable
release is part of the official NeuroML release cycle. The git
(http://git-scm.com) source code management system is used to
provide version control management and is used in conjunc-
tion with GitHub (https://github.com) to provide issue track-
ing functionality as well as a central repository for developers.
The package is tested using a variety of unit and integration
tests, and the Travis-CI (https://travis-ci.org) continuous integra-
tion platform is used to confirm that libNeuroML is correctly
installing and that all tests are passed every time a change is
applied to the software and pushed to GitHub. Test coverage
is 91% [measured with the Python Coverage module version
3.7.1 (https://pypi.python.org/pypi/coverage)]. PyLEMS is also
developed on GitHub and released as part of NeuroML release
cycle. Basic unit testing and continuous integration on Travis-CI
have been added to PyLEMS and will be expanded in the
future.
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USAGE EXAMPLES
EXAMPLES USING libNeuroML
Network example
libNeuroML can simplify the process of describing a model of
a spiking neural network in NeuroML. All of the cell, synapse
and channel models in NeuroML are available for use in net-
works, and the structure of a network can be generated in a
procedural way, using all the capabilities of Python to encode
the connectivity. Figure 7 shows a network of two randomly con-
nected populations of integrate and fire neurons, one of which
receives current injections of random magnitude. The structure
of the network can be saved in XML format (or JSON format
as outlined previously), but an important point is that many
of the diverse network connectivity options available can not
be described efficiently in NeuroML, and a Python script using
libNeuroML provides a compact, cross-platform encoding of the
network. While the XML in the example in Figure 7 is roughly
the same length as the associated Python script, generally this
will not be the case for larger networks. Also, the XML repre-
sents only one instance of a network that can be generated by
the script. Modifying the script to specify the random seed will
ensure reproducibility of the network connectivity, and so the lib-
NeuroML version of the network can be distributed instead of the
potentially very large XML or JSON serialization.

PyNN (Davison et al., 2009) is an API in Python that also
offers the advantage of compact, procedural network descrip-
tions. Currently, the cell models that can be defined in PyNN
scripts are limited to a set of commonly-used point neuron
models on simulators with PyNN backends. As outlined in the
Discussion section of this article, we are actively working toward
greater compatibility between PyNN and network descriptions in
libNeuroML.

Multicompartmental cells
Aside from the ability to load and parse NeuroML docu-
ments containing morphological reconstructions of neurons,
libNeuroML allows for the modification and analysis of these
morphologies, as well as the generation of completely synthetic
morphologies. Listing 1 shows an example of a script in lib-
NeuroML which loads a morphology file from an XML rep-
resentation, extracts the morphology and calculates the total
volume and area of the segments in the cell. In this listing,
volume and area methods do not have trailing parentheses
because they are Python getter methods modified by the Python
@property decorator. This demonstrates how helper meth-
ods can be used for operations that will commonly be required
on those classes (e.g., getting the surface area or volume of
the conical frustum). For details on how such helper meth-
ods can be added to libNeuroML the reader is referred to the
libNeuroML developer documentation (http://libneuromldev.
readthedocs.org/en/latest/#developer-documentation).

OpenWorm and neuroConstruct
The OpenWorm project (http://www.openworm.org) is an inter-
national collaboration with the aim of creating a physically- and
biologically-detailed computer model of a behaving multicellu-
lar organism, the nematode Caenorhabditis elegans. The nervous

system of this worm contains only 302 neurons, making it a
very interesting model organism in experimental and computa-
tional neuroscience. The morphology of each of these neurons
(as well as all other cells of the adult hermaphrodite) has been
reconstructed in 3D at the VirtualWorm project (http://caltech.

wormbase.org/virtualworm) and released into the public domain
in Blender (http://www.blender.org) format, which is used for
the creation of 3D applications. These have been converted to
NeuroML format for the OpenWorm project and made avail-
able at https://github.com/openworm/CElegansNeuroML. Data
on the connectivity between individual cells is available in a
spreadsheet (CElegansNeuronTables.xls) in that repository and
includes the numbers of known chemical or electrical connec-
tions between neurons of a particular type.

We have developed a libNeuroML-based Python script to ana-
lyze the integrity of this data that loads each neuron morphology,
generates connections based the connectivity data, and saves the
network file to NeuroML. When generating connections for each
pair of cells where there exist N connections, the script chooses a
variable number (100–5000 depending on number of segments in
the cells) of random points on the presynaptic and postsynaptic
cells and chooses the N closest pairs of points for the connections.
The generated network file can be loaded into neuroConstruct
(Gleeson et al., 2007), which can import NeuroML cells and net-
works for visualization (Figure 8). Due to the fact that all neurites
are reconstructed, it should be possible to find points separated by
a short distance on any connected pair of presynaptic and post-
synaptic cells. The long connections between some neurons in
Figure 8B (which could not be removed by increasing the number
of random connections tested) highlights that these are unlikely
to be real anatomical connections.

PyLEMS EXAMPLE
The NeuroML v2 ComponentType definitions specified in LEMS
for multiple commonly-used cell, synapse and ion channel types
(Figure 2) can be loaded by PyLEMS. Another important feature
of using LEMS as the basis for NeuroML v2 model types is that a
modeler can define a new model type in LEMS if that model is not
already present in the core definitions, significantly increasing the
extensibility of the NeuroML language. PyLEMS allows these new
models to be created using Python and saved in a valid, standard
format. Figure 9 shows the code required to define a Hindmarsh
and Rose spiking cell model (Hindmarsh and Rose, 1984) and
the behavior of one state variable when simulated with PyLEMS.
More details on the implementation of this model can be found
on the Open Source Brain website (http://www.opensourcebrain.

org/projects/hindmarshrose1984).

DISCUSSION
SUMMARY OF ADVANTAGES
NeuroML is a model description language which can represent
biological concepts such as cells, ion channels and networks in
a declarative format, while the corresponding mathematical and
structural definitions of these elements can be defined in LEMS.
The libraries described here, libNeuroML and PyLEMS, together
provide a flexible toolkit for utilizing and extending the NeuroML
language with Python. They complement the declarative model
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specification benefits of the XML forms of these languages by
offering APIs which can be used for procedural model devel-
opment. While the libNeuroML API provides a Python object
model which has a type interface defined by the NeuroML
Schema, it also offers a memory-efficient array-based internal

representation for morphological neuron reconstructions and
allows export of NeuroML models into different formats. lib-
NeuroML also provides a range of helper methods that provide
several common operations required when interacting with mod-
els expressed in NeuroML. In the same way that libNeuroML

FIGURE 7 | Example of creation of a network of integrate-and-fire

neurons using libNeuroML (right) and the equivalent XML

representation (left). The network consists of two populations of five cells
each. The cell type is a simple integrate-and-fire cell using the NeuroML
element iafCell. A prototype component is created for this setting all of the

parameters, along with a prototype synapse based on expTwoSynapse. A
projection is created between the two populations and for each cell in the
presynaptic population, an input current is applied, and connections are made
to the postsynaptic cells with probability 0.3. The XML on the left is an
example of one network instance which can be generated from this script.
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List 1 | Example of loading a NeuroML multicompartmental cell

morphology with libNeuroML and using helper functions to calculate

some of the properties (area and volume) of the cell. Methods to
calculate area and volume have been inserted into the code generated from
the NeuroML Schema.

Figure 8 | Use of NeuroML and libNeuroML in the OpenWorm project.

(A) The full set of 302 neurons in the OpenWorm model are available in
NeuroML format and are visualized here. Each cell, together with its
spherical soma, is a different uniform color. Connections between neurons
are shown as straight lines varying in color from presynaptic point (green)
to postsynaptic point (red). These connections were generated by a Python
script using libNeuroML based on connectivity data for pairs of cells. The
long straight connections from cells in the midpoint of the worm to the
head indicate an error in the connections in the data. (B) Same network as
(A), but only the somas of the cells, along with the synaptic connections
are shown. The majority of connections are a short length due to the
overlap between the neurites of the presynaptic and postsynaptic cells.

provides access via Python to NeuroML, access to the LEMS lan-
guage is provided by PyLEMS. While Python interfaces exist for
many neuronal simulators, giving access to their native object
model (e.g., NEURON Carnevale and Hines, 2006) or allowing

new neuron models to be specified (e.g., Brian Goodman and
Brette, 2008), this is the first effort at a comprehensive Python
suite allowing standards based specification of neuronal model
elements from ion channels and synapses to complex networks of
cells in 3D, accompanied by programmatic access to underlying
model definitions.

Another advantage of these Python APIs is that they provide
a way to add functionality that is not provided in the declara-
tive representation. In particular, the current version of NeuroML
focuses on the expression of individual, instantiated networks
and is less useful for expressing the many probabilistic rules
which could be used for network creation. This can be over-
come by implementing the network creation process in Python
and instantiating the resulting model through the API. Greater
support for declarative network templates, including network
connectivity rules, is under development for NeuroML 2, but the
language is unlikely to match the full flexibility available through
a programmatic interface.

INTERACTION WITH PyNN AND OTHER INITIATIVES
A complementary initiative to create a Python API for simulator-
independent model specification is PyNN. This API has tradi-
tionally concentrated on allowing scripts for large-scale network
models with point neurons to be written once and used across
multiple simulators with Python interfaces which support these
types of model, such as NEST (Gewaltig and Diesmann, 2007),
NEURON (Hines and Carnevale, 1997; Carnevale and Hines,
2006; Hines et al., 2009) and Brian (Goodman and Brette, 2008).
While the focus of NeuroML v1.x was on multicompartmen-
tal, conductance-based cell models, the wider scope of NeuroML
v2 has led to increased overlap with PyNN. There are LEMS
definitions for the dynamical behavior of the standard PyNN
neuron models and corresponding NeuroML elements for these
(e.g., IF_cond_alpha and EIF_cond_exp_isfa_ista in Figure 4),
and there is an experimental implementation which allows PyNN
scripts to export a full model description in NeuroML v2 for-
mat. For example, whereas from pynn import nest at the
start of a PyNN script indicates that the model should be exe-
cuted in NEST, from pynn import neuroml2 indicates
that the script should save a declarative description of the model
in NeuroML. In addition, code generation to allow all cell/synapse
types in NeuroML to be used in PyNN scripts is under active
investigation.

NineML (Raikov et al., 2011) is a language for describing
new models of spiking neurons in a machine-readable format,
which has been developed in parallel to LEMS. NineML shares
a number of features with LEMS, allowing new models of spik-
ing neurons to be specified (in the Abstraction Layer). However,
a key advantage of LEMS is the close interaction with NeuroML
2, allowing modellers to choose to use either of the languages
independently, or to make use of the curated sets of LEMS defini-
tions of standard model types available for NeuroML 2. Creating
hierarchical models is also difficult in NineML, but is a key
feature of LEMS, required for specifying complex conductance
based cell models and ion channels. SpineML (Richmond et al.,
2013) is a language that has recently been derived from NineML
and shares many of its design choices. LEMS to NineML and
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Figure 9 | The Hindmarsh and Rose spiking neuron model. A LEMS
ComponentType for this model is built adding the three state variables
(x, y, z) and the eight fixed parameters required for instances of the
model. Time derivatives for the state variables are specified using
derived variables to shorten the required expressions. One Component

with a particular set of parameters is created. This Python script
produces valid LEMS XML which can be used by any LEMS-compliant
simulator to simulate the model. The inset shows the behavior of the
state variable x (corresponding to the model neuron’s membrane
potential) when the model is executed in PyLEMS.

SpineML conversion is a feature of the Java based jNeuroML
tool (see below), which will assist interoperability between these
languages.

libNeuroML AS AN OBJECT-MODEL FOR THIRD-PARTY APPLICATIONS
One potential use of libNeuroML is to provide an object model
for third-party applications such as visualization, modeling, and
simulation libraries. This is the route taken by the in-development
Pyramidal project (http://pyramidal.readthedocs.org), which
seeks to create an API for running multicompartmental simu-
lations across different simulators. In contrast to libNeuroML,
which loads the model elements into an internal object tree
for manipulation, Pyramidal interacts with the underlying sim-
ulator to store the model in that application’s native format.
The advantages are that the modeler only deals with model ele-
ments defined in NeuroML and interacts with them through
libNeuroML, while the simulator uses its own efficient, internal

representation, and scripts developed in this way are portable
across simulators.

This approach of using libNeuroML as a library could be used
for other applications which only use a subset of the elements
of NeuroML, such as an application for visualizing or editing
neuronal morphologies or an application for analyzing channel
kinetics.

JAVA LIBRARIES FOR NeuroML AND LEMS
In addition to the Python APIs described here for working with
NeuroML and LEMS, there are corresponding libraries in the Java
language for reading, editing, writing, and validating NeuroML
(https://github.com/NeuroML/org.neuroml.model) and LEMS
(https://github.com/LEMS/jLEMS) documents. jLEMS is a more
mature package than PyLEMS and is the reference simula-
tor implementation of the LEMS language. These libraries
are complemented by other Java packages for importing and
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exporting multiple formats such as SBML, NEURON, and Brian
into LEMS using code generation. A tool jNeuroML (https://
github.com/NeuroML/jNeuroML) exists which bundles the func-
tionality of these Java packages, allowing easy access to these
features from command line. Options for allowing some of these
code generation features to be accessible from Python are under
investigation.

FUTURE WORK
Benchmarks indicate that HDF5 is a potentially powerful tool
for improving the performance of libNeuroML read/write oper-
ations; however, currently, HDF5 can be used to serialize only
a limited subset of components defined in NeuroML (recon-
structed morphologies). A future avenue of research is the exten-
sion of libNeuroML HDF5 serialization to support full NeuroML
documents. Additionally, none of the helper functions provided
by libNeuroML assist the user with the creation of models of
neural networks; we are planning to include this functionality in
future versions of libNeuroML.

It should be noted that there are some limitations to the ability
of LEMS to describe all models within the scope of NeuroML v2.
Currently LEMS does not permit a fully machine-readable, sim-
ulator independent description of the equations to solve for neu-
rons with more than one segment, i.e., compartmental modeling.
This is planned for future extensions of LEMS.

CONCLUSION
NeuroML and LEMS are key languages which enable cross-
simulator portability of models and increase the accessibility
and transparency of model properties. Python libraries for read-
ing, writing and manipulating models in these languages are an
important step toward encouraging the wider use of these lan-
guages. Making stable versions of these libraries available to the
computational neuroscience community is and will remain a core
part of the release process for NeuroML.
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