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Partial directed coherence (PDC) and directed coherence (DC) which describe
complementary aspects of the directed information flow between pairs of univariate
components that belong to a vector of simultaneously observed time series have recently
been generalized as bPDC/bDC, respectively, to portray the relationship between subsets
of component vectors (Takahashi, 2009; Faes and Nollo, 2013). This generalization is
specially important for neuroscience applications as one often wishes to address the
link between the set of time series from an observed ROI (region of interest) with
respect to series from some other physiologically relevant ROI. bPDC/bDC are limited,
however, in that several time series within a given subset may be irrelevant or may even
interact opposingly with respect to one another leading to interpretation difficulties. To
address this, we propose an alternative measure, termed cPDC/cDC, employing canonical
decomposition to reveal the main frequency domain modes of interaction between
the vector subsets. We also show bPDC/bDC and cPDC/cDC are related and possess
mutual information rate interpretations. Numerical examples and a real data set illustrate
the concepts. The present contribution provides what is seemingly the first canonical
decomposition of information flow in the frequency domain.
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1. INTRODUCTION
Human behavior is primarily thought as a property that emerges
from the interaction of several brain areas, body parts, and
the environment. Understanding how these elements dynami-
cally interact is one of major themes of systems neuroscience.
Several multivariate time series methods—old and new—have
been introduced to describe the interdependence between brain
areas using signal modalities like EEG, BOLD signals, MEG and
LFP—and are collectively called connectivity measures. Partial
directed coherence (PDC) (Baccalá and Sameshima, 2001) and
directed coherence/directed transfer function (DC/DTF) (Kamiński
and Blinowska, 1991) are two examples of such connectivity mea-
sures. Both describe complementary aspects (see Baccalá and
Sameshima, 2014 for an in depth discussion) of how informa-
tion flows between pairs of univariate time series components
that belong to a multivariate vector of simultaneously observed
time series (Takahashi et al., 2010). Recently, PDC and DC have
been generalized (as bPDC/bDC, respectively) to describe how
subsets (blocks) of components within a time series vector inter-
relate (Takahashi, 2009; Faes and Nollo, 2013). This is specially
important for neuroscience applications as one often wants to
investigate the interaction between sets of time series that are cir-
cumscribed to an observed region of interest (ROI) with respect
to another physiologically relevant ROI (Nedungadi et al., 2011).
The potential relevance of this type of question alone justi-
fies looking for their deeper meaning in terms of information
theoretical quantities.

Despite their practical importance, bPDC/bDC suffer from the
limitation that several time series within a given subset may be
irrelevant or interact in opposition to one another thereby posing
interpretation difficulties. Also, in several situations, a researcher
may be interested in just the few “best” descriptions of interac-
tion between two sets of time series but not in the total amount
of information flowing between them. For a more concrete exam-
ple, assume that two brain areas interact and that bPDC is large.
In this situation, it does not straightforwardly follow that all
brain region components are interacting in the same way, or even
whether some such components may be ignored. One way to
address this limitation is to decompose bPDC/bDC into different
components weighed according to relevance.

The aim of this article is twofold: (a) to provide a proper infor-
mation theoretic interpretation for bPDC/bDC and (b) to intro-
duce a canonical decomposition of information flows, henceforth
termed, respectively, canonical PDC/DC (cPDC/cDC). These new
decompositions allow us to closely mimic classical canonical cor-
relation analysis so that different dynamically relevant interaction
modes between brain areas can be exposed. Due to PDC inter-
pretability in terms of Granger causality (Baccalá and Sameshima,
2014), a consequence of the present formulation is that cPDC
represents a long sought frequency domain counterpart to time
domain canonical decompositions of Granger causality (Sato
et al., 2010; Ashrafulla et al., 2013).

The article is organized as follows. We first introduce the
background and notation necessary for the rest of the article
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(section 2). In the results section (section 3), we first show that
both bPDC and bDC between two subsets of processes are block
coherences between suitably defined underlying processes. Then,
we demonstrate that such coherences are nothing but mono-
tonic transformations of the mutual information rate between
the respective processes (Gelfand and Yaglom, 1959; Takahashi
et al., 2010; Nedungadi et al., 2011) leading immediately to their
interpretability as mutual information rates. Next, we introduce
cPDC and cDC and prove that they are the non-zero eigenvalues
of the matrices whose determinants underlie the respective bPDC
and bDC definitions (section 4). Using simulated examples and
publicly available data we illustrate the usefulness of cPDC/cDC
(section 5) followed by a brief discussion (section 6). Proof details
are left to the Appendix.

2. BACKGROUND
Let X1, . . . , XK be K distinct multivariate time series vectors with
dimension M1, . . . , MK . Using T to indicate matrix transposition,

let X(t) = [
X1(t)T, . . . , XK (t)T

]T
for each time t ∈ Z be a second

order stationary time series with spectral density matrix S(ω) at
each frequency ω ∈ [−π, π). To justify our formal computation,
we assume that S(ω) is uniformly bounded from below and above
and invertible at all frequencies (Hannan, 1970). This is called
the boundedness condition which guarantees that the following
autoregressive (AR) representation of X holds in the mean square
sense

X(t) =
+∞∑
l = 1

A(l)X(t − l) + ε(t), (1)

where ε(t) = [
ε1(t)T . . . εK (t)T

]T
stands for a zero mean inno-

vation process, i.e., E
[
ε(t)ε(t)T

] = � and E
[
ε(t)ε(l)T

] = 0 for
l �= t. For l ≥ 1, A(l) are (M1 + . . . + MK )2-dimensional matri-
ces. Let Apq(l) for p, q ∈ {1, . . . , K} and l ≥ 1 be Mp × Mq-
dimensional matrices so that A(l) has the following structure

A(l) =
⎡
⎢⎣

A11(l) . . . A1M(l)
...

. . .
...

AM1(l) . . . AMM(l)

⎤
⎥⎦

We define Ā(ω) = I − ∑
l ≥ 1 A(l)e−√−1ωl.

Under the boundedness condition, the following moving aver-
age (MA) mean square sense representation for the process X also
holds

X(t) =
+∞∑
l = 0

H(l)ε(t − l), (2)

where H(l) for l ≥ 0 are (M1 + . . . + MK )2-dimensional matri-
ces. Let H̄(ω) = ∑

l ≥ 0 H(l)e−√−1ωl. We have that Ā∗(ω) =
H̄−1(ω) for all ω ∈ [−π, π). The superscript ∗ indicates the
matrix complex conjugate.

Let P(ω) = S−1(ω). bPDC from the multivariate process Xj

to the process Xi at frequency ω, denoted π
(b)
ij (ω), is defined

(Takahashi, 2009; Faes and Nollo, 2013) by

π
(b)
ij (ω) = 1 − det

(
Pjj(ω) − Ā∗

ij(ω)�−1
ii Āij(ω)

)
det

(
Pjj(ω)

)−1
,

(3)

where det indicates the determinant and the subscript indices
relate to the natural block structure associated with the matrices.

Let � = �−1. bDC from the multivariate process Xj to the

process Xi at frequency ω, denoted γ
(b)
ij (ω), is defined (Takahashi,

2009; Faes and Nollo, 2013) by

γ
(b)
ij (ω) = 1 − det

(
Sii(ω) − H̄ij(ω)�−1

jj H̄∗
ij (ω)

)
det (Sii(ω))−1 .

(4)

Note that the present bDC definition differs slightly from the one
in Faes and Nollo (2013). We removed the unnecessary condition
of strict causality, i.e., diagonality of �, simply by substituting
�−1

jj by �−1
jj in their definition of bDC as it is more suited for

formulating information theoretic results as shown ahead.
Consider a second-order stationary multivariate process

W(t) = [
Y(t)T Z(t)T

]T
. The block coherence between Y and Z

at frequency ω is defined as (Nedungadi et al., 2011)

C(b)
YZ (ω) = 1 − det (SWW (ω)) det (SYY (ω))−1 det (SZZ(ω))−1. (5)

Observe that we used the process name in the subscript of the
power spectrum S to indicate the corresponding spectral density
matrices. In the rest of the article, we will use interchangeably
the process name or the corresponding indices in the subscript
whenever there is no ambiguity.

Another important definition is that of mutual information
rate (MIR) between two multivariate strictly stationary processes
Y and Z is

MIRYZ = lim
t→+∞

1

t
E

[
log

dP(Y(1), . . . , Y(t), Z(1), . . . , Z(t))

dP(Y(1), . . . , Y(t))dP(Z(1), . . . , Z(t))

]
.

(6)

The classical relationship between block coherence (Equation 5)
and mutual information rate (Equation 6) follows from

Theorem. (Gelfand and Yaglom, 1959; Pinsker, 1964) If Y and Z
are jointly stationary Gaussian processes satisfying the boundedness
condition, we have that the MIR between Y and Z is given by

MIRYZ = − 1

4π

∫ π

−π

log
(

1 − C(b)
YZ (ω)

)
dω. (7)

Now, following Takahashi et al. (2010), we define, for
i ∈ {1, . . . , K}, the partialized process ηi by

ηi(t) = Xi(t) − E
[
Xi(t)| {Xj(l), j �= i, l ∈ Z

}]
, (8)

where E[	|	] henceforth denotes the best linear conditional
predictor. Likewise the partialized innovation process ζi for i ∈
{1, . . . , K} is

ζi(t) = εi(t) − E
[
εi(t)| {εj(t), j �= i

}]
. (9)
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Observe that both partialized process and partialized innovation
process were defined in Takahashi et al. (2010) but for the special
case of scalar ηi and ζi.

3. RELATION BETWEEN bPDC/bDC AND MUTUAL
INFORMATION RATE

Our first result establishes the relationship between bPDC and
block coherence and is analogous to Theorem 1 in Takahashi et al.
(2010).

Theorem 1. Let X satisfy the boundedness condition. For all
i, j ∈ {1, . . . , K} and all frequencies ω ∈ [−π, π) we have that

π
(b)
ij (ω) = C(b)

εiηj
(ω). (10)

A straightforward corollary is

Corollary 1. Let X be a stationary Gaussian process and satisfy the
boundedness condition. For all i, j ∈ {1, . . . , K} we have that

MIRεiηj = − 1

4π

∫ π

−π

log
(

1 − π
(b)
ij (ω)

)
dω. (11)

Similar results also hold for bDC.

Theorem 2. Let X satisfy the boundedness condition. For all
i, j ∈ {1, . . . , K} and all frequencies ω ∈ [−π, π) we have that

γ
(b)
ij (ω) = C(b)

Xiζj
(ω). (12)

and

Corollary 2. Let X be a stationary Gaussian process and satisfy the
boundedness condition. For all i, j ∈ {1, . . . , K}, we have that

MIRXiζj = − 1

4π

∫ π

−π

log
(

1 − γ
(b)
ij (ω)

)
dω. (13)

4. CANONICAL PDC AND DC
Canonical correlation is a classical method developed initially
by Hotelling (1936) to address the relationship between ran-
dom vectors. Brillinger (1981) generalized the method for time
series and gave an excellent account of the relationship between
canonical correlation analysis and different ideas in multivariate
statistics. Our formulation of canonical coherence is equivalent to
the definition introduced by Brillinger (1981).

Let Y and Z be respectively MY - and MZ-dimensional jointly
second order stationary processes. To better understand the rela-
tionship between Y and Z, we can ask the following question:
Which components of Y and Z are most representative of the
interaction between the processes? One way to formalize this is to
consider filtering matrices BY (l) ( 1 × MY ) and BZ(l) ( 1 × MZ),
for all l ∈ Z and define the scalar processes bY and bZ by

bY (t) =
∑
l ∈ Z

BY (l)Y(t − l) (14)

and

bZ(t) = ∑
l ∈ Z

BZ(l)Z(t − l), (15)

so that CbY bZ (ω) is maximized for all ω ∈ [−π, π). If further-
more Y and Z are jointly stationary Gaussian processes, then this
is equivalent to maximizing MIRbY bZ .

Following the above idea, we define the first canonical coher-
ence between Y and Z at frequency ω by

C(c1)
YZ (ω) = sup

BY ,BZ

CbY bZ (ω). (16)

Assume that the supremum (Equation 16) is achieved for b̄Y

and b̄Z , which we call first canonical time series. Consider the
residual processes Y1(t) = Y(t) − E

[
Y(t)| {b̄Y (l), l ∈ Z

}]
and

Z1(t) = Z(t) − E
[
Z(t)| {b̄Z(l), l ∈ Z

}]
. Observe that Y1 and Z1

are uncorrelated to the processes b̄Y and b̄Z , respectively. The sec-

ond canonical coherence C(c2)
YZ (ω) is defined recursively on the

residues by C(c2)
YZ (ω) = C(c1)

Y1Z1 (ω).
Analogously, for 2 ≤ m ≤ min{MY , MZ}, considering the

residual processes

Ym(t) = Ym − 1(t) − E
[
Ym − 1(t)| {b̄Yk (l), l ∈ Z,

k ∈ {1, . . . , m − 1}}]
and

Zm(t) = Zm − 1(t) − E
[
Zm − 1(t)| {b̄Zk (l), l ∈ Z,

k ∈ {1, . . . , m − 1}}],
one may define the m-th canonical coherence as

C(cm)
YZ (ω) = C(c1)

Ym − 1Zm − 1 (ω). (17)

In this way, it is possible to construct a hierarchy of coherences
where each element captures the dependence structure that is not
explained by the other elements.

Finally, we introduce cPDC and cDC. For m ≤ min{Mi, Mj},
the m-th canonical PDC from j to i at frequency ω denoted

π
(cm)
ij (ω) is defined by

π
(cm)
ij (ω) = C(cm)

εiηj
(ω). (18)

Similarly, the m-th canonical DC from j to i at frequency ω

denoted γ
(cm)
ij (ω) is defined by

γ
(cm)
ij (ω) = C(cm)

Xiζj
(ω). (19)

At first sight, it is unclear whether the canonical PDC and DC
exist at all or even if they are uniquely defined. More importantly,
nor is it obvious that it is possible to compute them. Despite these
initial uncertainties, we show next that canonical coherences are
consistently defined as the non-null eigenvalues of some specific
matrices.
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Let λm(Q) denote its m-th eigenvalue from matrix Q ordered
from its largest to its smallest value. The following theorem
furnishes a practical way to calculate cPDC and cDC.

Theorem 3. Under the boundedness condition for X the following
identities hold:

π
(cm)
ij (ω) = λm

(
Ā∗

ij(ω)�−1
ii Āij(ω)P−1

jj (ω)
)

(20)

and
γ

(cm)
ij (ω) = λm

(
S−1

ii (ω)H̄ij(ω)�−1
jj H̄∗

ij (ω)
)
. (21)

Furthermore it is possible to relate bPDC/bDC and
cPDC/cDC via

Theorem 4. Under the same conditions of Theorem 3 the following
identities hold:

π
(b)
ij (ω) = 1 −

min{Mi,Mj}∏
m = 1

(
1 − π

(cm)
ij (ω)

)
(22)

and

γ
(b)
ij (ω) = 1 −

min{Mi,Mj}∏
m = 1

(
1 − γ

(cm)
ij (ω)

)
. (23)

A simple consequence of Equations (22), (23) is that for station-
ary Gaussian processes satisfying the boundedness condition, we
now have a decomposition of the mutual information rates

MIRεiηj =
min{Mi,Mj}∑

m = 1

− 1

4π

∫ π

−π

log
(

1 − π
(cm)
ij (ω)

)
dω (24)

and

MIRXiζj =
min{Mi,Mj}∑

m = 1

− 1

4π

∫ π

−π

log
(

1 − γ
(cm)
ij (ω)

)
dω. (25)

Note how the quantities being summed in Equations (24), (25)
are formally themselves contributions to the mutual information
written in terms of their canonical coherence contributions.

5. ILLUSTRATIONS
5.1. SIMULATED MODELS
Example 1. To provide insight into cPDC behavior, we begin with
a very simple example that can be fully and explicitly solved.

Let a vector of observed time series [Y1, Y2, Y3, Y4] be a real
valued autoregressive process of order p = 1 and � = I. The
autoregressive coefficients of the model are described by

A(1) =

⎛
⎜⎜⎝

.5 f 0 0
e .5 0 0
a b .5 h
c d g .5

⎞
⎟⎟⎠, (26)

as in Figure 1.

FIGURE 1 | Connectivity diagram for Example 1. The number of
canonical components depends on the value of ad − bc.

By adopting time series blocks as X1 = [Y1 Y2] and X2 =
[Y3 Y4], when e = f = g = h = 0, direct computation shows that

the canonical PDC from block X2 to X1 is zero, i.e., π
(c1)
12 (ω) =

π
(c2)
12 (ω) = 0 for all ω (reflecting the nullity of the 2 × 2 A(l) right

side upper block), whereas the coupling in the opposite direction
contributes two distinct components:

π
(c1)
21 (ω) = a2 + b2 + c2 + d2 + √

(a2 + b2 + c2 + d2)2 − 4(ad − bc)2

2.5 − 2 cos (ω)
(27)

and

π
(c2)
21 (ω) = a2 + b2 + c2 + d2 − √

(a2 + b2 + c2 + d2)2 − 4(ad − bc)2

2.5 − 2 cos (ω)
.(28)

For ad = bc—i.e., if the lower left 2 × 2 block determinant of A(l)
is zero as well, the total number of non-zero cPDC components
reduces to just 1.

Even if e, f , g, h are non-zero, i.e., regardless of intrablock
dynamics, a = b = 0 suffices to produce the single non-zero

π
(c1)
21 (ω) component (shown in Figure 2A) since block X1 inter-

acts with block X2 exclusively through Y4, i.e., π
(c2)
21 (ω) ≡ 0. In

this case, since only Y4 is directly impacted by the interaction,
only one combined source of variance exists even though two
links exist between the blocks. Likewise if b = d = 0, even though
two links leave X1, there is only one dynamical component that
counts.

This contrasts with the situation when b = c = 0 where two
non-zero π

(c2)
21 (ω) coexist (Figure 2B) regardless of the values of

e, f , g, h which, nonetheless, contribute to the relative size of the
components.
Example 2. In the next example, a 10-variate time series
(Y1, . . . , Y10) follows the connectivity diagram represented in
Figure 3. The multivariate time series is divided into four blocks
(X1, X2, X3, and X4), where X4 only sends information and X3,
which is an integrative block, only receives information. Block
X1 has two functionally distinct internal parts, and only one is
reached by outside influence. The scenario is fairly complicated
and we next illustrate cPDC/cDC usefulness for understanding
the underlying dynamic interaction between blocks.
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A B

FIGURE 2 | Illustrative plots of the observations in Example 1. (A)

cPDC21 results for e = f = g = h = 0 in Example 1 revealing just one
non-zero component under the ad = bc condition. (B) cPDC21 when
b = c = 0 and non-zero a and c in Example 1 leading to two non-zero
components for any non-zero values of the e, f , g, h coefficients (the graph
shown was produced using a = 0.5, b = 0, c = 0, d = 1, e = 0.3, f = −0.1,
g = 0.3, h = 0.4).

FIGURE 3 | Connectivity diagram for Example 2 portraying how the

bock sets. Note the effect of the value of the a parameter on cDC (Figure 5

versus Figure 6).

To help interpret the results, we begin by describing the non-
zero model coefficients and their dynamical effects. Observe that
the model subscript indices in this example indicate the corre-
sponding scalar process and not the block number.

1. Block X1 = [Y1 Y2 Y3 Y4 Y5]

A1,1(1) = 1.98 cos(π/50), A1,1(2) = −(.99)2,

(low frequency oscillator in Y1 ) (29)

A2,3(1) = 1, (30)

A3,3(1) = 1.98cos(π/2), A3,3(2) = −(.99)2,

(oscillator at midband (π/2) in Y3) (31)

A5,4(1) = .99, A4,5(1) = −.99,

(oscillator at midband in [Y4 Y5] ) (32)

A8,2(1) = 1, A8,2(3) = 1, (midband notch) (33)

A6,3(1) = 1, A6,3(3) = 1, (midband notch) (34)

A9,1(1) = 1, A9,5(1) = 1. (35)

2. Block X2 = [Y6 Y7]

A6,7(1) = .99, A7,6(1) = −.99,

(oscillator identical to the [Y4 Y5]) (36)

A9,6(1) = 1. (37)

3. Block X3 = [Y8 Y9]

A8,8(1) = −1, A9,8(1) = .5. (38)

4. Block X4 = [Y10]

A10,10(1) = 1.98 cos(2π/3), A10,10(2) = −(.99)2,

(high frequency oscillator in Y10 ) (39)

A4,10(1) = a, (40)

A7,10(1) = 1. (41)

The resulting cPDC components can be appreciated in Figure 4
for |a| = 1. Among their interesting features is the existence of
the notch filtered link from X1 to X2 and to X3 at midband. The
effects of the low frequency dynamics due to Y1 and the midband
resonance due to [Y4 and Y5] manifests itself as the strongest com-
ponent from X1 to X3. Likewise the single link effect from X2 to
X3 is readily apparent as the higher frequency resonances from X4

toward both X1 and X2. Both X3 components are identically equal
to 1 since nothing leaves the block.

The corresponding cDCs are portrayed in Figure 5 for a = −1
with no signal reachability from X4 to X3. This contrasts markedly
with Figure 6 for a = 1 where X4’s indirect effects on X3 are not
balanced out.

The effects of the notch connections are readily apparent in
both cases. For example, the power associated with the notch
frequencies are the local components to X2 and X3 and cannot
be attributed to outside influence. For block X1 only one of the
five components is different from 1 reflecting the contribution
coming from X4.

5.2. EMPIRICAL DATA
This example is based on EEG data borrowed from Sameshima
et al. (2014) (Ex. 7.7), which describes a left mesial temporal
ictal episode monitored using an extended 10–20 system. The
midline electrodes were excluded and left (L) and right (R) side
electrodes were grouped as to whether they were frontal (F), cen-
tral (C), parietal (P), temporal (T) or occipital (O) leading to the
canonical PDCs portrayed in Figure 7 where the most important
connecting blocks share a dominant low pass frequency canoni-
cal component of fairly identical shape pointing to the existence

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 49 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Takahashi et al. Canonical information flow decomposition

FIGURE 4 | The cPDC for Example 2 reflects the existence of the

notch connecting filters from X1 to X2 and to X3. The intrinsic
dynamics of the oscillators from a subregion of X1 into X3 is apparent
in the resonances of the largest cPDC component. The resonance
within block X2 manifest itself in the single non-zero component into

X3 while the effect of X4 reaches symmetrically into X1 and X2 via its
single dynamic component. In this and following two figures, each
subfigure may contain up to five cPDC/cDC components, given by
min(Mi , Mj ) as in Equations (22)/(23), represented in red, blue, yellow,
green, or black lines in decreasing order of magnitude.

of a shared dominant connectivity dynamics behind the observa-
tion, see Figure 8A. Their connectivity is further summarized in
Figure 8B.

6. DISCUSSION
We showed that bPDC/bDC introduced in Takahashi (2009) and
Faes and Nollo (2013) are block coherences between properly
chosen vector time series. When the time series are Gaussian,
this implies that bPDC/bDC represent mutual information rates
between well defined underlying vector time series. This fully
generalizes the results presented in Takahashi et al. (2010). To
enhance the understanding of the possibly complex interaction
between multiple time series and overcome some bPDC/bDC
limitations, we showed that the latter can be decomposed in
canonical terms that we call cPDC/cDC. These decompositions
represent the various different modes of interaction whereby
sets of time series interact. We introduced an explicit way to
compute these new quantities and proved some of their prop-
erties. The usefulness of cPDC/cDC was illustrated by three
examples.

6.1. bPDC AND bDC AS BLOCK COHERENCES
Takahashi et al. (2010) showed that PDC from the j-th scalar time
series to the i-th scalar time series is the coherence between the
i-th innovation process and the j-th partialized process with a
similar result for DC. It is natural to ask whether an analogous

result holds for bPDC and bDC. We showed that this is indeed
the case where bPDC/bDC represent block coherences relat-
ing subsets of adequately defined innovations/partialization pro-
cesses (Takahashi, 2009; Nedungadi et al., 2011). At first sight
these identities may seem surprising as both bPDC and bDC
are fully multivariate and directional measures of dependence,
whereas block coherences are at once block-pairwise and sym-
metric measures of dependence. Yet careful reading of Theorems
1 and 2 highlights that bPDC/bDC from j to i and bPDC/bDC
from i to j are, in general, block coherences between distinct
pairs of vector processes which explains their asymmetric nature
and lends them their directed connectivity character. Also, we
note that for both bPDC and bDC, the coherences involve
innovation process subsets which explains their fully multivari-
ate characteristic as measures. Another interesting observation
is that since the innovation processes are uncorrelated to the
past of the partialized processes by construction, in the case
of bPDC only innovations in the past of the partialized pro-
cess contribute to the coherence which explains why bPDC is
a directed measure of dependence. An analogous observation
holds for bDC. In the Gaussian case, the bPDC/bDC represen-
tation as a block coherence allows relating them to the mutual
information rate between suitably chosen time series. Formally
this justifies the idea that these quantities are de facto mea-
sures of information flow. For an interesting comparison between
bPDC/bDC and Geweke’s measure of linear feedback see Faes
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FIGURE 5 | cDC for Example 2 for a = −1 leading to a cancelation of the effect of X4 on X3 as the signal travels indirectly through two exactly

identical structures but with opposite phases before reaching X3. The notch filtering action is also apparent from the cDCs from X1 to X2 and X3.

FIGURE 6 | cDC for Example 2 with a = 1 which differs from Figure 5 in the effect from X4 to X3 which no longer cancels out.
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FIGURE 7 | cPDC from the Empirical Data example (section 5.2) from the left mesial ictal episode where the largest components are represented

either in red or green. cPDC values in red were arbitrarily considered significant and were pictorially summarized in Figure 8B.

and Nollo (2013). As a small note for the reader, we observe that
our definition of bPDC/bDC is slightly more general than the
one proposed by Faes and Nollo (2013) because the covariance
matrix of the innovations does not need to be diagonal as they
assumed.

6.2. CANONICAL DECOMPOSITION OF DIRECTIONAL MEASURES
Given a pair of random vectors, it is natural to ask how to mea-
sure/represent dependence between them. In statistics, there are
two main methods, both inspired by the basic Pearson correla-
tion, to address this. The first one generalizes Pearson correlation
directly using the determinants of the covariance matrix between
and within each set of random variables. For time series, the
equivalent measure in the frequency domain is the block coher-
ence and the directed versions are bPDC and bDC. A second
generalization rests on the idea of canonical correlation intro-
duced by Hotelling (1936). There are several generalizations of
canonical correlation for time series taylored specifically to infer
Granger causality in the time domain (Sato et al., 2010; Wu et al.,
2011), but, to the best of our knowledge, cPDC and cDC are the
first proposals of canonical measures of directed dependence in
the frequency domain.

One advantage of cPDC/cDC over bPDC/bDC is that canon-
ical decomposition allows inferring the various different existing
modes of interaction between sets of time series in close analogy
to what is done for classical canonical correlation and princi-
pal component analyses. One should expect this to be useful
when several signals are redundant, generated by similar mech-
anisms, or when there are several time series that do not signif-
icantly contribute to the interaction between sets of time series,
e.g., when there are many brain areas that are not interacting
with each other during some specific behavior. Besides, as we
show in Theorem 4, we can recover the bPDC/bDC from the
cPDC/cDC.

6.3. INTERPRETING cPDC/cDC
The main practical interest of cPDC/cDC is to allow the simplifi-
cation of connectivity interpretations whilst giving new insights
into the dynamical interaction between neural structures. We
illustrated the achievable simplification using an EEG data set
from an epileptic patient. We also showed how cPDC is related
to the number of “modes” of interaction between sets of time
series through the simple numerical Example 1 and via the slightly
more complex Example 2. We expect that cPDC/cDC together
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A B

FIGURE 8 | (A) This corresponds to Figure 7.13 from Sameshima et al.
(2014) showing the gPDC connectivity graph (see arrows) and the scalp
electrodes grouping sets corresponding to frontal (LF, RF), temporal (LT,
RT), central (LC, RC), pariental (LP, RP), and occipital (LO, RO) areas.
The midline electrodes in gray were not considered in this analysis.
(B) Diagram for the significant first cPDC components in Figure 7 (red

lines) showing scalp electrode set connections shown in (A). Notice
some divergences between gPDC and cPDC graphs possibly due the
lack of proper rigorous statistics usage for cPDC significance level
estimation, for instance, there is cPDC from RO to LO (B), but gPDC
O2 to O1 is absent (A), while there is gPDC from C4 to T1 without
corresponding cPDC from RC to LT.

with bPDC/bDC become useful tools for handling high dimen-
sional data sets that are increasingly being recorded by several
researchers.

We propose that a reasonable way to understand the useful-
ness of cPDC/cDC is to make an analogy with classical prin-
cipal component and canonical correlation analyses. Therefore,
similar heuristics could be applied in practical situations, for
example, to decide the number of different components to
include in the interpretation. The canonical time series b̄Y

and b̄Z from section 4 (see also Brillinger, 1981) are anal-
ogous to the canonical variables from the classical canoni-
cal correlation analysis and can play a similar role for result
interpretation.

Finally we remark that the computational procedures used for
the present paper will be made available the PDC homepage at
http://www.lcs.poli.usp.br/∼baccala/pdc/canon together with the
data used in section 5.2.
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A. APPENDIX
A.1 PROOF OF THEOREMS 1 AND 2 AND COROLLARIES 1 AND 2
The proofs in this section follow the pattern of those in Takahashi
et al. (2010). The chief difference lies in the care needed regarding
the order of the products between the defining matrices. Here we
exhibit the main proof ingredients for reader convenience, with
further details available in Takahashi (2009) and Takahashi et al.
(2010).

Proof of Theorem 1 and Corollary 1. Let W = [YT ZT]T be a sec-
ond order stationary process satisfying the boundedness condi-
tion, using the following well known identity for determinants
(Lütkepohl, 1996)

det (SW (ω)) = det (SZZ(ω)

− SZY (ω)S−1
YY (ω)SYZ(ω)) det (SYY (ω)) (A1)

leads to

C(b)
YZ (ω) = 1 − det (SZZ(ω)

− SZY (ω)S−1
YY (ω)SYZ(ω)) det (S−1

ZZ (ω)) (A2)

= 1 − det (SYY (ω)

− SYZ(ω)S−1
ZZ (ω)SZY (ω)) det (S−1

YY (ω)), (A3)

under Equation (5).
Rewrite bPDC as

π
(b)
ij (ω) = 1 − det (P−1

jj (ω)

− P−1
jj (ω)Ā∗

ij(ω)�−1
ii Āij(ω)P−1

jj (ω)) det (Pjj(ω)),(A4)

so that using the following identities proved in Takahashi et al.
(2010)

Pjj(ω) = S−1
ηjηj

(ω), (A5)

Sεiηj (ω) = Āij(ω)Sηjηj (ω), (A6)

and for all ω ∈ [−π, π)

Sεiεi (ω) = �ii, (A7)

back substituted into Equation (A4) leads to

π
(b)
ij (ω) = 1 − det (Sηjηj (ω)

− Sηjεi (ω)�−1
ii Sεiηj (ω)) det (S−1

ηjηj
(ω)), (A8)

so that using Equation (A2) shows that the right-hand side of

Equation (A8) actually is C(b)
εiηj (ω) as we set out to prove. Corollary

1 is immediate from Theorem 1 and Equation (7).

Proof of Theorem 2 and Corollary 2. Theorem 2 is obtained by

rewriting C(b)
Xiζj

(ω) using Equation (A3) noting that

SXiζj (ω) = H̄ij(ω)Sζjζj (ω) (A9)

and for all ω ∈ [−π, π)

Sζjζj (ω) = �−1
jj . (A10)

Corollary 2 follows from Theorem 2 and Equation (7).

A.2 PROOF OF THEOREMS 3 AND 4
Brillinger (1981, chapter 10) introduced the idea of canonical
coherence for time series. We restate his result under our notation
as the following theorem.

Theorem 5 (Brillinger, Theorem 10.3.2). Let X and Y be m1

and m2-dimensional time-series jointly satisfying the boundedness
condition. For m ≤ min{m1, m2}, the following identity holds:

C(cm)
XY (ω) = λm(S−1

YY (ω)SYX(ω)S−1
XX(ω)SXY (ω)) (A11)

= λm(S−1
XX(ω)SXY (ω)S−1

YY (ω)SYX(ω)). (A12)

Proof of Theorem 3. From Equations (18), (A11), we have

C(cm)
εiηj

(ω) = λm(S−1
ηjηj

(ω)Sηjεi (ω)S−1
εiεi

(ω)Sεiηj (ω)). (A13)

Now, from Equations (A5), (A6), and (A7) it follows that

S−1
ηjηj

(ω)Sηjεi (ω)S−1
εiεi

(ω)Sεiηj (ω) = Ā∗
ij(ω)�−1

ii Āij(ω)P−1
jj (ω),

(A14)

which proves Equation (20).
To prove Equation (21), we use Equations (19), (A12) to obtain

C(cm)
Xiζj

(ω) = λm(S−1
XiXi

(ω)SXiζj (ω)S−1
ζjζj

(ω)SζjXi (ω)). (A15)

Finally, from Equations (A9), (A10), we have

S−1
XiXi

(ω)SXiζj (ω)S−1
ζjζj

(ω)SζjXi (ω) = S−1
ii (ω)H̄ij(ω)�−1

jj H̄∗
ij (ω),

(A16)

which concludes the proof.

Proof of Theorem 4. Rewrite bPDC as

1 − π
(b)
ij (ω) = det (I − Ā∗

ij(ω)�−1
ii Āij(ω)P−1

jj (ω)). (A17)

Now, Equation (22) is a straightforward consequence of the rela-
tionship between eigenvalues and the determinant of a matrix. A
similar argument proves Equation (23).
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