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Recent interest in human brain connectivity has led to the application of graph theoretical
analysis to human brain structural networks, in particular white matter connectivity
inferred from diffusion imaging and fiber tractography. While these methods have been
used to study a variety of patient populations, there has been less examination of the
reproducibility of these methods. A number of tractography algorithms exist and many
of these are known to be sensitive to userselected parameters. The methods used
to derive a connectivity matrix from fiber tractography output may also influence the
resulting graph metrics. Here we examine how these algorithm and parameter choices
influence the reproducibility of proposed graph metrics on a publicly available test-retest
dataset consisting of 21 healthy adults. The dice coefficient is used to examine topological
similarity of constant density subgraphs both within and between subjects. Seven graph
metrics are examined here: mean clustering coefficient, characteristic path length, largest
connected component size, assortativity, global efficiency, local efficiency, and rich club
coefficient. The reproducibility of these network summary measures is examined using
the intraclass correlation coefficient (ICC). Graph curves are created by treating the graph
metrics as functions of a parameter such as graph density. Functional data analysis
techniques are used to examine differences in graph measures that result from the
choice of fiber tracking algorithm. The graph metrics consistently showed good levels
of reproducibility as measured with ICC, with the exception of some instability at low
graph density levels. The global and local efficiency measures were the most robust to

the choice of fiber tracking algorithm.
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1. INTRODUCTION
Combining magnetic resonance imaging (MRI) of the human
brain with graph theory analysis has emerged as a powerful
approach to studying large-scale networks of both structural and
functional connectivity. In the case of structural connectivity, the
use of diffusion weighted MRI and associated white matter fiber
tractography methods provide the ability to identify the long-
range pathways that connect cortical regions and form a network
architecture (Xue et al., 1999; Basser et al., 2000; Hagmann et al.,
2003; Lazar et al., 2003). The use of graph theoretical analysis to
study the topology and structure of these large scale networks is
an increasingly active topic of research (Hagmann et al., 2008;
Zalesky et al., 2010; Sporns, 2011; Bastiani et al., 2012; Cheng
et al., 2012b; Fornito et al., 2012; Irimia and Van Horn, 2012).
These methods have been used to examine the structural conse-
quences of neurological disorders (Guye et al., 2010; Martin, 2012;
Xie and He, 2012) as well as the relationship between structure
and function (Honey et al., 2007, 2009; Hagmann et al., 2008).
Previous studies examining the reproducibility of graph-based
metrics in functional networks have shown good levels of repro-
ducibility in MEG (Deuker et al., 2009), fMRI using BOLD
contrast (Telesford et al., 2010; Schwarz and McGonigle, 2011;
Braun et al., 2012; Liang et al., 2012; Weber et al., 2013) and arte-
rial spin labeling (Weber et al., 2013). A number of studies have

also examined reproducibility in structural networks, each focus-
ing on various aspects of the complex processing pipeline that is
a prerequisite for these measures. These have included studies of
diffusion spectrum imaging (Bassett et al., 2011; Cammoun et al.,
2012) and high angular resolution diffusion imaging (Dennis
et al., 2012). Some studies have examined probabilistic trac-
tography (Vaessen et al., 2010; Owen et al., 2013). Diffusion
tensor imaging (DTI) based studies using deterministic tractog-
raphy have included the examination of tractography seed density
(Chengetal., 2012a), anatomic label density (Bassett et al., 2011),
and studies examining a variety of network measures (Cheng
et al., 2012a; Irimia and Van Horn, 2012). A recent review arti-
cle discussed the reproducibility of these graph metrics as used to
examine both functional and structural networks across a variety
of conditions (Telesford et al., 2013).

In this paper we constrain our analysis to DTI-based
deterministic fiber tractography. Within this constraint, we exam-
ine multiple algorithms for computing streamlines to examine
their influence on the final graph metrics. A set of manu-
ally defined cortical parcellations (Klein and Tourville, 2012) is
used along with a more common template-based parcellation
scheme (Tzourio-Mazoyer et al., 2002). The intraclass correla-
tion coefficient (ICC) is used to examine the reproducibility of
network summary measures that results from combinations of
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fiber tracking algorithm and anatomical label set. The dice coef-
ficient provides a measure of topographical similarity to examine
the reproducibility of subgraphs extracted as a function of graph
density. Graph curves are constructed for a variety of metrics and
functional data analysis is used to examine how these metrics dif-
fer as a function of graph density or other parameters that are
specific to a given metric. We use freely available data and soft-
ware to create a framework that facilitates future extensions that
may examine additional aspects of the processing as well as the
comparison to, or addition of, multiple imaging modalities.

2. MATERIALS AND METHODS

2.1. NEUROIMAGING DATA

The Multi-Modal MRI Reproducibility Resource (Landman et al.,
2011), informally known as the Kirby dataset (http://www.nitrc.
org/projects/multimodal), provides a publicly available test-retest
data set consisting of 21 healthy control subjects (11 males).
The mean age is 31.76 £ 9.35 with a range of [22, 61]. This
data set provides a multitude of MR image types, but here only
the T1-weighted anatomical images and diffusion tensor images
are examined. The T1 images have a resolution of 1.2 x 1.0 x
1.0mm. The distributed diffusion images have a resolution of
0.828125 x 0.828125 x 2.2mm. The diffusion data includes a
single b = 0 volume and 34 directional diffusion weighted images
acquired with b = 700 s/mm?.

2.2. ANATOMICAL LABELING

A graph consists of nodes and the edges that connect those nodes.
To construct a graph from a brain, a set of anatomical labels are
used to define the nodes of the graph. To determine if manually
defined cortical labels would provide an inherent advantage in
reproducibility we used the Mindboggle dataset which provides
a set of manually drawn cortical regions (DKT31) along with a
skull-stripped image for a single time point for each subject in the
Kirby data set (Klein and Tourville, 2012). To utilize these labels
in network creation we performed an intra subject registration
between each subject’s two T1 images. A brain mask was created
from the provided skull-stripped T1 image by thresholding and a
morphological closing. This mask was warped into the unlabeled
T1 image space and used to create a skull-stripped image. For each
time, a transformation was found between the skull-stripped T1
image and the b = 0 image, acquired as part of the DTI acquisi-
tion. In all subjects, the manually defined labels were propagated
into the DTT space for both time points using the appropriate
composed transform.

One of the most common label sets used in stud-
ies of both functional and structural connectivity is the
AAL label set (Tzourio-Mazoyer et al., 2002) which is a
template based label set. An existing multivariate tem-
plate had been created from the Kirby dataset using the
antsMultivariateTemplateConstruction.sh tool,
part of the Advanced Normalization Tools (ANTs) software
package (Avants et al.,, 2009). The antsRegistration tool
was used to find a deformable mapping between the T1 template
image distributed with the AAL label and the population specific
template created from the Kirby data. In order to transform
these labels into each subject’s DTI space, it was necessary to

find a transform from the template to each subject’s T1 and
from T1 to DTI within each subject. For the template-to-T1
transform, the antsCorticalThickness.sh tool was
used. This software first applied a bias correction using the
N4 algorithm (Tustison et al., 2010). Next a registration based
skull stripping was performed to provide a cerebrum mask
of the T1 image. This was followed by a final cerebrum-only
registration to the template. These transforms were composed
with the T1-to-DTI transforms, providing a single transform
that was used to warp the the AAL labels into DTI space using
nearest neighbor interpolation. Labels of structures outside of
the cerebrum were removed. Many AAL labels include both gray
and white matter, here the labels were masked to only include
voxels that were identified as cortical gray matter by the DKT31
labels described in the previous section. The AAL labels for deep
gray structures (e.g., thalamus) were not masked but used in their
entirety. Both label sets are illustrated in Figure 1, while the entire
processing scheme is illustrated in Figure 2. The availability of
the processing scripts is intended to provide a framework that
allows for convenient exploration of alternate anatomical labels,
such as the anatomical parcellations that may be obtained via
FreeSurfer (http://surfer.nmr.mgh. harvard.edu) or the UCLA
Multimodal Connectivity Package (http://ccn.ucla.edu/wiki/
index.php/UCLA_Multimodal_Connectivity_Package), both of
which have been used in previous graph-theory based exami-
nations of structural connectivity based on diffusion-weighted
imaging.

2.3. DIFFUSION DATA PREPROCESSING

The Camino toolkit (Cook et al., 2006) was used to calculate dif-
fusion tensor images via a weighted linear fitting (Basser et al.,
1994; Salvador et al., 2005), and was used for subsequent deter-
ministic tractography. The brain masks defined in T1 space were
warped into DTI space and used to prevent tracking outside the
brain. Fractional anisotropy (FA) images were calculated and a
tractography seed-map was created to include all voxels in the
cerebrum with an FA of at least 0.2.

One of the primary differences among the various approaches
to deterministic tractography is the algorithm used to determine
the direction that a streamline should proceed from a given point.
Here we examine four different approaches:

1. Fiber Assignment by Continuous Tracking (FACT) - The
primary  direction of diffusion (PDD) is fol-
lowed wuntil the streamline enters a new voxel
(Xue et al., 1999).

2. Euler—The PDD is followed for a constant step size (Basser
et al., 2000).

3. Fourth-order Runge-Kutta (RK4)—The direction of the step is
determined by taking and averaging a weighted series of partial
steps (Basser et al., 2000).

4. Tensor Deflection (TEND)—The local fiber trajectory is a
function of the previous direction and the local diffusion
tensor (Lazar et al., 2003).

Shared parameters used in the fiber tracking were held constant
as follows
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FIGURE 1 | Two sets of anatomical labels are used to define the networks. The template based AAL labels (top) and The DKT31 manually defied labels that
are provided via Mindboggle (bottom). The AAL labels have been masked to only include gray matter.

Labeled T1 Unlabeled T1

Fiber tractography

Labeled DTI

= transform from
image registration

Graph curves & ICC

Adjacency Streamline
matrix ___matrix

FIGURE 2 | Schematic of the network processing scheme. Image records the number of streamline connecting each pair of labeled regions.
registration is used to find transformations between the T1 image and: the T1 This matrix is thresholded as constant density to create an adjacency matrix
image for that subject’s other time point; the population template; the b =0 which defines connections in a brain graph. Graph curves are generate by
image acquired as part of the DTI acquisition. Labels are transformed into the  calculating network summary measures over a range of density values and
DTI space where fiber tractography is performed. A matrix is created that ICC plots are used to examine the reproducibility of the metrics.

1. Streamlines were terminated if curvature of more than 90° 4. Linear interpolation of the primary direction of diffusion was

over 5 steps was detected. used for Euler and RK4.
2. Streamlines were terminated if an FA value of less of 0.2 was

encountered. Figure 3 illustrates the fiber tracts for all methods for a sin-
3. A step size of 0.5 mm was used. gle subject. The script used to generate these streamlines,
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FIGURE 3 | Fiber tracts generated using each method are illustrated for
both time points in a single subject. For visualization, tract sets are
sampled to display 5% of the tracts at 25% opacity. Tract points are colored
to illustrate local streamline direction.

deterministic mmrr21.pl, is available as part of the git
repository that contains all of the processing scripts for the work
presented here (https://github.com/jeffduda/StructConnRepro).
Relatively small changes to this script would allows users to
explore additional deterministic tractograpy methods as well as
probabilistic methods which are also available in the Camino
toolkit.

2.4. GRAPH GENERATION
While the nodes of a graph were defined using anatomical labels,
the edges of the graph were defined by using fiber tractography
to identify white matter pathways that connect brain regions.
For a given set of streamlines, the connmat tool provided by
the Camino toolkit was used to generate a connectivity matrix
that records how many streamlines connect each pair of target
regions. This program starts at the seed point for a streamline
and proceeds outward in each direction to determines the two
target regions encountered. Only streamlines that connect two
unique regions are retained and a given streamline may be only
be counted as connecting a single pair of target regions. Fiber
tractography does not provide a measure of directionality (i.e.,
neither node can be considered a starting point or ending point)
so the resulting matrices yield undirected graphs.

Graphs are often compared by first ensuring that they have
the same density (Achard et al., 2006; Bassett et al., 2006), where
density for an undirected graph is defined as:

IE(G)II
(IIN@OIANGI = 1))

D(G) =

where N(G) is the set of all nodes in graph G and E(G) is the
set of all edges in G. The number of nodes in the graph and the
desired density determine the number of edges that the graph
should contain. Edges of higher weights are given priority and
lower weighted edges are removed to obtain the desired den-
sity level. The weights of the remaining edges are then set to 1
for a final binarized graph. This cumulative thresholding pro-
vides a normalized method for comparing network measures as
it results in the comparison of graphs with an equal percentage

of significant connections. Graphs are typically compared over a
range of density levels. Here, we only directly compare measures
obtained from graphs with an equal number of nodes and thus an
equal number of edges after density thresholding.

2.5. NETWORK METRICS

A large number of graph metrics are available for quantifying
properties of binary, undirected networks (Rubinov and Sporns,
2010). Here we examine a number that are common in cur-
rent literature: largest connected component size (Bassett et al.,
2011), assortativity (Newman, 2006; Bassett et al., 2008), clus-
tering coefficient (Watts and Strogatz, 1998), characteristic path
length (Watts and Strogatz, 1998), global and local efficiency
(Latora and Marchiori, 2001), and rich club coefficient (Collin
etal., 2013). An ITK module named Petiole (https://github.com/
jeffduda/Petiole) was created to calculate these network measures
from 2D connectivity matrices. This module incorporates and
extends an existing implementation of a graph class (Tustison
et al., 2008) and provides ITK functions for a variety of graph
metrics while using the Matlab-based Brain Connectivity Toolkit
(Rubinov and Sporns, 2010) for algorithmic guidance. While
many of these metrics include implementations for weighted
graphs and/or directed graphs, here we focus on their application
to unweighted, undirected graphs. Summaries and equations for
these metrics are provided here:

2.5.1. Size of largest connected component

A connected component of a graph is a subset of the graph, G,
where there exists a path between all pairs of nodes and for which
no path exist to additional nodes in G. The largest connected
component is the G; with the greatest number of nodes, |[N(Gj]|.
This measure relates to the global level of connectivity within a
subject’s brain network (Bassett et al., 2011).

2.5.2. Assortativity

The degree of a node is the number of neighboring nodes that
it connects to (i.e., shares an edge with). Assortativity measures
how preferentially nodes of similar degree connect to one another
(Newman, 2006) and is defined as:

. . 2
a—  EXdiki— (2 X050 + k)]
- . . 2
FlinUl k) =[5 255G + k)]

where jj, k; are the degrees of the nodes connected by edge
i and E = ||[E(G)||. High assortativity suggests higher network
resilience, making a network less vulnerable to attack (Newman,
2002).

2.5.3. Clustering coefficient

This measure quantifies how likely is that two nodes with a com-
mon neighbor are connected to one another (Watts and Strogatz,
1998). Here we calculate the clustering coefficient at each node
and calculate the mean over all nodes in the network for our final
network summary measure. The clustering coefficient at node 7 is
given by:

IKill (K]l — 1)

i
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where K; is the set of all nodes that share an edge with i and e; is
the set of all edges that connect nodes in K;.

2.5.4. Characteristic path length

The path length, L;;, that connects two nodes, i and j, is defined
as the minimum number of edges that must be traversed to travel
from i to j (Dijkstra, 1959). The characteristic path length is the
average path length over all possible pairs of connections in a
graph. In an undirected graph this is:

1
L= > L
INGIINGI -1 2=
This measure is only defined for fully connected graphs. Here, we
apply the density thresholding first and then extract the largest
connected component in order to calculate the characteristic path
length.

2.5.5. Global efficiency

This measure is related to the characteristic path length, in that it
attempts to quantify the mean efficiency between any two nodes
in the graph. Unlike the characteristic path length, this metric is
defined for both connected and unconnected graphs (Latora and
Marchiori, 2001).

1
ﬂbnm&mwmm—wzz/f

i#jeG

2.5.6. Local efficiency

This metric relates to fault tolerance and examines efficiency
between neighbors on a node i, if that node were removed from
the graph (Latora and Marchiori, 2001).

1
Fiope = ——1— F(G;
: IWwMZ;()

where G; is the subgraph of G that results from removing node i.

Full graph density
AAL DKT31

FIGURE 4 | Boxplots illustrating the density values for unthresholded
connectivity matrices for all subjects and all time points, grouped by
fiber tracking algorithm (Euler, FACT, RK4, TEND) and anatomical label
set (AAL, DKT31). Black dots indicate data points whose distance from the
hinge is more than 1.5 * inter quantile range.

2.5.7. Rich club coefficient

This measures quantifies how preferentially the high-degree
nodes (i.e., rich nodes) in a graph connect to other high-degree
nodes (Colizza et al., 2006).

IE(G. K

RG 0 = NG BING BT =1

where N(G, k) is the set of nodes of degree k or higher and E(G, k)
is the set of edges connecting two nodes in N(G, k).

2.6. GRAPH CURVES

The metrics listed above are all applied to thresholded binary
graphs. As discussed earlier, these binary graphs result from
thresholding at a constant density. The metrics may then be
treated as functional curves of metric vs. graph density. By doing
this, we are able to compare binary graphs in a way that incor-
porates the continuous structure of the original connectivity
matrices. The rich club coefficient however is dependent upon
two parameters, the graph density and k, the degree threshold
used to determined what constitutes a rich-node. For this met-
ric we threshold at the highest density common to all graphs and
explore how the value changes with k. For all other metrics, we
examine their curves as a function of graph density.

2.7. STATISTICAL ANALYSIS

Before examining how the graph metrics change with density
it is necessary to examine the maximum density of the graphs
to determine the range over which graphs may be compared.
Additionally, it is interesting to examine the topological similarity
in the thresholded graphs. This is done using the dice coefficient
which measures similarity between two graphs as:

2|[E(x) NE)l

DIl ) = Bl + 180
where edges are considered equal if they connect the same two
nodes. This is equivalent to treating each connectivity matrix
as a binarized 2D image and using the Dice metric to measure
overlap. The mean intra- and inter-subject topological similarity
was computed over a range of densities for each combination of
tracking algorithm and anatomical label sets. This allows us to
examine the reproducibility of within-subject topography com-
pared to between subject topography. This metric is limited to lie
in the range [0, 1] and can be interpreted as a measure of degree of
overlap between graphs. This provides a stricter metric than mea-
suring overlap between sets of nodes as complete node-overlap is
a necessary but incomplete condition for complete edge-overlap.
Graph curves are used to examine the reproducibility of the
graph metrics as a function of an independent parameter, typi-
cally graph density. At each point along the curve, reproducibility
of the metric is quantified using the ICC:

2
(oF
Ops T s
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Dice

Densily

Overlap of constant density subgraphs

FIGURE 5 | Connectivity matrices were thresholded over a range of density values. At each density level, consistency of network topography was
estimated by calculating the mean dice overlap for both intra subject and inter subject pairs.

DKT31

Algorithm
Euler
FACT
RK4
TenD

Cohort
— Inter-Subject

== Intra-Subject

Table 1 | Functional data analysis is used along with permutation testing to look for differences in dice overlap measures between graphs

generated from different fiber tracking algorithms.

Intra subject

Inter subject

Euler 0.9555 0.9864 0.6549 0.7770 0.2675 0.0351*
FACT 0.4186 0.7970 0.9524 0.0002* 0.2586 0.0355*
RK4 0.8780 0.6179 0.5358 0.0632 0.0014* 0.1335
TEND 0.3952 0.6655 0.7564 0.0001* 0.0003* 0.0838

Euler FACT RK4 TEND Euler FACT RK4 TEND

Upper triangular p-values are for the AAL labels, while lower triangular are for the DTK31 label set (*indicates significance at p = 0.05).

where szs is the between-subject variance and o2 is the within
subject variance. The “ICC” package for R is used for this cal-
culation. The ICC is plotted along with the mean graph metrics
for each combination of algorithm and label set. At points where
little to no variance exists in a graph metric, the ICC is not
calculated as it becomes unstable under those conditions. The fol-
lowing guidelines may be used to interpret ICC values: ICC < 0.2
“poor agreement”; 0.21-0.40 “fair agreement”; 0.41-0.60 moder-
ate agreement; 0.61-0.80 “strong agreement”; ICC > 0.8 “near
perfect agreement” (Telesford et al., 2010; Montgomery et al.,
2002). Dashed lines indicating the boundaries of these categories
have been included on all ICC plots to aid interpretation.

To identify group differences that result from the fiber tracking
algorithm we incorporated methods from functional data analy-
sis (FDA), which treats each curve as a function. For each group,
the set of all curves were averaged to create a single mean curve.
While there are a variety of methods for computing the difference
between two curves, here we chose the simplest method, the non-
parametric permutation test. Each mean curve was treated as a
function and the area between the group mean curves was found.
Individual group assignments were then permuted using random
sampling without replacement and then used to calculate mean
curves. The area between the random-group mean curves was cal-
culated. This was performed iteratively (i = 10000). We recorded
x, the number of times the area between the mean curves from
the randomly assigned groups is larger than the area between the
true group mean curves. The p-value for the true group difference
is then defined as x/i. We report these differences for between-
algorithm curves as they derive from graph of equal size, but do
compare curves that derive from different anatomical label sets.

3. RESULTS

3.1. NETWORK DENSITY

Maximal densities for connectivity matrices across all tracking
algorithms ranged from 0.17 to 0.30 for the AAL labels and from
0.20 to 0.41 for DKT31. Maximal densities in the DTK31 data was
generally higher than in the AAL as illustrated in Figure 4. Both
label sets had the same lowest-to-highest ordering of mean maxi-
mal density within algorithms: RK4 < Euler < FACT < TEND.

3.2. NETWORK TOPOLOGY

Dice coefficients for intra-subject similarity ranged from 0.70 to
0.81 for the AAL labels and from 0.59 to 0.82 for the DTK31
labels. Inter-subject similarity ranged from 0.51 to 0.71 for AAL
labels and from 0.32 to 0.71 for the DTK31 labels. For all
algorithm-label pairings, intra-subject overlap was greater than
inter-subject overlap across the range of densities as illustrated
in Figure 5. Permutation testing of intra-subject dice vs. density
curves did not reveal any significant differences between algo-
rithms for either label set. However, a number of differences were
found in the inter-subject comparisons. The resulting p-values are
listed in Table 1.

3.3. NETWORK SUMMARY MEASURES OVER GRAPH DENSITY

For each combination of tracking and label set, the mean curves
that were calculated to examine how the metrics change as a func-
tion of graph density are illustrated in Figure 6 along with the ICC
curves that quantify reproducibility. In some cases, ICC values
may not be calculate due to insufficient variation in the metric.
Only the characteristic path length curves exhibit a different shape
between label sets, and only at low density values. This is likely
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FIGURE 6 | Graph metric vs. graph density plots along with corresponding ICC plots for (A) mean clustering coefficient (B) characteristic path length
(C) largest connected component size (D) assortativity (E) global efficiency, and (F) local efficiency.

a results of the smaller number of regions in DKT31 label set.
Clustering coefficient, and global and local efficiency exhibit the
most similarity across label sets. Comparing within metric and
within label set, the fiber tracking algorithms appear consistent
as far as shape. Functional data analysis, along with permu-
tation testing does reveal a number of significant differences
between graph curves however, as listed in Table 2. No signifi-
cant differences were found between tracking algorithms using
the DKT31 labels. Within the AAL labels, significant differences

were found between RK4 and TEND for four of the six metrics
examined.

3.4. RICH CLUB COEFFICIENT OVER NODE-DEGREE

Because the rich club coefficient requires the selection of mul-
tiple parameters, we chose to examine how this metric changes
as a function of k, the node degree that determines what is con-
sidered a “rich” node. The plots for the mean graph curves and
ICC coefficients are illustrated in Figure 7. The results are similar
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Table 2 | Functional data analysis is used along with permutation testing to look for pair-wise differences in graph-metric vs. graph-density
curves that result from different fiber tracking algorithms and label sets.

Clustering coefficient Characteristic path length
Euler 0.2164 0.5296 0.0346* 0.2786 0.2389 0.4728
FACT 0.6962 0.0246* 0.2822 0.9982 0.0145* 0.1235
RK4 0.9927 0.7958 0.0049* 0.8465 0.9199 0.3031
TEND 0.1327 0.8858 0.2061 0.4854 0.6459 0.8234
Connected component size Assortativity
Euler 0.3471 0.9324 0.7556 0.3680 0.3294 0.4651
FACT 0.9447 0.0468* 0.3025 0.6361 0.0270* 0.8877
RK4 0.9998 0.7610 0.4748 0.9326 0.3250 0.0666
TEND 0.7912 0.8336 0.7269 0.8272 0.4021 0.9895
Global efficiency Local efficiency
Euler 0.8617 0.9861 0.7272 0.4579 0.9227 0.6065
FACT 0.8677 0.6882 0.7667 0.8794 0.2486 0.1230
RK4 0.6295 0.9415 0.8677 0.9745 0.4413 0.7557
TEND 0.9977 0.9633 0.7438 0.8752 0.7987 0.4775
Euler FACT RK4 TEND Euler FACT RK4 TEND

Only the first time-point for each subject is used. For each metric, the uppertriangular values are p-values for the AAL labels while the lower-triangular values were
generated with the DKT31 label set (*indicates significance at p = 0.05).
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FIGURE 7 | Rich club coefficient was examined over a range of levels, k, and a constant graph density of 0.15.

to the examinations over graph density in that the same shape 4. DISCUSSION

appears for both label sets, but with a scaling difference and the 4.1. NETWORK TOPOLOGY

tracking algorithms have similar shapes but within the AAL net-  Although a number of studies have examined the reproducibil-
works, differences were found in the RK4-FACT (p = 0.0338) ity of graph metrics on structural brain networks derived from
and RK4-TEND (p = 0.0252) comparisons. The p-values for all DTI-based fiber tractography, there are no known papers that
comparisons are listed in Table 3. focus on the selection of deterministic tracking algorithm. To
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Table 3 | Functional data analysis is used along with permutation
testing to look for differences in rich club coefficients generated from
different fiber tracking algorithms.

Euler 0.3359 0.6830 0.2064
FACT 0.8944 0.0338* 0.8537
RK4 0.9282 0.7219 0.0252*
TEND 0.7548 0.8800 0.3360

Euler FACT RK4 TEND

Upper triangular p-values are for the AAL labels, while lower triangular are for
the DTK31 label set (*indicates significance at p = 0.05).

facilitate later examination of graph metrics as a function of
graph density, we first examined the reliability of identifying
subgraphs by thresholding. Using the dice coefficient as a mea-
sure of overlap we demonstrated that the intra subject agree-
ment was much higher than the inter subject agreement across
all tracking algorithms and label sets. No significant differ-
ences were found for intra-subject comparisons. The inter-subject
comparisons indicate that the TEND method most consistently
identifies similar subgraphs at a given density. However, fur-
ther analysis of additional tracking parameters is necessary to
determine the full set of conditions under which this result
holds.

4.2. NETWORK SUMMARY MEASURES OVER GRAPH DENSITY

Global and local efficiency are the most robust to choice of
fiber tracking algorithm, and have high levels of reproducibility
across density levels. Assortativity and characteristic path length
are highly reproducible across density levels, but are sensitive to
choice of fiber tracking algorithm. In general, the portions of the
graph curves at low density value and less reproducible than the
segments at high density. For many metrics, the graph curves
strongly converge at high density values suggesting that examin-
ing the metrics at those densities may be of little use. Examining
both the mean graph curves and ICC plots may provide guid-
ance for the range of densities that should be looked at in a group
comparison study.

4.3. RICH CLUB COEFFICIENT OVER NODE-DEGREE

The examination of rich club coefficient as a function of degree-
level demonstrates the use of graph curves over a parameter other
than graph density. Consistency appears to have a somewhat
inverse relationship to the coefficient as a function of node degree
level. This is a result of the fact that the rich club coefficient values
converge at high and low densities. Here, all graphs were thresh-
olded at the maximum density achievable by all graphs. Because
network size is held constant here, the average node degree would
drop with lowered density, and additional work is required to
more understand the relationship between graph-density and
degree-level that would provide the most reproducible results.

4.4. LIMITATIONS AND FUTURE DIRECTIONS

The are a number of methodological limitations to the work pre-
sented here. We limited the fiber tracking to deterministic meth-
ods and used constant shared parameters for these methods. The

influence of these parameters on individual tracking algorithms
and the resulting graph metrics demands further exploration. In
the choice of anatomical label sets, we limited the analysis to a set
of manually defined labels, and a often used set of template-based
labels. In each case we used the labels “as-is” without upsampling
to a higher number of regions. This may reduce the reproducibil-
ity of the networks, but provides more interpretable results if one
wishes to examine individual connections or a subset of con-
nections (e.g., default mode network) since the labels have well
defined anatomical associations.

The use of a data with relatively low angular resolution and
the use of the diffusion tensor model are both limiting factors in
the work presented here. To some degree, the choice of diffusion
model is limited by the data used here. However, these limitations
are representative of a great deal of existing data sets. Thus, the
work presented here provides insight into the utility of using this
data to examine network-wide structural connectivity properties.
Additionally this work provides a baseline analysis. This allows
methods using more sophisticated techniques, such as diffusion
spectrum imaging and it’s associated models, to demonstrate the
added value of those methods. Without this baseline, the added
benefit of these more complex techniques is less clear due to a
lack of sufficient context.

An additional limitation of this work is the use of streamline
count matrices as the basis for thresholding to create constant
density graphs. Multiple options exist for normalizing the stream-
line count matrices using the volumes of the target cortical
regions and/or the average length of the streamlines the connect
two regions. The volume based normalization may accommodate
the differences that are seen between graph curves that were gen-
erated using the different anatomical labels. However, the focus
here was on the influence of the fiber tracking and no direct com-
parisons were made between graph curves generated from the
different label sets. A number of additional options exist for cre-
ating a weighted connectivity matrix including the average FA of
fibers that connect two regions. Since the data set examined also
includes magnetization transfer data, the average magnetization
transfer ratio along streamlines could potentially be useful as it
directly related to myelin content in white matter. These issues
were beyond the scope of the current study but would make for
an intriguing extension of the current work.

The selection of graph metrics for analysis is another limi-
tation of the study. An exhaustive examination of all possible
graph metrics was not feasible so metrics that have been stud-
ied previously were chosen to give additional context to existing
work. Many of the metrics examined have alternate formulations
for weighted graphs. Here, only unweighted graph metrics were
examined as they are prevalent in current literature. The creation
of a testing framework that relies upon a public data set and open-
source code was intended to facilitate the further exploration of
the issues listed here.

4.5. CONCLUSION

This study evaluate the reproducibility of graph summary metrics
in structural brain networks derived from DTI based determin-
istic fiber tractography. Four different fiber tracking algorithms
were examined along with two different anatomical label set. A
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number of graph metrics were examined by creating graph curves
that capture how a metric changes over a parameter such as graph
density. ICC plots were used to evaluate the reproducibility of
the metrics and FDA was used to identify significant differences
between graph curves generated using different fiber tracking
algorithms. While differences between the tracking algorithms
were not drastic, they were significant in many cases, suggesting
that future studies should give careful consideration to the choice
of fiber tracking algorithm based upon the graph metric that will
be analyzed.

4.6. DATA SHARING

Free, publicly-available data and software was used through-
out. The scripts used to generate the data and figures are
available at: https://github.com/jeffduda/StructConnRepro. This
repository contains the configuration file that, when added
to ITK, will download and compile Petiole which builds
the executables that were used to generate the graph met-
rics examined in this study. The template with labels is
available at http://figshare.com/articles/Kirby_multivariate_tem
plate/852989, the final segmentations used as the target regions
for fiber tracking are available at http://figshare.com/articles/
MMRR21_DTI_Targets/850369 to provide a convenient starting
point for reproducing or extending the methods presented here.
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