
ORIGINAL RESEARCH ARTICLE
published: 05 May 2014

doi: 10.3389/fninf.2014.00045

Variational Bayesian causal connectivity analysis for fMRI
Martin Luessi1,2*, S. Derin Babacan3, Rafael Molina4, James R. Booth5 and Aggelos K. Katsaggelos2

1 Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
2 Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA
3 Google Inc., Mountain View, CA, USA
4 Departamento de Ciencias de la Computación e I.A., Universidad de Granada, Granada, Spain
5 Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA

Edited by:

Jesus M. Cortes, Ikerbasque,
Biocruces Health Research Institute,
Spain

Reviewed by:

Sebastiano Stramaglia, Università
degli Studi di Bari, Italy
Lotfi Chaari, IRIT-ENSEEIHT, France

*Correspondence:

Martin Luessi, Athinoula A. Martinos
Center for Biomedical Imaging,
Harvard Medical School,
Massachusetts General Hospital,
Building 149, Room 2301, 13th
Street, Charlestown, MA 02129,
USA
e-mail: mluessi@
nmr.mgh.harvard.edu

The ability to accurately estimate effective connectivity among brain regions from
neuroimaging data could help answering many open questions in neuroscience. We
propose a method which uses causality to obtain a measure of effective connectivity
from fMRI data. The method uses a vector autoregressive model for the latent variables
describing neuronal activity in combination with a linear observation model based on a
convolution with a hemodynamic response function. Due to the employed modeling, it is
possible to efficiently estimate all latent variables of the model using a variational Bayesian
inference algorithm. The computational efficiency of the method enables us to apply it to
large scale problems with high sampling rates and several hundred regions of interest. We
use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate
the performance of our method under various conditions.
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1. INTRODUCTION
Traditionally, functional neuroimaging has been used to obtain
spatial maps of brain activation, e.g., using functional magnetic
resonance imaging (fMRI) or positron emission tomography
(PET), or to study the spatio-temporal progression of activity
using magneto- or electroencephalography (M/EEG). Due to the
increasing availability of MRI scanners to researchers and due
to their high spatial resolution, the question of how fMRI can
be used to obtain measures of effective connectivity, describing
directed influence and causality in brain networks (Friston, 1994),
has recently received significant attention.

An idea that forms the basis of several methods is that causal-
ity can be used to infer effective connectivity, i.e., if activity in
one region can be used to accurately predict future activity in
another region, it is likely that a directed connection between
the regions exists. An exhaustive review of causality based meth-
ods for fMRI is beyond the scope of this work; we only provide
a short introduction and refer to Roebroeck et al. (2011) for a
recent review of related methods. Effective connectivity methods
for fMRI can be divided into two groups. Methods in the first
group are referred to as dynamic causal modeling (DCM) methods
(Friston et al., 2003). In DCM, the relationship between neu-
ronal activity in different regions of interest (ROIs) is described
by bilinear ordinary differential equations (ODEs) and the fMRI
observation process is modeled by a biophysical model based on
the Balloon model (Buxton et al., 1998, 2004). While provid-
ing an accurate model of the hemodynamic process underlying
fMRI, the non-linearity of the observation model poses difficul-
ties when estimating the latent variables describing the neuronal
activity from the fMRI observations. Due to this, DCM is typically
used for small numbers of ROIs (less than 10) and DCM methods

typically are confirmatory approaches, i.e., the user provides a
number of different candidate models describing the connectivity,
which are then ranked based on an approximation to the model
evidence.

The second class of methods attempts to estimate effective con-
nectivity between ROIs from causal interactions that exist in the
observed fMRI time series. In the widely used Wiener–Granger
causality (WGC) measure (Wiener, 1956; Granger, 1969) (refer
to Bressler and Seth, 2010 for a recent review of related meth-
ods), a linear prediction model is employed to predict the future
of one time series using either only its past or its past and the
past of the time series from a different ROI. If the latter leads
to a significantly lower prediction error, the other time series is
considered to exert a causal influence on the time series being
evaluated, which is indicative of directed connectivity between
the underlying ROIs. Related methods estimate the causal con-
nectivity between all time series simultaneously by employing a
vector autoregressive (VAR) model. The magnitudes of the esti-
mated VAR coefficients are considered a measure of connectivity
between regions. In Valdés-Sosa et al. (2005), a first order VAR
model is employed and the connectivity graph is assumed to be
sparse, i.e., only few regions are connected. The sparsity assump-
tion is formalized by using �1-norm regularization of the VAR
coefficients. It has been shown in Haufe et al. (2008) that the
use of higher order VAR models in combination with �1�2-norm
(group-lasso) (Yuan and Lin, 2006; Meier et al., 2008) regulariza-
tion of the VAR coefficients across lags leads to a more accurate
estimation of the connectivity structure.

There are two main concerns when estimating effective con-
nectivity from causal relations in the observed fMRI time series.
First, the processing times at the neuronal level are in the order of
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milliseconds, which is several orders of magnitude shorter than
the sampling interval (time to repeat, TR) of the MRI scanner.
Second, fMRI measures neuronal activity indirectly through the
so-called blood oxygen level dependent (BOLD) contrast (Ogawa
et al., 1990; Frahm et al., 1992), which depends on slow hemo-
dynamic processes. The observation process can be modeled as
a convolution of the time series describing the neuronal activ-
ity with a hemodynamic response function (HRF). As there is
variability in the shape of the HRF among brain regions and indi-
viduals (Handwerker et al., 2004) and the sampling rate of the
MRI scanner is low, detecting effective connectivity from causal
interactions that exist in the observed fMRI data is a challeng-
ing problem. There has recently been some controversy if this is
indeed the case. In David et al. (2008), a study using simulta-
neous fMRI, EEG, and intra-cerebral EEG recordings from rats
was performed and it was found that the performance of WGC
for fMRI is indeed poor, unless the fMRI time series of each
region is first deconvolved with the measured HRF of the same
region. Using simulations with synthetic fMRI data generated
using the biophysical model underlying DCM, it was also found
in Smith et al. (2011) that WGC methods perform poorly relative
to the other evaluated connectivity methods. On the other hand,
another recent study (Deshpande et al., 2010) found that WGC
methods provide a high accuracy for the detection of causal inter-
actions at the neuronal level with interaction lengths of hundreds
of milliseconds, i.e., much shorter than the TR of the MRI scan-
ner, even when HRF variations are present. The minor influence
of HRF variations may be explained by the property that typical
HRF variations do not simply correspond to temporal shifts of an
HRF with the same shape, which would change the causality of
interactions present in the fMRI data. Instead, as pointed out in
Deshpande et al. (2010), the HRF variability among brain regions
is mostly apparent in the shape of the peak of the HRF and the
time-to-peak (Handwerker et al., 2004), which may explain why
causal interactions at the neuronal level can still be present after
convolution with varying HRFs. This is in agreement with recent
results. It has been shown that WGC is invariant to filtering with
invertible filters (Barnett and Seth, 2011) and in Seth et al. (2013)
simulations were performed that confirm that the invariance typi-
cally holds for HRF convolution. However, at the same time it was
found that WGC can be severely confounded when HRF convo-
lution is combined with downsampling and measurement noise
is added to the data.

Several methods have been proposed that account for HRF
variability when analyzing WGC from fMRI data. In David et al.
(2008) a noise-regularized HRF deconvolution was employed.
and in Smith et al. (2010) a switching linear dynamical system
(SLDS) model is proposed to describe the interaction between
latent variables representing the neuronal activity together with
a linear observation model based on a convolution with a
(unknown) HRF for each region. The method employs a Bayesian
formulation and obtains estimates of the latent variables using the
maximum-likelihood approach. In contrast to WGC methods,
the SLDS model can also account for modulatory inputs which
change the effective connectivity of the network and introduce
non-stationarity in the observed fMRI data. The method in Smith
et al. (2010) can be seen as a convergence of DCM methods and

WGC-type methods (Roebroeck et al., 2011). A similar method is
proposed in Ryali et al. (2011), which can be considered a multi-
variate extension of methods which perform deconvolution of the
neuronal activity for a single fMRI time series (Penny et al., 2005;
Makni et al., 2008). Joint estimation of the HRF and detection of
neuronal activity is also an important problem for event-related
fMRI, we refer to Cassidy et al. (2012) and Chaari et al. (2013) for
recently proposed methods addressing this problem.

In this paper, we propose a causal connectivity method for
fMRI which employs a VAR model of arbitrary order for the time
series of neuronal activity in combination with a linear hemody-
namic convolution model for the fMRI observation process. We
use a Bayesian formulation of the problem and draw inference
based on an approximation to the posterior distribution which
we obtain using the variational Bayesian (VB) method (Jordan
et al., 1999; Attias, 2000). In contrast to previous methods (Smith
et al., 2010; Ryali et al., 2011), our method is designed to be com-
putationally efficient, enabling application to large scale problems
with large numbers of regions and high temporal sampling rates.
Computational efficiency is achieved by the introduction of an
approximation to the neuronal time series in the Bayesian mod-
eling. When drawing inference, introducing this approximation
has the effect that the hemodynamic deconvolution can be sep-
arated from the estimation of the neuronal time series, leading
to a reduction of the state-space dimension of the variational
Kalman smoother (Beal and Ghahramani, 2001; Ghahramani
and Beal, 2001), which forms a part of the VB inference algo-
rithm. The lower state-space dimension drastically reduces the
processing and memory requirements. Another key difference to
previous Bayesian methods is that we assume that the VAR coef-
ficient matrices are sparse and that the coefficient matrices at
different lags have non-zero entries at mostly the same locations,
i.e., the matrices have similar sparsity profiles. In Haufe et al.
(2008) this assumption is formalized using an �1�2-norm regu-
larization term for the VAR coefficient matrices. In our work, we
employ Gaussian priors with shared precision hyperparameters
for the VAR coefficient matrices, which is a Bayesian alternative
to �1�2-norm regularization and results in a higher estimation
performance of the method.

Our results show that the proposed method offers a higher
detection performance than WGC when the number of nodes is
large or when the SNR is low. In addition, our method is less
affected when the VAR model order assumed in the method is
higher than the order present in the data. We also perform simu-
lations using a modified version of our method, which is similar
to the method in Ryali et al. (2011), and show that the approx-
imation to the neuronal time series used in our method has a
negligible effect on the estimation performance while allowing
the application of the proposed method to large problems with
hundreds of ROIs. We perform an extensive series of simulations
where we vary both the downsampling ratio and the neuronal
delay. The results show that the proposed method offers some
benefits over WGC, especially in low SNR situations and when
HRF variations are present. However, both the proposed method
and WGC can at times detect a causal influence with the oppo-
site direction of the true influence, which is a known problem for
WGC methods (David et al., 2008; Deshpande et al., 2010; Seth
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et al., 2013). Finally, we apply the proposed method to resting-
state fMRI data from the Human Connectome Project (Van Essen
et al., 2012), where it successfully detects connections between
regions that belong to known resting-state networks.

This paper is outlined as follows. First, we introduce a hierar-
chical Bayesian formulation for the generative model underlying
the fMRI connectivity estimation problem. Next, we present the
Bayesian inference scheme which estimates the latent variables of
the model using a variational approximation to the posterior dis-
tribution. We then perform extensive simulations with synthetic
fMRI data. Finally, we apply the method to real fMRI data and
conclude the paper.

1.1. NOTATION
We use the following notation throughout this work: Matrices
are denoted by uppercase bold letters, e.g., A, while vectors are
denoted by lowercase bold letters, e.g., a. The element at the i-th
row and j-th column of matrix A is denoted by aij, while ai· and a·j
denote column vectors with the elements from the i-th row and
the j-th column of A, respectively. The operator diag (A) extracts
the main diagonal of A as a column vector, whereas Diag (a) is
a diagonal matrix with a as its diagonal. The operator vec (A)

vectorizes A by stacking its columns, tr (A) denotes the trace of
matrix A, and ⊗ denotes the Kronecker product. The identity
matrix of size N × N is denoted by IN . Similarly, 0N and 0N×M

denote N × N and N × M all-zero matrices, respectively.

2. BAYESIAN MODELING
The goal of this work is to infer effective connectivity implied by
the causal relations between N time series of neuronal activity
from N different regions in the brain. To this end, we employ a
vector autoregressive (VAR) model of order P to model the time
series as follows

s (t) =
P∑

p = 1

A(p)s
(
t − p

) + η (t) , (1)

where s (t) ∈ R
N denotes the neuronal activity of all regions at

time t, A(p) ∈ R
N×N is a matrix with VAR coefficients for lag p,

and η (t) ∼ N (
0, �−1

)
denotes the innovation. In this model,

the activity at any time point is predicted from the activity at P
previous time points. More specifically, the activity of the i-th
time series at time t, denoted by si (t), is predicted from the past

of the j-th time series using the coefficients {a(p)
ij }P

p = 1. Hence, if
any of these coefficients is significantly larger than zero, we can
conclude that the j-th time series exerts a causal influence on the
i-th time series, implying connectivity between the regions. This
is the idea underlying Wiener–Granger causality (Wiener, 1956;
Granger, 1969) and related methods using vector autoregressive
models (Valdés-Sosa et al., 2005; Haufe et al., 2008).

We can now introduce an embedding process (Weigend and
Gershenfeld, 1994; Penny et al., 2005) x (t) defined by

x (t) =
[

s (t)T s (t − 1)T . . . s (t − P + 1)T
]T

, (2)

which allows us to express (Equation (1)) by a first order VAR
model as follows

x (t) = Ãx (t − 1) + η̃ (t) , (3)

where Ã ∈ R
PN×PN is given by

Ã =

⎡⎢⎢⎢⎢⎢⎢⎣
A(1) A(2) · · · A(P−1) A(P)

IN 0N · · · 0N 0N

0N IN · · · 0N 0N
...

...
. . .

...
...

0N 0N · · · IN 0N

⎤⎥⎥⎥⎥⎥⎥⎦ . (4)

The innovation η̃ (t) is Gaussian η̃ (t) ∼ N (0, Q), where the
covariance matrix Q is all zero, except for the first N rows and
columns, which are given by �−1. For the remainder of this paper,
we present the modeling and inference with respect to the time
series x (t). If access to the neuronal time series s (t) is required,
it can easily be extracted from x (t) (it simply corresponds to the
first N elements of x (t)).

2.1. OBSERVATION MODEL
Before introducing the observation model, note that we can
obtain a noisy version of the neuronal time series from the
embedding process x (t) as follows

z (t) = Bx (t) + κ (t) , (5)

where B = [
IN 0N×(P − 1)N

]
and κ (t) ∼ N (

0, ϑ−1I
)
, where ϑ

is the precision parameter. Clearly, by using very large values
for ϑ , the time series z (t) approaches s (t). The introduction of
this Gaussian approximation to the neuronal time series greatly
improves the computational efficiency of the proposed method,
as it separates the VAR model for the neuronal time series from
the hemodynamic observation model. This separation leads to a
reduction of the state-space dimension of the Kalman smooth-
ing algorithm, which forms part of the inference procedure,
and therefore to greatly reduced memory requirements. In addi-
tion, using the approximation allows us to perform parts of the
estimation in the frequency domain, which is computationally
advantageous due to the efficiency of the fast Fourier transform.
The computational advantages of the proposed method will be
discussed in detail in the next section.

To model the fMRI observation process, we follow the stan-
dard assumption underlying the general linear model (Friston
et al., 1995), and express the fMRI observation of the i-th region
as follows

yi (t) = hi (t) ∗ zi (t) + εi (t)

=
L∑

k = 1

hi (k) zi (t − k + 1) + εi (t) , (6)

where ∗ denotes the convolution operation, hi (t) is the hemody-
namic response function (HRF) of length L for the i-th region,
and εi (t) denotes observation noise. Notice that we can arrange
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the HRF hi (t) into a T × T convolution matrix Hi, which allows
us to write (Equation (6)) as

yi = Hizi + εi, (7)

where the T × 1 vectors yi, zi, and εi are the fMRI observation,
the approximation to the neuronal signal, and the observation
noise, for the i-th region, respectively.

2.2. VAR COEFFICIENT PRIOR MODEL
We proceed by defining priors for the VAR coefficient matrices{

A(p)
}P

p = 1. For a network consisting of a large number of regions,

it can generally be assumed that the connectivity is sparse, i.e.,
the VAR coefficient matrices contain a small number of non-zero
coefficients. In the context of inferring causal connectivity, this
idea has been used in Valdés-Sosa et al. (2005), where a first order
VAR model with �1-norm regularization for the VAR coefficients
is used to obtain a sparse solution. For higher order VAR models,

it is intuitive to assume that if the VAR coefficient a
(p1)
ij modeling

the connectivity from region j to region i and lag p1 is non-zero,
it is likely that also other VAR coefficients for the same con-

nection but different lags, i.e., a
(p2)
ij , p2 �= p1, are also non-zero.

Together with the sparsity assumption, this leads to VAR coef-
ficient matrices with similar sparsity profiles, i.e., the coefficient
matrices at different time lags have non-zero entries at mostly the
same locations. In Haufe et al. (2008) this idea is formalized by
using �1�2-norm (group lasso) (Yuan and Lin, 2006; Meier et al.,
2008) regularization for the VAR coefficients across different lags,
resulting in an improved estimation performance in comparison
to methods that use alternative forms of regularization, such as,
�1-norm or ridge regression.

We incorporate the group sparsity assumption using Gaussian
priors with shared precision hyperparameters across different
lags. More specifically, we use

p
(

A(p)|�
)

=
N∏

i = 1

N∏
j = 1

N
(

a
(p)
ij | 0, γ −1

ij

)
p ∈ {1, . . . , P}, (8)

with Jeffreys hyperpriors to the precision hyperparameters

p (�) ∝
N∏

i = 1

N∏
j = 1

(
γij

)−1
. (9)

During estimation, most of the precision hyperparameters in
� will assume very large values, hence effectively forcing the
corresponding VAR coefficients to zero. This formulation is an
adaptation of sparse Bayesian learning (also known as automatic
relevance determination, ARD) (Tipping, 2001) to the problem
of VAR coefficient estimation and can be considered a Bayesian
alternative to a deterministic �1�2-norm regularization term.
Formulations where shared precision hyperparameters are used
to enforce group sparsity have recently been proposed for applica-
tions such as simultaneous sparse approximation (Wipf and Rao,
2007), where shared precision parameters are used to obtain solu-
tions with similar sparsity profiles across multiple time points.

Recently, shared hyperparameters were used to model the low-
rank structure of the latent matrix in matrix estimation (Babacan
et al., 2012).

2.3. INNOVATION AND NOISE PRIOR MODELS
To complete the description of the Bayesian model, we define
priors for the innovation process and the observation noise in
Equations (1) and (6), respectively. We assume that the inno-
vations are independent and identically distributed (i.i.d.) zero-
mean Gaussian for each time point, i.e., η (t) ∼ N (

0, �−1
)

and
ε (t) ∼ N (0, R). It has to be expected that the linear predic-
tion model used in the proposed method cannot fully explain the
relationship between the neuronal time series in different ROIs.
Hence, the precision matrix � can contain some non-zero off-
diagonal elements. We model this using a Wishart prior for the
precision matrix

p (�) = W (�|ν0, W0) , (10)

where ν0 and W0 are deterministic parameters. By using a diag-
onal matrix for W0, we obtain a prior modeling that encourages
� to be diagonal, which is the structure usually assumed in VAR
models. Another reason for chosing this prior modeling is that
the Wishart distribution is the conjugate prior for the preci-
sion matrix of the Gaussian distribution, which simplifies the
inference procedure.

For the observation noise, we assume that the noise in differ-
ent regions is uncorrelated and use diagonal covariance matrices
given by R = Diag (β)−1, where β is a precision hyperparameter
vector of length N. We use conjugate gamma hyperpriors for the
precisions as follows

p (β) =
N∏

i = 1

�
(
βi|a0

β, b0
β

)
, (11)

where the gamma distribution with shape parameter a and
inverse scale parameter b is given by

� (ξ |a, b) = ba

� (a)
ξ a − 1 exp (−bξ) . (12)

We usually have some information about the fMRI observation
noise and can use this knowledge to set the parameters a0

β and b0
β .

The setting of the deterministic parameters will be discussed in
more detail in the next section.

2.4. GLOBAL MODELING
By combining the probability distribution describing the VAR
model, the fMRI observation model, and the prior model, we
obtain a joint distribution over all latent variables and known
quantities as

p
(

, {y(t)}T

t = 1

)
=

(
N∏

i = 1

p
(

yi|zi, Hi, βi
))(

T∏
t = 1

p (z(t)|x(t), ϑ)

)

×
(

T∏
t = 1

p
(

x(t)|x(t − 1) , {A(p)}P
p = 1, �

))
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FIGURE 1 | Graphical model visualizing the dependencies of the joint

distribution over the latent variables and the fMRI observations. Nodes
representing latent variables are depicted with white backgrounds while
nodes with known quantities have gray backgrounds. Rectangular plates
indicate the repetition of nodes.

×
⎛⎝ P∏

p = 1

p
(

A(p)|�
)⎞⎠ p (�) p (�) p (β) , (13)

where 
 contains all the latent variables of the model, i.e.,


 =
{
{x(t)}T

t = 1, {z(t)}T
t = 1, {A(p)}P

p = 1, �, �, β
}

. (14)

The dependencies of the joint distribution can be visualized as a
directed acyclic graphical model, which is depicted in Figure 1.
From the graphical model it can be seen that the node of approxi-
mate neuronal time series z(t) is inserted between the nodes of the
neuronal time series x(t) and the observation y(t). As will be dis-
cussed in the next section, this additional node leads to important
computational advantages, as it allows us to separate the hemo-
dynamic deconvolution (estimation of z(t)) from the estimation
of the estimation of the neuronal time series z(t) and the VAR
modeling parameters.

3. BAYESIAN INFERENCE
We draw inference based on the posterior distribution

p
(

|{y(t)}T

t = 1

)
= p

(

, {y(t)}T

t = 1

)
p

({y(t)}T
t = 1

) . (15)

However, as with many probabilistic models, calculating
p

({y(t)}T
t = 1

)
and hence calculating the posterior distribution

is analytically intractable. Therefore, we approximate the pos-
terior distribution by a simpler distribution using the varia-
tional Bayesian (VB) method with the mean field approximation
(Jordan et al., 1999; Attias, 2000). For the problem at hand we
approximate the posterior by a distribution which factorizes over
the latent variables as follows

q (
) = q
(
{x(t)}T

t = 1

)
q
(
{z(t)}T

t = 1

)
q
(
{A(p)}P

p = 1

)
q (�, �, β) .

(16)

Using the structure of the graphical model and the property of d-
separation, it is found the there are several induced factorizations
when assuming the factorization given by Equation (16) (refer
to Bishop, 2006 for detailed explanations). We can include the
induced factorizations to further factorize to posterior as follows1

q (
) = q
(
{x(t)}T

t = 1

)(
N∏

i = 1

q
(
{zi(t)}T

t = 1

))
q
(
{A(p)}P

p = 1

)

×
(

N∏
i = 1

N∏
k = 1

q (γik)

)
q (�)

(
N∏

i = 1

q (βi)

)
. (17)

The key ingredient of this VB method is that we only assume
a specific factorization of the posterior but make no assump-
tions about the functional form of the distributions. Instead, we
find the form of each distribution by performing a variational
minimization of the Kullback–Leibler (KL) divergence between
the approximation and the true posterior. The KL divergence is
given by

CKL

(
q (
) ‖p

(

|{y(t)}T

t = 1

))
=∫

q (
) log

(
q (
)

p
(

|{y(t)}T

t = 1

))
d
 (18)

which is a non-negative measure that is only equal to zero if
q (
) = p

(

|{y(t)}T

t = 1

)
. A standard result from VB analysis

(Bishop, 2006) is that if we express [Equation (17)] as q (
) =∏
i q (�i), i.e., we use q (�i) to denote the individual factors

in [Equation (17)], the distribution for the i-th factor which
minimizes [Equation (18)] is given by

ln q (�i) =
〈
ln p

(

, {y(t)}T

t = 1

)〉
q(
\�i)

+ const, (19)

where 〈·〉q(
\�i) denotes the expectation with respect to distribu-
tions q (·) all latent variables except �i. Using this, we obtain a
distribution for each factor. The VB inference algorithm sequen-
tially updates the sufficient statistics of each distribution until

1Note that the only factorization we assume is the one in Equation (16); the
induced factorizations appear in the derivation of the approximate posterior
distribution and we can include them at this point to simplify the derivations.
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convergence. Below we show the functional form of the varia-
tional posterior distribution for each latent variable. Due to space
constraints, the derivations are not shown here and we refer to
Luessi (2011) for more details.

Using Equation (19), the distribution for the neuronal time
series q

({x(t)}T
t = 1

)
is obtained from

ln q
(
{x(t)}T

t = 1

)
=

〈
ln

T∏
t = 1

p
(

x(t)|x(t − 1) , {A(p)}P
p = 1, �

)
×p (z(t)|x(t),ϑ)

〉
q
(
{z(t)}T

t = 1

)
q
(
{A(p)}P

p = 1

)
q(�,�,β)

+ const,

(20)

where all terms not depending on {x(t)}T
t = 1 have been absorbed

into the additive normalization constant. Due to the conjugacy of
the priors, q

({x(t)}T
t = 1

)
is a multivariate Gaussian distribution

with dimension TPN. However, this distribution has a compli-
cated form and cannot be further factorized, which makes a direct
calculation of the sufficient statistics computationally infeasible.
Note that this complication is not due to the introduction of z(t);
it is also present in methods which do not employ the approx-
imate time series z(t). Fortunately, Equation (20) has a similar
form as an equation encountered in the variational Kalman
smoothing algorithm (Beal and Ghahramani, 2001; Ghahramani
and Beal, 2001), with the only difference that instead of using the
observations we use the expectation of z(t) under q

({z(t)}T
t = 1

)
.

The variational Kalman smoothing algorithm recursively esti-
mates q (x(t)) = N (

x(t)|μt, 
t
)

using a forward and a backward
recursion. It is important to point out that we do not introduce
an additional factorization of q

({x(t)}T
t = 1

)
over time points, as

for example done in Makni et al. (2008), which has been shown
to result in an inaccurate approximation to the posterior distri-
bution for large T (Wang and Titterington, 2004). Instead, the
variational Kalman smoothing algorithm provides an efficient
way for estimating q

({x(t)}T
t = 1

)
without assuming a factorization

over time points.
In our implementation we ignore the contribution from the

covariances in the quadratic terms of {A(p)}P
p = 1, i.e., we assume〈(

A(p)
)T (

A(p)
)〉 = 〈

A(p)
〉T 〈

A(p)
〉
. This assumption is also made in

Ryali et al. (2011) and can be expected to have only a minor
influence on the performance of the proposed method. The main
reason for using this approximation is that we do not need

to calculate and store the covariance matrix of q
(
{A(p)}P

p = 1

)
,

which greatly reduces the computational requirements of the
method. Another effect of using this approximation is that the
recursive inference algorithm becomes similar to the standard
Kalman smoothing algorithm, also known as the Rauch-Tung-
Striebel smoother (Rauch et al., 1965). For the forward pass,
we use the initial conditions μ0

0 = 0, 
0
0 = I and calculate for

t = 1, 2, . . . , T the following

μt−1
t = 〈̃

A
〉
μt − 1

t − 1 (21)


t − 1
t = 〈̃

A
〉

t − 1

t − 1

〈̃
A
〉T + 〈Q〉 (22)

μt
t = μt − 1

t + Kt
(〈z (t)〉 − Bμt − 1

t

)
(23)


t
t = 
t − 1

t − KtB
t − 1
t , (24)

where the Kalman gain is given by

Kt = 
t − 1
t BT

(
B
t − 1

t BT + ϑ−1IN

)−1
. (25)

After the forward pass, the final estimate for the last time point
has been obtained, i.e., we have μT = μT

T and 
T = 
T
T . For the

remaining time points we execute a backward pass and calcu-
late the sufficient statistics of q (x(t)) for t = t − 1, t − 2, . . . , 1
as follows

μt = μt
t + Jt

(
μt + 1 − 〈̃

A
〉
μt

t

)
, (26)


t = 
t
t + Jt

(

t

t − 
t
t + 1

)
JT

t , (27)

where

Jt = 
t
t

〈̃
A
〉T (


t
t+1

)−1
. (28)

As the posterior distributions of individual time points are
not independent, i.e., q

({x(t)}T
t = 1

) �= ∏T
t = 1 q (x(t)), cross-

time expectations contain a cross-time covariance 
t,t − 1, i.e.,〈
x(t)x(t − 1)T

〉 = μtμ
T
t − 1 + 
t,t − 1. Such cross-time covariance

terms are computed as follows (see Ghahramani and Hinton,
1996)


t,t − 1 = 
tJT
t − 1 + Jt

(

t + 1,t − 〈̃

A
〉

t

t

)
JT

t − 1. (29)

The posterior distribution of the approximate time series for the
i-th region q

({zi(t)}T
t = 1

)
is found to be a Gaussian, that is,

q
(
{zi(t)}T

t = 1

)
= N

(
zi| 〈zi〉 , 
i

z

)
, (30)

with parameters

〈zi〉 = 
i
z

(
〈βi〉 HT

i yi + ϑ 〈xi〉
)

, (31)


z
i =

(
〈βi〉 HT

i Hi + ϑIT

)−1
. (32)

The distribution for the VAR coefficients a =
vec

([
A(1) A(2) · · · A(P)

])
is also Gaussian, the mean and

covariance matrix are given by

〈a〉 = 
avec

(
〈�〉

[
T∑

t = 1

(
μt

)
1:N μT

t − 1 + (

t,t − 1

)
1:N,:

])
(33)


−1
a = P1 ⊗ 〈�〉 + Diag (IP ⊗ vec (〈�〉)) , (34)

where the matrix P1 is given by

P1 =
T∑

t = 1

〈
x(t − 1)x(t − 1)T

〉
=

T∑
t = 1

μt − 1μ
T
t − 1 + 
t − 1.(35)
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Notice that the size of 
−1
a is N2P × N2P. Hence, for large N

performing a direct inversion is computationally very demand-
ing and potentially numerically inaccurate. Moreover, storing the
matrix requires large amounts of memory. Instead of directly
inverting the matrix, we use a conjugate gradient (CG) algorithm
to solve


−1
a 〈a〉 = vec

(
〈�〉

[
T∑

t = 1

(
μt

)
1:N μT

t − 1 + (

t,t − 1

)
1:N,:

])
,(36)

for 〈a〉, which is possible since 
−1
a is symmetric positive definite.

The CG algorithm only needs to compute matrix-vector products
of the form 
−1

a p. From the structure of 
−1
a , one can see that the

multiplication of the diagonal matrix on the right side is simply
the element-wise product of the diagonal of Diag (IP ⊗ vec (〈�〉))
and p, which can be computed efficiently. Similarly, (P1 ⊗ 〈�〉) p
can be computed efficiently without computing the Kronecker
product (Fernandes et al., 1998).

Note that computation of the gamma hyperparameters
requires access to the diagonal elements of 
a. Since we do
not explicitly compute 
a, we approximate the diagonal by

Diag (
a) ≈ Diag
(
diag

(

−1

a

))−1
. We performed experiments

with small N where we calculated 
a directly using a matrix
inversion. We found that using the CG algorithm with an approxi-
mation to the diagonal of the covariance matrix results in virtually
the same estimation performance for the proposed method, while
being much faster and more memory efficient.

The posterior for the noise precision � is Wishart distributed
with q (�) = W (�|ν, W) where the parameters are given by

ν = T + ν0, (37)

W−1 = 〈P2〉 + W−1
0 . (38)

The expectation 〈P2〉 is given by

〈P2〉 =
T∑

t = 1

((
μt

)
1:N − 〈

A
〉
μt − 1

) ((
μt

)
1:N − 〈

A
〉
μt − 1

)T

− (

t,t − 1

)
1:N, :

〈
A
〉 − 〈

A
〉T (


t,t − 1
)T

1:N, :

+ (
t)1:N,1:N + 〈
A
〉

t − 1

〈
A
〉T

, (39)

where A = [
A(1) A(2) · · · A(P)

]
, (
t)1:N,1:N is the top left N × N

block of 
t , and
(

t,t − 1

)
1:N, : are the first N rows of 
t,t − 1.

The mean of the Wishart distribution is given by 〈�〉 = νW,
which is the value used in the other distribution updates in the
VB algorithm.

The distribution for the VAR precision hyperparameter q
(
γij

)
is found to be a gamma distribution with shape and inverse scale
parameters

a
i,j
γ = P

2
, b

i,j
γ = 1

2

P∑
p = 1

(〈
a

(p)
ij

〉2 + ā
(p)
ij

)
, (40)

where ā
(p)
ij is the variance of a

(p)
ij , which we obtain from the

approximation to the diagonal of 
a. Similarly, the posterior
for the observation noise precision is a gamma distribution with
the following shape parameter ai

β = T/2 + a0
β and inverse scale

parameter

bi
β = 1

2

[
yT

i yi − 2yT
i Hi 〈zi〉 + 〈zi〉T HT

i Hi 〈zi〉 + tr
(

HT
i Hi


z
i

)]
+ b0

β .

(41)

3.1. SELECTION OF DETERMINISTIC PARAMETERS
The proposed method has several deterministic parameters which
have to be specified by the user, namely, the observation noise
precision parameters {a0

β, b0
β}, the VAR model noise parameters

{ν0, W0}, and the neuronal approximation precision ϑ . Typically,
an estimate of the noise variance σ 2 present in the data is available
to the user. If this case, a reasonable setting of the observa-
tion noise precision parameters is a0

β = c, b0
β = cσ 2, where c is

a constant related to the confidence in our initial noise estimate.
For very small values of c, the observation noise precision will
be estimated solely by the algorithm, while a high value forces
the estimated noise precision to the value specified by the user.
Unless otherwise noted, we assume throughout this work that an
estimate of the noise variance is available and use c = 109.

On the other hand, the user typically does not have precise a
priori knowledge of the AR innovation precision. In this case, one
option is to use ν0 = 0, W−1

0 = 0, which is equivalent to an non-
informative Jeffreys prior for the AR innovation precision matrix.
However, we observed that 〈�〉 can attain values that are too large
when a non-informative prior is used. This behavior is caused by
the fact that the convolution with the HRF acts as a low-pass filter
and it is generally not possible to perfectly recover the high fre-
quency content of the neuronal signal, causing an over-estimation
of the AR innovation precision. We found that using ν0 = 1 and
W0 = 10−3I, prevents 〈�〉 from attaining too large values and
we use this setting in all experiments presented in this work.
Naturally, the parameter setting depends on the scale of the fMRI
observation. Throughout this work, we rescale the fMRI obser-
vation to have an RMS value of 6.0, where the root-mean-square

(RMS) value is calculated as RMS =
√(∑T

t = 1 ‖y (t) ‖2
2

)
/ (NT).

Note that the choice of RMS = 6.0 is arbitrary, i.e., different val-
ues could be used but then other deterministic parameters would
have to be modified accordingly. Finally, the approximation preci-
sion parameter ϑ plays an important role. In Equation (32) it acts
similarly to a regularization parameter while having the role of the
observation noise precision in the variational Kalman smoother.
We heuristically found that using a value that is higher than the
observation noise precision works well and we use ϑ = 10/σ 2

throughout this work.

3.2. COMPUTATIONAL ADVANTAGES OF THE PROPOSED APPROACH
To conclude this section, we highlight some important advan-
tages in terms of computational requirements of the proposed
method over previous approaches. The advantages of the pro-
posed method are directly related to the introduction of the
approximate time series z(t).
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The first advantage is due to the separation of the model of the
neuronal time series from the hemodynamic convolution model,
which leads to a reduced state-space dimension of the Kalman
smoothing algorithm. More specifically, in Smith et al. (2010);
Ryali et al. (2011), the observation process is modeled as

y(t) = H̃x(t) + ε (t) , (42)

where H̃ ∈ RN×NL is a matrix that contains the HRFs of all
regions. This modeling requires that x(t) is an embedding pro-
cess over L time points, i.e., the dimension of x(t) is D = NL, as
opposed to D = NP in our method. The higher dimension leads
to excessive memory requirements as the state-space dimension
of the Kalman smoothing algorithm is increased and a total of
2T covariance and cross-time covariance matrices of size D × D
need to be stored in memory. As an example, assuming double
precision floating point arithmetic and P = 2, L = 20, N = 100,
T = 1000, the methods in Smith et al. (2010) and Ryali et al.
(2011) require approximately 60 GB of memory to store the
covariance matrices, whereas the proposed method only requires
approximately 600 MB. The large memory consumption and the
higher dimension of the required matrix inversions is the rea-
son why previous methods become computationally infeasible for
large scale problems where N ≈ 100 and T ≈ 1000. The problem
is even more severe for low TR values, since the HRF typically
has a length of about 30 s and a higher sampling rate means
more samples are needed to represent the HRF, thus increasing
the value of L.

The second advantage due to introduction of z(t) is that the
approximate posterior of z(t) factorizes over ROIs and we can
update the posterior distribution q

({zi(t)}T
t = 1

)
for each region

separately using Equations (31, 32). For large numbers of time
points this computation can still be expensive as the inversion of
a T × T matrix is required. However, notice that if we assume
that the convolution with hi is circular, the matrix Hi becomes
circulant. Circulant matrices can be diagonalized by the discrete
Fourier transform (see, e.g., Moon and Stirling, 2000). Hence,
it is possible to perform the calculation of 〈zi〉 in the frequency
domain. In our implementation we use a fast Fourier transform
(FFT) algorithm with zero-padding such that the circular con-
volution corresponds to a linear convolution. The resulting time
complexity is O

(
T log T

)
, compared to O

(
T3

)
when a direct

matrix inversion is used. Moreover, notice that 
z
i is circulant as

well, which allows us to reduce the computational and memory
requirements by only calculating and storing the first row of 
z

i
(all other rows can be obtained by circular shifts of the first row).

4. EMPIRICAL EVALUATION WITH SIMULATED DATA
In this section, we evaluate the performance of the proposed
method using a number of different simulation scenarios. In
all simulations, the proposed method is denoted by “VBCCA”
(Variational Bayesian Causal Connectivity Analysis). For compar-
ison purposes we include the conditional WGC analysis method
implemented in the “Granger Causal Connectivity Analysis
(GCCA) toolbox” (Seth, 2010), which we denote by “WGCA”
(Wiener–Granger Causality Analysis). Note that we use WGCA
for comparison as it is a widely used method with publicly

available implementations. More recent methods, such as the
methods from , Smith et al. (2010), Marinazzo et al. (2011) and
Ryali et al. (2011) may offer a higher estimation performance than
WGCA. However, their high computational complexity makes it
difficult to apply them to large-scale problems, which is the situa-
tion where our method clearly outperforms WGCA. Nevertheless,
we include a comparison with a modified version of our method,
which does not use an approximation to the neuronal time series
and is therefore more similar to the method from Ryali et al.
(2011), and show that for small networks our method provides
a comparable estimation performance.

4.1. QUALITY METRICS
We use two objective metrics to evaluate the performance of the
methods. The first metric serves to quantify the performance in
terms of correctly detecting the presence of a connection between
regions, without taking the direction of the causal influence into
account. In order to do so, we calculate the area under the receiver
operating characteristic (ROC) curve, which is commonly used in
signal detection theory and has also previously been used to eval-
uate connectivity methods (Valdés-Sosa et al., 2005; Haufe et al.,
2008). In the following we give a short explanation of the ROC
curve and refer the reader to Fawcett (2006) for a more detailed
introduction. The ROC curve is generated by applying thresholds
to the estimated connectivity scores. The resulting binary masks
are compared with the ground truth, resulting in a number of
true positives (TP) and false positives (FP). From the TP and FP
numbers, we can calculate the true positive rate (TPR) and false
positive rate (FPR) as follows

TPR = TP

P
, FPR = FP

N
, (43)

where P and N are the total number of positives and negatives,
respectively. For each threshold, we obtain a (FPR, TPR) point in
the ROC space. By applying all possible thresholds, we can con-
struct the ROC curve which allows us to compute the area under
the curve (AUC). The AUC is the metric used here to evaluate the
connection detection performance. The value of the AUC is on
the interval [0 1], with 1.0 being perfect detection performance
while 0.5 is the performance of a random detector, i.e., the AUC
should always be above 0.5 and as close as possible to 1.0. To cal-
culate the non-directional connectivity score between nodes i and
j from the estimated N × N connectivity matrix, we use the larger
of the directional scores, i.e., con(i, j) = con(j, i) = max (cij, cji).
For WGCA, the matrix C is the matrix with estimated Granger
causality scores, whereas for the proposed method we calculate C

from the estimated VAR coefficients using cij =
√∑P

p = 1

〈
a

(p)
ij

〉
.

The AUC provides information on the performance in terms
of detecting connections without taking directionality into
account. A second metric, denoted by “d-Accuracy” (Smith et al.,
2011), is used to evaluate the ability of a method to correctly iden-
tify the direction of the connection. The d-Accuracy is calculated
as follows. For true connections (known from the ground truth)
we compare the elements cij and cji in the connectivity matrix. We
decide that the direction was estimated correctly if cij > cji and
the true connection has the direction j → i. By repeating for all
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connections, we calculate the overall probability that the direc-
tion was estimated correctly, which is the d-Accuracy score. Like
the AUC, the d-Accuracy lies between 0 and 1 with 1.0 indicating
perfect performance and 0.5 being the performance of a random
directionality detector.

4.2. NETWORK SIZE AND SNR
In this experiment we evaluate the performance of the pro-
posed method for a number of networks of varying sizes and a
number of different signal-to-noise ratios (SNRs). We generate
neuronal time series according to Equation (1) where we simu-
late connectivity by randomly activating 
N/2� uni-directional
connections, for which we generate the VAR coefficients accord-

ing to a
(p)
ij ∼ N (0, 0.05) ∀ p ∈ {1, . . . , P}, with P = 2. The noise

term is chosen to be Gaussian with unit variance, i.e., η (t) ∼
N (0, IN). Using the VAR coefficient matrices we generate a neu-
ronal time series s (t) with a total of T = 500 time points. To
generate the fMRI observations, we convolve the neuronal time
series of each node with the canonical HRF implemented in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/), which has a positive peak at
5 s and a smaller negative peak at 15.75 s. The HRF used has a
total length of 30 s assuming a sampling rate of 1 Hz (L = 30).
Finally, to generate the noisy fMRI observation y (t), we add zero-
mean, independent, identically distributed (i.i.d.) Gaussian noise
with a variance σ 2 determined by the SNR used, i.e., SNRdB =
10 log10

((∑T
t = 1 ‖y (t) − ȳ (t) ‖2

2

)
/(NTσ 2)

)
, where ȳ (t) is the

observation without additive noise.
The simulated noisy observations are used as inputs to the

evaluated connectivity methods. In this experiment we use
the true VAR order, i.e., P = 2, for each evaluated method.
Additionally, in the proposed method we use the same canonical
HRF that is used to generate the data. Results for networks with

N = {5, 10, 25, 50, 100, 200} nodes and SNRs of 0, 5, and 10 dB
are shown in Figure 2. For small networks (5 and 10 nodes) both
methods offer similar performance with the proposed method
being slightly better. The SNR has a small influence on the per-
formance and it can be concluded that each method performs
similarly across the SNRs shown. As expected, the performance
of both methods decreases with increasing network size. However,
WGCA is affected drastically compared to the proposed method,
which shows almost constant performance across network sizes.
The proposed method clearly outperforms WGCA for large net-
works (more than 25 nodes). For N = 200, the AUC for WGCA
is approximately 0.65, which is very poor. Therefore, for the given
number of time samples, it can be concluded that WGCA is not
suitable for connectivity analysis in large scale networks.

4.3. VAR ORDER
An important question is how the performance is affected by
a mismatch in the VAR order present in the data and the VAR
order assumed in the algorithm. For this evaluation we generate
simulated data using the same procedure as in the first experi-
ment for N = 25 and an SNR of 0 dB, but we vary the VAR order
from 1 to 7. The generated data is used as input to the evaluated
methods for which we vary the VAR order used in the algorithm
in the same range, i.e., from 1 to 7. Results for this simulation
are shown in Figure 3; it can be seen that the proposed method
typically outperforms the WGCA method even if there is a mis-
match between the VAR order in the data and the VAR order
used in the algorithm. It is also interesting to note that the pro-
posed method typically performs well as long as the VAR order
used in the algorithm is equal or higher than that present in the
data. This behavior can be attributed to two factors. First, the pro-
posed method employs a grouping of VAR coefficients across lags
through shared priors, which limits the model complexity even

FIGURE 2 | Area under ROC curve (AUC) and d-Accuracy scores for

random networks with sizes between 5 and 200 nodes and different

SNRs. The proposed method is denoted by VBCCA, whereas WGCA
denotes Wiener–Granger causality analysis. All results are averages over

50 simulations with error bars indicating the 95% confidence intervals. The
average scores are also shown as numerical values in the bar plot, where
the values in parentheses are the size of one side of the confidence
interval.
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FIGURE 3 | Area under ROC curve (AUC) and d-Accuracy scores for

data generated by VAR processes with orders from 1 to 7. The proposed
method and the Wiener–Granger causality method are denoted by
VBCCA(P) and WGCA(P), respectively, where P denotes the VAR model
order used in the algorithm. All results are averages over 50 simulations
with error bars indicating the 95% confidence intervals. The average scores
are also shown as numerical values in the bar plot, where the values in
parentheses are the size of one side of the confidence interval.

when the VAR order is increased. Second, we use an approxima-
tion to the posterior distribution to estimate the VAR coefficients;
it is well known that methods which draw inference based on
the posterior distribution are less prone to over-fitting than other
methods, such as, maximum likelihood methods.

4.4. EFFECT OF USING AN APPROXIMATION TO THE NEURONAL
SIGNAL

As discussed in previous sections, the proposed method employs
a hierarchical Bayesian model with an approximation to the neu-
ronal time series. The approximate time series is denoted by
z(t) and is a key part of the proposed method as it enables
the method to be computationally efficient through a reduction
of the state space dimension used in the Kalman smoother. In
addition, the time series z(t) can be efficiently estimated in the
frequency domain using fast Fourier transform algorithms. While
the introduction of this approximation improves the computa-
tional efficiency, some reduction in the estimation performance
may be caused. To quantify the influence of this approximation,
we have implemented a modified version of the proposed method
where z(t) is not used, i.e., we increase the dimension of x(t) to
D = NL and model the observation process using Equation (42).
This part of the modified model exactly corresponds to what is
used in Smith et al. (2010) and Ryali et al. (2011). Due to the

FIGURE 4 | AUC, d-Accuracy, and mean squared error (MSE) scores for

the proposed method with and without using the approximate time

series z(t). The method are denoted by VBCCA (z(t) used) and VBCCA-D
(z(t) not used). The simulation parameters are the same as in the first
experiment, i.e., N = {5, 10}, T = 500, P = 2, SNR = 0 dB. All results are
averages over 50 simulations with error bars indicating the 95% confidence
intervals. The average scores are also shown as numerical values in the bar
plot, where the values in parentheses are the size of one side of the
confidence interval.

excessive memory requirements, the modified version of the pro-
posed method, which we denote by “VBCCA-D,” can only be used
for networks with small numbers of regions and HRFs consisting
of a small number of time samples. We apply the method to the
same data that is used in the first experiment, with N = {5 , 10},
SNR = 0 dB. The resulting connectivity scores, as well as, the
mean squared error (MSE) of the neuronal signal are shown in
Figure 4. The MSE is calculated as follows

MSE =
[

T∑
t = 1

‖s (t) − s̃ (t) ‖2
2

]
/

[
T∑

t = 1

‖s (t) ‖2
2

]
, (44)

where s (t) and s̃ (t) are the true and the estimated neuronal sig-
nals, respectively. It can be seen that the use of the neuronal
approximation does not have a negative influence on the perfor-
mance in terms of AUC while the MSE is slightly lower when the
approximation is not used. The small difference in terms of MSE
implies that both methods estimate the neuronal signal with sim-
ilar estimation quality. This is also apparent from Figure 5, which
shows the time neuronal series for one region estimated with and
without the approximation.

4.5. DOWNSAMPLING AND HRF VARIATIONS
As processing at the neuronal level occurs at temporal scales
which are orders of magnitudes faster than the sampling interval
of the MRI scanner, it is important to analyze how the perfor-
mance of causality based methods is affected by the low sampling
rate. Another important question is the effect of HRF variability
on the performance. In this experiment we analyze the influence
of these effects on the estimated causality. In order to do so, we
generate s(t) for two regions and a single connection accord-
ing to Equation (1) with zero-mean, i.i.d., Gaussian innovations,
i.e., η (t) ∼ N (0, I). The simulated sampling rate at the neu-
ronal level is 1 kHz and we generate a total of 240 s of data. We
use a1

1,1 = a1
2,2 = 0.95 to simulate a degree of autocorrelation
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FIGURE 5 | Sections of the true neuronal signal (blue) and estimated

neuronal signals for one node in a simulation with N = 5, SNR = 0 dB

in the first experiment. The neuronal signal estimated by the proposed
method is shown in red (“Approx.”), while the neuronal signal estimated by
the proposed method without using the approximate time series z(t) is
shown in green (“Direct”).

within each time series. To simulate connection with a certain
neuronal delay, depending of the direction of the influence we
draw the value of either ad

1,2 or ad
2,1 from a uniform distribu-

tion on the interval [0.4, 0.9]. The lag parameter d is used to
simulate the neuronal delay, e.g., d = 10 corresponds to a delay
of 10 ms. Next, we convolve the obtained neuronal time series
with an HRF for each region. In the first simulation we use the
same canonical HRF with peaks at 5 and 15.75 s for both regions,
whereas in the second simulation we use a randomly generated
HRF for each region. To generate a random HRF, we use the
HRF generation function provided in SPM8 (http://www.fil.ion.

ucl.ac.uk/spm/). The parameter controlling the time-to-peak is
drawn from a uniform distribution, such that the positions of
the positive peak lies between 2.5 and 6.5 s, which is the range of
peak positions reported in Handwerker et al. (2004). The param-
eter controlling the position of the negative peak (“undershoot”)
is held constant at 16 s. Due the implementation in SPM8, the
negative peak of the generated HRF lies between 15 and 16.7 s,
depending on the position of the positive peak. An example of
HRFs used in our experiment is depicted in Figure 6. After each
time series has been convolved with a HRF, the data is downsam-
pled to simulate a certain TR value. Finally we add zero-mean,
i.i.d., Gaussian noise such that the resulting SNR is 0 dB. To study
both the influence of downsampling and the neuronal delay, we
linearly vary the simulated TR between 50 ms and 2 s using a step
size of 50 ms (40 points) and the delay using 40 linearly spaced
values between 5 and 300 ms, resulting in a total of 1600 TR/delay
combinations.

Results for the first simulation, in which the HRF is held
constant, are shown in Figure 7. The results confirm previous
findings (Seth et al., 2013) that downsampling confounds WGC.
One might intuitively expect that when the neuronal delay is held
constant, a lower TR will lead to a higher d-Accuracy. However,
our simulations show that this is not necessarily the case; For
very low delay and TR values, the WGCA method has d-Accuracy
to zero, i.e., it consistently estimates a causal influence with the
opposite direction of the true influence, while it approaches the

FIGURE 6 | Example of random hemodynamic response functions

(HRFs) used in the experiment. The HRFs are generated from canonical
HRFs where the parameters are drawn from a uniform distribution such
that positions of the positive and the negative peaks lie in the intervals
[2.5s, 6.5s] and [15s, 16.7s], respectively. The bold dashed line shows the
default HRF with peaks at 5 and 15.75 s.

chance level (0.5) when TR is increased. The proposed method
shows a similar behavior, but for TR values below 300 ms the d-
Accuracy is close to 1.0. While it is difficult to assess the origin of
this transition, it is likely caused by increased aliasing that occurs
for larger TR values. Together with the consistent causality inver-
sion of WGC for low TR values, it shows that causal information
is still present in the data.

In the second simulation, we additionally introduce HRF vari-
ations. Results are shown in Figure 8. In this case, the proposed
method performs poorly, even for low TR values, unless the
method is provided with the true HRF for each region, in which
case it can mitigate the effects of HRF variability. Somewhat sur-
prisingly, WGCA(1) performs similarly as before when the same
HRF was used for each region. However, when the BIC is used
to determine the model order, the WGCA method exhibits low
estimation performance for all TR and delay values. A possible
explanation for this behavior is that due to the HRF convolu-
tion, the selected model order is higher than the true order and
the order also depends on the HRF used (Seth et al., 2013),
which results in spurious causality inversions and hence poor
performance.

It is important to point out that our results should not be inter-
preted in the way that WGC with a fixed model order consistently
estimates a causal influence with the opposite direction for low TR
values; whether the inversion occurs is dependent on simulation
parameters, e.g., the amount of autocorrelation in the simulated
time series, the connection strength, and the signal-to-noise ratio.
For example, when we repeat the first simulation with a higher
signal-to-noise ratio of 20 dB, the results change drastically, as
shown in Figure 9. The WGCA method now correctly estimates
the direction of the influence except for low TR and delay values.
In this case also the proposed method performs poorly for low
delay values. These results show that while the proposed method
performs better, especially in low-SNR situations, there is a risk of
causality inversion for both methods. The superiority of the pro-
posed method can be explained by the modeling, which explicitly
takes additive noise into account. However, at the same time, both
the proposed method and the WGCA method do not model the
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FIGURE 7 | Average d-Accuracy calculated over 50 simulations for a

network with two nodes and a single connection for varying neuronal

delays (40 steps between 5 and 300 ms) and TR values of the fMRI

scanner (40 steps between 50 ms and 2 s). The HRF is held constant for all

simulations, the signal-to-noise ratio is 0 dB. The proposed method is denoted
VBCCA and we use P = 1, whereas WGCA(P) denotes the Wiener–Granger
causality method, for which we use AR model orders of 1, 5, and an order
between 1 and 20 selected using the Bayesian information criterion (BIC).

FIGURE 8 | Average d-Accuracy calculated over 50 simulations for a

network with two nodes and a single connection for varying neuronal

delays (40 steps between 5 and 300 ms) and TR values of the fMRI

scanner (40 steps between 50 ms and 2 s). Random HRFs are used with
a time-to-peak uniformly distributed between 2.5 and 6.5 s, as shown in
Figure 6, the signal-to-noise ratio is 0 dB. The proposed method is

denoted VBCCA and we use P = 1, VBCCA(true HRF) denotes the
proposed method with P = 1 and the HRF assumed in the algorithm is
the same as the HRF that was used to generate the data. WGCA(P)
denotes the Wiener–Granger causality method, for which we use AR
model orders of 1 and an order between 1 and 20 selected using the
Bayesian information criterion (BIC).

non-linear downsampling operation and therefore can fail to cor-
rectly estimate the direction of the causal influence when the data
has been downsampled.

5. APPLICATION TO fMRI DATA
In this section, we apply the proposed method to resting-state
fMRI data provided by the Human Connectome Project (HCP)
(Van Essen et al., 2012). We use data from two 15 min runs of the
same subject (100307), each consisting of 1200 volumes with a TR
of 0.7 s. The minimally preprocessed volume data (Glasser et al.,
2013) was aligned to the FreeSurfer (Fischl, 2012) “fsaverage”
template and data from 148 cortical parcels from the Destrieux
atlas (Destrieux et al., 2010) was extracted by averaging data
across the gray matter at each vertex of the FreeSurfer surface
mesh. In addition, we extracted volume data from six subcorti-
cal parcels (thalamus, caudate, putamen, pallidum, hippocampus,
amygdala) for each hemisphere, resulting in a total of 160 parcels.

The extracted data was further preprocessed to reduce motion
artifacts, slow drifts, and physiological artifacts. Specifically, we
reduced motion artifacts and slow drifts using a linear regres-
sion for each voxel time series with three motion parameters
and a cosine basis up to order 8 as nuisance regressors, where
the order of the cosine basis was determined using the Bayesian
Information Criterion (BIC) (Schwarz et al., 1978). To reduce
physiological noise, we used a procedure similar to CompCor
(Behzadi et al., 2007), i.e., we extracted data from the left and right
lateral ventricles, which can be expected to not contain any signal
of neuronal origin, applied the previously described detrending
and motion artifact correction to it, and finally used a principal
component analysis (PCA) to extract the 20 strongest temporal
components. The extracted noise components were then used as
nuisance regressors for each voxel time series where the num-
ber of components to use was determined using BIC. Finally, to
obtain a single time series for each parcel, we computed a PCA
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for the data within each parcel and retained the first principal
component.

Connectivity matrices obtained by applying the proposed
method and WGCA to the HCP data are shown in Figure 10. As
a reference we also include the correlation coefficient, which is

FIGURE 9 | Average d-Accuracy calculated over 50 simulations for a

network with two nodes and a single connection for varying neuronal

delays (40 steps between 5 and 300 ms) and TR values of the fMRI

scanner (40 steps between 50 ms and 2 s). The HRF is held constant for all
simulations, the signal-to-noise ratio is 20 dB. The proposed method is
denoted VBCCA and we use P = 1, whereas WGCA(1) denotes the
Wiener–Granger causality method, for which we also use AR model order of 1.

the most commonly used fMRI resting-state connectivity mea-
sure. All methods show some consistency across runs. For the
proposed method and the second run, it can clearly be seen that
the method finds connections between nodes that are commonly
associated with resting-state networks. For example, nodes in
the frontal cortices, the temporal lobes, and the parietal lobes,
which are part of the default-mode network (Raichle et al., 2001).
There is also strong bi-lateral connectivity between the left- and
right occipital cortices, which are part of the visual resting-state
network. Compared to correlation and WGCA, the VBCCA con-
nectivity matrices are very sparse, which could indicate that there
may not be enough causal information in the data to result in
strong causality estimates, which would be a sensible explanation
given the short propagation delays at the neuronal level and the
still relatively slow sampling interval of 0.7 s. Finally, it is impor-
tant to note that due to the methodological problems discussed
in the previous section, it is possible that the direction of the
causal influence is estimated incorrectly. The application to real
fMRI data as presented here serves as a demonstration, further
evaluations, e.g., using simultaneous EEG and fMRI data, are nec-
essary to quantify the effectiveness of the proposed method when
applied to real fMRI data.

6. CONCLUSIONS
In this paper we proposed a variational Bayesian causal con-
nectivity method for fMRI. The method uses a VAR model for

FIGURE 10 | Connectivity matrices showing the absolute correlation

coefficient (Corr), Wiener–Granger causality (WGCA), and causality

estimated by the proposed method (VBCCA). We use the same parcel
grouping and order as in Irimia et al. (2012), which groups the parcels into
cortical lobes, i.e., frontal (Front), insular (Ins), limbic (Lim), temporal (Temp),
parietal (Par), occipital (Occ), and subcortical (Subc). The “−L” and “−R”

suffixes indicate the left and right hemisphere, respectively. The parcel colors
are the same as in the standard FreeSurfer color table. Results for the first
run (REST1_LR) and the second run (REST1_RL) are in the top and bottom
row, respectively. For WGCA and VBCCA, we use an VAR order of P = 1
consistent with our simulations. For the proposed method we show √cij in
order to better depict the estimated values within the scale of the color map.
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the neuronal time series and the connectivity between regions
in combination with a hemodynamic convolution model. By
introducing an approximation to the neuronal time series and
performing parts of the estimation in the frequency domain, our
method is computationally efficient and can be applied to large
scale problems with several hundred ROIs and high sampling
rates.

We performed simulations with synthetic data to evaluate the
performance of our method and to compare it with classical
Wiener–Granger causality analysis (WGCA). There are several
important findings from these simulations that need further dis-
cussion. In the first simulation, we demonstrated an important
strength of our method, that is, it performs significantly bet-
ter than WGCA when applied to problems with large numbers
of regions. This effect is due to the use Gaussian priors for the
VAR coefficients in combination with gamma priors for the pre-
cision hyperparameters. This prior has a regularizing effect by
promoting sparsity for the VAR coefficients and can be seen as
an adaptation of sparse Bayesian learning (Tipping, 2001) to
the problem of VAR coefficient estimation. In contrast, WGCA
does not use regularization for the VAR coefficients resulting
in a performance degradation when the number of regions is
increased. It is important to note that also the method in Ryali
et al. (2011) employs Gaussian-gamma priors for the VAR coef-
ficients. However, due to the computational complexity of the
method it can only be applied to problems with small numbers
of regions, where the prior is overwhelmed by the data and the
sparsity promoting effect is of little benefit.

In the second set of simulations, we evaluated our method
using simulated data generated by VAR processes of varying
orders. Again, due to the prior for the VAR coefficients, where
we group coefficients across lags together using shared precision
hyperparameters, our method performed well as long as the VAR
order used in the method is equal or higher than the VAR order
of the data. A grouping of VAR coefficients using �1�2-norm reg-
ularization was first proposed in Haufe et al. (2008), in our work
we propose a Bayesian formulation for this problem.

In the third simulation, we analyzed the effect of using an
approximation to the neuronal time series, which is employed in
our method to improve the computational efficiency, by compar-
ing our method with a modified version of our method where the
convolution with the HRF is included in the observation matrix
of the linear dynamic system, as in previous methods (Smith et al.,
2010; Ryali et al., 2011). The simulation results show that the
approximation leads to some reduction in the quality of the esti-
mated neuronal signal in terms of mean-squared error (MSE) but
does not have a significant influence on the connectivity estima-
tion performance. Importantly, the reduction in computational
complexity resulting from the use of the approximation to the
neuronal signal allows us to apply the method to large scale prob-
lems. As discussed above, the sparsity promoting priors for the
VAR coefficients are of crucial importance when the method is
applied to problems with large numbers of regions. The use of
the approximation to the neuronal time series is therefore an
important contribution of this work, as it allows us to apply the
method to problem sizes where the method can benefit from the
regularizing effect of the priors.

In a last set of simulations, we analyzed the effect of differ-
ent downsampling ratios, simulating different TR values of the
MRI scanner, the neuronal delay, and HRF variability. Perhaps
not surprisingly, the proposed method is immune to HRF vari-
ability if it has access to the true HRF of each region. Clearly,
in practice HRFs are subject and region dependent. However, it
has been shown that HRFs are strongly correlated across sub-
jects and regions (Handwerker et al., 2004). Hence, using data
from a large number of subjects, it may be possible to con-
struct a model describing the relationship between the HRFs
in various brain regions. This “hemodynamic atlas” could then
be used to approximate the HRFs in a large number of regions
from a small number of estimated HRFs for each subject. We
also found that the proposed method generally performs bet-
ter than WGC when a significant amount of additive noise is
present in the data. This finding is consistent with previous
results (Seth et al., 2013) and can be explained by the model
used in the proposed method which can account for additive
noise. However, while the proposed method offers some benefits
over WGC, we find that also the proposed method can estimate
a causal influence with the opposite direction when the data
has been downsampled, which is a known problem with WGC
methods (David et al., 2008; Deshpande et al., 2010; Seth et al.,
2013). The problem that causality estimated using a discrete-
time VAR model from a sampled continuous-time VAR process
can lead to opposite conclusions has been show before (Cox,
1992). Unfortunately, this problem has received little attention
in recent work on causality estimation from fMRI data, where
severe downsampling is common. In Solo (2007), it is shown
that while causality can be preserved under downsampling, VAR
models, as used in traditional WGC analysis and the proposed
method, are inadequate for estimating causality from the sub-
sampled time series and either VAR moving average (VARMA)
models or state-space (SS) models are required to correctly esti-
mate the direction of the causal influence. This raises hopes
that causality estimation from fMRI may be feasible by applying
more sophisticated models to data acquired with low TR values,
which may be achieved using a combination of novel acquisition
sequences and MRI scanners with higher field strengths. Clearly,
HRF variability will still be a problem but under certain con-
ditions it may be possible to use a model similar to the one
proposed in this work which can take into account the HRF of
each region.

Finally, we applied the proposed method to real resting-state
fMRI data provided by the Human Connectome Project (Van
Essen et al., 2012). For this data, the proposed method finds
connections between regions that are associated with known
resting-state networks. However, it is important to emphasize that
application to real fMRI data as presented here serves as a demon-
stration to show that the proposed method can be applied to
real fMRI data. As the true causal relationships in real data are
not known, it not possible to determine whether the direction of
causal influence is correctly estimated. As shown in our simula-
tions, there are methodological problems which, depending on
the noise level, the HRF, the TR, and the neuronal delay, can lead
to causality inversions. Further experiments, e.g., using simulta-
neous EEG and fMRI, are necessary to quantify the effectiveness
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of the proposed method to estimate the direction of the causal
influence from real fMRI data.
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