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Investigation of cellular and network dynamics in the brain by means of modeling
and simulation has evolved into a highly interdisciplinary field, that uses sophisticated
modeling and simulation approaches to understand distinct areas of brain function.
Depending on the underlying complexity, these models vary in their level of detail, in
order to cope with the attached computational cost. Hence for large network simulations,
single neurons are typically reduced to time-dependent signal processors, dismissing the
spatial aspect of each cell. For single cell or networks with relatively small numbers of
neurons, general purpose simulators allow for space and time-dependent simulations of
electrical signal processing, based on the cable equation theory. An emerging field in
Computational Neuroscience encompasses a new level of detail by incorporating the full
three-dimensional morphology of cells and organelles into three-dimensional, space and
time-dependent, simulations. While every approach has its advantages and limitations,
such as computational cost, integrated and methods-spanning simulation approaches,
depending on the network size could establish new ways to investigate the brain. In this
paper we present a hybrid simulation approach, that makes use of reduced 1D-models
using e.g., the NEURON simulator—which couples to fully resolved models for simulating
cellular and sub-cellular dynamics, including the detailed three-dimensional morphology
of neurons and organelles. In order to couple 1D- and 3D-simulations, we present
a geometry-, membrane potential- and intracellular concentration mapping framework,
with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped
to full surface and volume representations of the neuron and computational data from
1D-simulations can be used as boundary conditions for full 3D simulations and vice
versa. Thus, established models and data, based on general purpose 1D-simulators, can
be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling
approaches. We present the developed general framework for 1D/3D hybrid modeling
and apply it to investigate electrically active neurons and their intracellular spatio-temporal
calcium dynamics.

Keywords: calcium dynamics, electrical stimulation, hybrid, parallel, detailed modeling, intracellular signaling,

neuron, PDEs

1. INTRODUCTION
The level of detail, that can be achieved with experimental tech-
niques in Neuroscience is ever increasing. Intracellular organelles,
protein positioning, and messenger dynamics can be recorded
in spatial and temporal sequences, (Spacek and Harris, 1997;
Takahashi et al., 1999; Arellano et al., 2007; Chen et al., 2008;
Popov et al., 2011; Burette et al., 2012). It is obvious that processes
in neurons and the brain take place in three-dimensional space
and that the three-dimensionality is employed by the biologi-
cal system to regulate and differentiate highly complex signaling
pathways in the brain. To address the role of time-dependent,
three-dimensional signal processing and investigate the role of
morphology on signaling from a computational standpoint, an
inevitable step is to model critical processes in the brain in three
space dimensions and in time.

State of the art tools in Computational Neuroscience reduce
three-dimensional problems to one-dimensional ones. For
instance, simulators for the electrical signaling in neurons, e.g.,
NEURON (Hines and Carnevale, 2003) or Genesis (Bower and
Beeman, 1997), solve a one-dimensional numerical problem in
space. While this has great advantages in many applications, fore-
most the computational speed of the methods that allows the
simulation of large network activity, the drawback is the loss of
modeling the intra- and extra-cellular space of neurons, and being
able to include intracellular processes in a full three-dimensional
resolution. The three-dimensional organization of neurons, e.g.,
the filigreed geometry of the endoplasmic reticulum, (Spacek
and Harris, 1997) or the intra- and inter-cellular organization of
spines, (Murase and Schuman, 1999; Arellano et al., 2007; Chen
et al., 2008; Tai et al., 2008; Popov et al., 2011), demonstrates the
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necessity for modeling intracellular processes in a highly detailed
fashion in order to capture the underlying physical concepts of
cellular signaling.

The need for coupling different aspects of signal processing
in neurons has been recognized in the past (Kerr et al., 2008;
Wils and De Shutter, 2009; Andrews et al., 2010; Cannon et al.,
2010; Oliveira et al., 2010). In addition to projects focussing
on the coupling of existing simulators for parallel computing
architectures (Djurfeldt et al., 2010), the influence of spatial
channel distribution on the electrical properties (Cannon et al.,
2010) or integrating reduced intra-cellular approximations of
reaction-diffusion processes, (Resasco et al., 2012; Anwar et al.,
2013; McDougal et al., 2013a), we focus on the topic of how
the three-dimensional intracellular architecture of neurons influ-
ences intra-cellular signals and how the resulting models can be
efficiently solved on different computing scales. Thus, the key
factors are to incorporate an accurate morphology of the neu-
ron including the three-dimensional intra-cellular architecture
(which can include active and passive organelles), model a multi-
ion system described by systems of partial and ordinary differen-
tial equations (these can include the exchange mechanisms across
plasma- and organelle membranes) and allow bi-directional cou-
pling between one-dimensional membrane potential and three-
dimensional intra-cellular signaling computations. The complex-
ity of three-dimensional, detailed simulations of multi-ion sys-
tems is efficiently handled by the simulation framework uG,
where Finite Element or Finite Volume discretizations and multi-
grid methods are used to solve the underlying large linear equa-
tion systems on, potentially, massively parallel systems, (Heppner
et al., 2013; Vogel et al., in press). Making use of uG, we propose
a method to couple classical 1D-simulators for the computation
of membrane potentials, with detailed 3D-simulations within an
on-line 1D/3D-hybrid simulation framework.

In this paper we demonstrate this newly developed approach
using the example of intra-cellular calcium dynamics coupled
to the membrane potential via voltage-gated calcium channels.
While 1D simulations can be carried out with classical simula-
tors, such as NEURON or Genesis, the simulations in 3D are
based on systems of partial and ordinary differential equations
(PDEs and ODEs) describing distinct intracellular processes. In
order to merge the two into a 1D/3D-hybrid system, two things
need to be done. In the first step one needs to generate from
a 1D morphology (a compartment model geometry) a surface
and volume grid for numerical simulations in 3D and in the sec-
ond step ensure a bi-directional coupling where the membrane
potentials of the 1D simulation are mapped onto the surface
of the 3D problem as boundary conditions for the numerical
problem and the computed intra-cellular ion concentrations are
mapped back to compute updated membrane potentials. For this
we developed automated tools to compute the necessary mor-
phology representations of a neuron and to allow bi-directional
coupling.

For the neuron surface meshing in 3D, we employ a triangu-
lation algorithm that makes use of the coordinates and radii of
anatomical reconstructions, stored in e.g., hoc- or swc-format, to
compute an equivalent surface mesh of the reconstructed neu-
ron. We used TetGen (Si, 2009) to generate, from the surface grid,

an intra- and extra-cellular tetrahedral volume grid. In order to
associate grid nodes from the triangular surface grid with nodes
from the compartment model geometry we developed Vm2uG, a
tool that uses a nearest neighbor-algorithm and kd-search algo-
rithm to perform the mapping of membrane potential data onto
the triangulated surface of the 3D-neuron.

In this paper we chose a setup consisting of a multi-
compartment model of a CA1 stratum radiatum interneuron
taken from Katona et al. (2011) and carried out simulations
for electrical signal processing in NEURON. We then used the
presented methods to couple 1D and 3D models and simu-
lated calcium dynamics in the full three-dimensional intracellular
space under various parameter settings. Based on these examples,
we introduce our methods and tools for 1D/3D-hybrid modeling
and show how existing models and data can be incorporated into
highly detailed, three-dimensional simulations.

2. RESULTS
The methods described here couple one-dimensional electrical
models and three-dimensional models for intra-cellular signaling.
We chose the CA1 interneuron from Katona et al. (2011) and its
neuron morphology made available on NeuroMorpho.org (Ascoli,
2006) and on ModelDB (Migliore et al., 2003). Simulations of
the membrane potential dynamics in 1D, i.e., on a compart-
ment model level, were performed with NEURON (Hines and
Carnevale, 2003; Carnevale and Hines, 2006), using a standard
set-up defined in the Materials and Methods, section. Since
intra-cellular processes are strongly regulated by calcium, e.g.,
(Milner et al., 1998; Bading, 1998; West et al., 2002; Clapham,
2007; Tai et al., 2008), we chose calcium dynamics regulated by
plasma membrane-located calcium channels with a given den-
sity, thus modeling effectively a channel conductance density, and
a diffusion-reaction process in the neuronal cytosol as a repre-
sentative of three-dimensional, intracellular signaling in neurons.
3D simulations were carried out in uG, Bastian et al. (1997);
Vogel et al. (in press). Note, that this is a representative setup
which is applicable to any other 1D simulations and 3D intracel-
lular processes. The coupling of both models here occurs on the
level of calcium channels—these require the membrane poten-
tial in space and time on the plasma membrane, the local intra-
and extra-cellular calcium concentrations, as well as the geometry
itself. In this section we will introduce the models and the simula-
tion set-up, methods for grid generation and membrane potential
mapping, and will show simulation results for the described
1D/3D hybrid simulation approach.

2.1. THE 3D CALCIUM MODEL
For this study we consider a calcium model on the continuum
scale, including the following components:

1. Morphology: The morphology and thus the computational
domain is defined by a standard compartment model, e.g., in
the hoc-format (see Supplemental Figure S1 for an example).
This morphology is then mapped to an equivalent three-
dimensional computational domain.

2. Membrane potential: The membrane potential is an input
parameter for the calcium channel models and is computed
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by the 1D simulations and provided to the calcium channel
models as input data.

3. Calcium channels on the plasma membrane: Based on the
models by Borg-Graham (Graham, 1999), we define N-/L-
or T-type calcium channels (see Materials and Methods).
Channel densities can be space-dependent, thus inhomoge-
neous channel distribution is possible.

4. Cytosolic calcium dynamics: In this study we consider diffu-
sion of calcium and reaction of calcium with buffers in the
cytosol. The computed calcium concentrations are mapped to
the 1D model to compute calcium-dependent currents.

We can formulate the above points mathematically as an initial-
value boundary problem for a diffusion-reaction model. To this
end, let us denote the neuron geometry as �, which is a compact
subset of R

3, such that

• � ⊂ R
3 with plasma membrane boundary � = ∂�,

• �̄ := � ∪ ∂� and
• � ∩ ∂� = ∅

which defines the space-time cylinder

Z := �×]0, T[⊂ R
3 × R

+, ∀(x, t) ∈ Z : T > t > 0. (1)

� is the problem-associated domain for the 3D model, recon-
structed from the original compartmental model geometry
defined, in our case, by a hoc file. Furthermore let c(�x, t) be
the calcium concentration function. Then the diffusion-reaction
problem can be stated as

∂c(�x, t)

∂t
= D ·�c(�x, t)+ R(c) in � (2)

c(�x, 0) = c0(�x), in � (3)

∂c(�x, t)

∂�n = �(Vm(�x, t), �x, t), on ∂�, (4)

where D denotes the diffusion coefficient for cytosolic calcium,
� :=∑3

i=1 ∂2/∂x2
i is the Laplace-Operator and R(c) a reaction

term that depends on the calcium concentration c. Note that,
the vector �n denotes the direction perpendicular to the bound-
ary surface. Equation (3) is the initial condition, i.e., a calcium
distribution for t = 0 in the cytosol defined by the function c0(�x).
Function � defines a Neumann flux boundary condition, regu-
lating the calcium flux through N-/L- or T-type calcium chan-
nels, and thus also depends on the space- and time-dependent
membrane potential Vm(�x, t). � in this study is specified by Borg-
Graham model type calcium channels, which are listed in the
Materials and Methods section.

Cytosolic interaction of calcium with mobile and stationary
buffers is governed by reaction equations of the type:

B := kon,Bmobile [Ca2+] · [Bmobile] − koff ,Bmobile · [CaBmobile] (5)

as well as the conservation law for the buffer concentration:

[CaBmobile] = Bmobile,total − [Bmobile] (6)

The spatio-temporal dynamics of buffering molecules are
described by a diffusion-process

∂Bmobile(�x)

∂t
= DBmobile ·�Bmobile(�x)− B (7)

For stationary buffers the diffusion coefficient DBmobile can be
set to zero. The parameter values of the model equations used
throughout the paper are listed in Table 1.

Note, that our framework is not limited to the above exam-
ple of calcium/buffer dynamics. The employed multi-physics
platform uG has been successfully used in a wide variety of appli-
cations, ranging from, but not limited to, simulations of skin
permeability in pharmaceutical applications (Hansen et al., 2008;
Nägel et al., 2008, 2009; Muha et al., 2011) to groundwater flow
studies (Grillo et al., 2010) and biogas reactor modeling (Muha
et al., 2012). The latter demonstrates the use of the framework for
large chemical reaction systems. The 3D intra-cellular model pre-
sented here can thus be extended to include multiple ion species
that are non-linearly coupled, resulting in a non-linear system of
PDEs.

2.2. COMPONENTS OF THE HYBRID FRAMEWORK
As mentioned earlier, our hybrid 1D/3D framework consists of
geometry matching and the coupling of 1D membrane poten-
tial simulations and 3D intra-cellular simulations. Computational
grids for numerical simulations in 3D rely on a geometry-defining
surface grid and a discrete representation of the computational
domain, i.e., a volume grid. Approximation of unstructured
domains is ideally done by a triangular surface and tetrahe-
dral volume grid. These grids need to be generated using the

Table 1 | Parameters used for the simulations using the 1D/3D hybrid

framework.

NEURON uG

dt [ms] 0.1 0.1

stim.dur [ms] 10 –

stim.amp [nA] 0.1 –

timesteps [#] 10000 10000

Boundary Condition – Vm from NEURON

Calcium diffusion coefficient [µm2 · s−1] 20–100 20–100

VGCC density [µm−2] 200–1000 200–1000

Buffer kon [µM−1 ·ms−1] - 0.09

Buffer koff [ms−1] – 0.24

Buffer diffusion coefficient [µm2 ·ms−1] – 0.043

Total buffer concentration [µM] – 20

Extracellular calcium concentration [mM] 1.6 1.6

Intracellular calcium concentration [µM] 0.1 0.1

Temperature [K] 300 300

The calcium diffusion coefficient was varied across the ranges documented in

Allbritton et al. (1992) and the VGCC density was varied according to Pumplin

et al. (1981); Eggermann et al. (2011). Values for the buffer kinetics and diffusivity

were taken from Nagerl et al. (2000) as well as extracellular calcium concentra-

tion from Egelman and Montague (1999) repsectively the intra-cellular calcium

concentration from Helmchen et al. (1996); Maravall et al. (2000).
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compartment geometry information, provided by the 1D model
as, e.g., a hoc- or swc-file. To provide an automated way for gener-
ating surface and volume grids from anatomically reconstructed
geometries, we developed novel tools and combined them with
existing ones, which

1. Integrate NEURON to perform 1D simulations of membrane
activity in neurons.

2. Generate triangular surface grids from hoc-style neuron mor-
phology files.

3. Map 1D simulation data of membrane potentials from
compartment geometries onto the two-dimensional neuron
membrane (Vm2uG) which are used as boundary condi-
tions for membrane potential-dependent channels in the
3D model.

4. Integrate ion concentrations on the equivalent surface grid to
feedback into the NEURON simulation.

The general workflow of the 1D/3D coupling is depicted in
Figure 1. Using the graph-structure data contained in neuron
compartment geometry files, we generate an equivalent 3D geom-
etry with the compartment model graph as its “backbone.” This
procedure is fully automated and quality controlled and will be
discussed in a forth-coming paper. Since our presented frame-
work is not limited to the grid generator used here, we would
like to acknowledge the efforts of other authors addressing sur-
face grid generation from point-diameter information, (e.g.,
McDougal et al., 2013b).

In Figure 2 we show the in hoc-style defined neuron over-
layed by the corresponding three-dimensional neuron, which can
be used for the full-spatial simulation of intra-cellular processes.
The quality of the volume grid influences the numerical accuracy
and stability. In particular the tetrahedral angles are a means of
determining the grid quality (Deuflhard and Weiser, 2011). For
the grid used in this paper we measured minimal and maximal
aspect ratios of the the triangular surface grid ARtri and the tetra-
hedral volume grid ARtet respectively, yielding values between
0.14 ≤ ARtri ≤ 0.86 and 0.21 ≤ ARtet ≤ 0.8. As a guideline one
can state that aspect ratios above 0.1 result in grid elements that
do not affect numerical stability (Shewchuk, 2002; Deuflhard and
Weiser, 2011; Thompson et al., 2012).

2.3. MEMBRANE POTENTIAL MAPPING—VM 2UG
In 1D compartment models the membrane potential Vm is com-
puted in one node per cylindrical compartment. In the 3D setting
each original cylinder is now represented by a segment of the
triangular surface grid, thus the membrane potential from one
cylinder node needs to be mapped onto a calculated cluster of
nodes in the triangular surface grid.

Associating each grid point �y := (y1, y2, y3) of the 3D mor-
phology with compartment model grid points �x := (x1, x2, x3)
(Figure 1) and the corresponding membrane potentials Vm over
the time-course of a simulation thus requires a mapping

Vm2uG : R3 × R
+ × R→ R

3 × R
+ × R (8)

(�x, t, Vmx ) 
→ (�y, t, Vmy )

FIGURE 1 | Workflow of the 1D/3D hybrid framework. The workflow can
be separated into 1D and 3D modeling and simulation and into a set-up and
simulation phase. In the set-up phase a general purpose simulator is used to
define the one-dimensional problem (e.g., a hoc-geometry and set-up file).
The 3D setup consists of generating a three-dimensional representation of
the defined neuron and of specifying the cellular and intra-cellular

components of the model problem. In the simulation phase 1D membrane
potential simulation data is computed and mapped to the 3D framework.
There, the membrane potential data is included in simulating intracellular
processes, such as calcium signaling. The computed calcium data is then
mapped back to the 1D problem, where it is used to compute
calcium-dependent membrane fluxes.
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FIGURE 2 | Overlay of the multi-compartmental model defined by

NEURON (red) and the equivalent tetrahedral volume mesh by uG

(blue). (A) View of the whole neuron from Katona et al. (2011). Note,
that close to the soma local optimization of the morphology leads to
slight divergence between NEURON and uG morphology. Optimization is
performed when the multi-compartment geometry model would cause

unphysiological intersections of dendrites at the soma in 3D, due to the
fact that all dendrites in the multi-compartment description share a
common soma node. (B) Magnified views of ROIs color-coded by
rectangular boxes within the overview for comparison, showing the
compartment model geometry defining the backbone of the generated
surface grid.

that assigns a membrane potential Vmy to every grid point �y. Vmy

is set to the potential Vmx associated with the nearest neighbor
�x := (x1, x2, x3) of grid point �y with respect to all points con-
tained in the hoc-file in every timestep t of the simulation. The
distance measure for calculating the nearest neighbor can be any
Minkowski metric and is interchangeable. In this study we used
Algorithms 1 and 2 and chose the euclidean metric, or L2-norm,
such that

dist(p, q) :=
(

d− 1∑
i= 0

(pi − qi)
2

)1/2

(9)

Because the geometry information provided by the hoc-file may
be very large, i.e., the number of provided points n is large, we
implemented and tested two strategies for determining the near-
est neighbor. The first is an exact solution of the problem by space
partitioning with multi-dimensional binary search trees, k-d trees
with a search complexity O(n · log(n)) (see Bentley, 1975 as well
as Figure 3 for an example), the second strategy is the exact solu-
tion by pairwise comparison with a search complexity O(n2).
Note that we consider a three-dimensional example here, but the

mapping process is dimension-independent and can be done for
arbitrary dimensions by means of the underlying C++ library for
multi-dimensional (binary) search trees (Mount and Arya, 2012),
a library that is used in Vm2uG.

2.4. ALGORITHMS
The pairwise comparison is an exhaustive search that requires no
additional data structure but O(n ·m) iterations which is imprac-
tical if the number n of provided points on the grid is large, and
for the number of corresponding points in the hoc file holds n ≈
m, thus arriving at quadratic runtime complexityO(n2). For large
n, we therefore use the method of space partitioning (k-d trees,
Figures 3B,C) which leads to an improved average runtime com-
plexity for a query of log

( n
d

)
, with d being the space dimension.

With this approach we reach super-linear runtimes after the ini-
tial tree has been built. In contrast to the O(n2) method, we need
an additional structure, which is justified because of the overall
speedup compared to the naïve approach. The overall runtime is
dominated by the utilized search algorithm used during the ini-
tial build of the tree and the balancing of the tree itself, yielding a
complexity O(n · log(n)) (Wald and Hvran, 2006; Cormen et al.,
2011). The worst case arises if n� 2d is satisfied and the runtime
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FIGURE 3 | Basic operations. (A) General description of the nearest
neighbor search task in 2D/3D: Let S be a set of #n points with dimension
d := 2, 3. Let q be a query point. The task is to find a point r (green) in the
set S of all points (black), which is closest to the query point q [center of
sphere in (A) on the right] within a given bounding box, i.e., within a circle
(black) or sphere. (A) Pairwise comparison of all points in a radius search. B:
Space-partitioning approach using k-d trees (multi-dimensional binary
search trees). (C) An exemplary multi-dimensional binary search tree of
dimension d = 2 (enhanced and modified according to Wikipedia, 2012),
representing the space partition in (B).

Algorithm 1 | Linear interpolation

q← query point
2: NN← getNearestNeighbor(q)

iDist← NN.getDistance()
4: if dist ≤ cutoff then

NNs← getNearestNeighbors(k)
6: for i = 1→ k, j = 1→ k ∧ i �= j do

g← constructLine(NNs[i], NNs[j]) � create straight line
8: q′ ← projectOnLine(q, g) � orthogonally project onto line

if getDistance(q′, q) ≤ iDist then

10: iDist← getDistance(q′, q)
Vm← g.interpLinear(q′) � linear interpolation

12: end if

end for

14: end if

complexity increases per query to O
(

d · n(1− 1
d )
)

(Lee, 1997).

Yet, the curse of dimensionality is not an issue in the presented
application, since our geometry is defined in three-dimensional
space.

Vm2uG offers linear or bilinear membrane potential interpo-
lation (Algorithms 1 and 2). This can be useful if the compart-
mental representation of the neuron is very coarse and map-
ping distances become large, i.e., 3D surface grid points lie far
away from the computed nearest neighbor on the compartment

Algorithm 2 | Bilinear interpolation

q← query point
2: NN← getNearestNeighbor(q)

iDist← NN.getDistance()
4: if dist ≤ cutoff then

NNs← getNearestNeighbors(k)
6: for i = 1→ k, j = 1→ k,

l = 1→ k ∧ i �= j �= k �= l do

det← calculateDeterminant � calculate determinant
8: p← constructPlane(NN[i], NN[j],

NN[k], NN[l]) � create plane
q′ ← projectOnPlane(q, p)

10: if getDistance(q′, q) ≤ iDist then

� orthogonal project onto plane
iDist← getDistance(q′, q)

12: Vm← p.interpBilinear(q′) � bilinear interpolation
end if

14: end for

end if

geometry. Interpolation is then carried out over n ∈ N
+ pseudo

nearest neighbors to compute an optimal approximated value for
the membrane potential which is then assigned to the given grid
point.

2.5. WORKFLOW AND BIDIRECTIONAL COUPLING
We use a direct data coupling mechanism termed a type A problem
in Heterogenous Multiscale Modeling, see (Weinan et al., 2003),
utilizing an online algorithm within uG. The NEURON library is
used as a plugin/shared library within the uG project. The sim-
ulation workflow is defined in uG by a lua-script (Ierusalimschy
et al., 2013) (see Figure 4 for the script used in this paper). We
provide fully flexible control over NEURON within uG by means
of a custom API or by directly including the hoc-script (which is
then executed by the HOC language interpreter). For the latter we
developed an additional C++ wrapper.

The workflow defined in the lua-script performs the steps
illustrated in Figures 1, 4. The numerical procedures are defined
individually for NEURON and uG (see Materials and Methods),
which is necessary since the model equations for the 1D and 3D
model are of different types. The only coupling requirement is
that both simulations can synchronize their data at specific time
points, which is guaranteed by our framework.

Data exchange between 1D and 3D model is bidirectional,
where membrane potential data is passed from 1D to 3D via the
mapping algorithm presented in the previous section. The com-
puted ion concentrations in the 3D model are then passed from
3D to 1D in the following way:

Consider a cylindrical compartment Ci of the 1D model. By
∂(Ci ∩ ∂�) we denote the portion of the cell surface ∂� that is
associated with compartment Ci. We can then compute the intra-
cellular calcium concentration for Ci as

[Ca2+]Ci =
‖∂Ci‖

‖∂(Ci ∩ ∂�)‖
∫

∂(Ci∩∂�)
uCa2+(�x)

for �x ∈ ∂(Ci ∩ ∂�) and ∀i = 0, . . . , N (10)
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FIGURE 4 | Script file illustrating the setup of the NEURON and uG

model, here divided into a NEURON setup phase, a uG setup phase,

chemical model specifications and the simulation run control. One can
make use of the hoc interpreter features within the lua script files that define

the uG-setup. Note that one can specify the geometry and stimulation
protocol in distinct files and combine this with using the hoc interpreter from
uG to refine the setup by statements of the form:
HocSetup:execute(“command string”).

where uCa2+(�x) is the calcium concentration in node �x of the
3D grid and N is the number of compartments representing
the 1D geometry. ‖.‖ symbolizes the size of ∂Ci and ∂(Ci ∩ ∂�)
respectively.

The factor ‖∂Ci‖‖∂(Ci∩∂�)‖ accounts for the fact, that the surface size
of ∂(Ci ∩ ∂�) and the surface of Ci are not necessarily identical.
Computing the calcium fluxes in uG and in NEURON using

the values computed by Equation (10) shows good agreement
between the two models, see Supplemental Figure S2 as well as
Supplemental Figure S3.

2.6. SIMULATIONS USING THE 1D/3D HYBRID METHOD
We applied the described method for coupling 1D and 3D sim-
ulations to a CA1 interneuron from Katona et al. (2011), taken
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FIGURE 5 | Geometry specifications. (A) Three-dimensional neuron from
Katona et al. (2011) used in the simulations. The box highlights the region of
interest used in (B,C). (B) Triangular surface grid of a dendritic segment
including an intracellular obstacle (yellow). The arrow in (A) indicates the
position of the obstacle. (C) Triangular surface grid of a dendritic segment
without the intracellular obstacle. The surface grid can remain unaffected
by the insertion of an intra-cellular object.

Table 2 | Scaling.

Problem size [# nodes] Procs [#] Runtime [s]

4000 1 59
16,000 4 58
64,000 16 47
128,000 32 49
256,000 64 49

The 1D/3D hybrid framework exhibits weak scaling on the in-house cluster (32

nodes with each providing an Intel Core i7 CPU @ 2.67 GHz running Linux).

We solved the presented model equations using a Newton solver for the non-

linear part and used a BiCGStab method as iterative solver combined with

ILU-smoothened geometric multigrid preconditioner. Each runtime is the aver-

age of n = 10 runs each, where each run was a simulation of 1/10 s real time and

a numerical time step width of 1 ms.

from the database ModelDB (Migliore et al., 2003). We set up
a NEURON simulation with stimulation protocol (see Materials
and Methods) and generated a three-dimensional geometry for
calcium simulations that use the membrane potential data from
the NEURON simulation (Figure 5) and feeds back the com-
puted concentrations (see previous section). An overlay of hoc-
and ugx- (the uG grid format) geometry shows good agreement
between the two.

The scientific gain from 3D simulations lies in a physically
detailed representation of morphology and the underlying bio-
physical processes in neurons. These processes are regulated by
space and time-dependent variations of parameters like chan-
nel densities, cytosolic and organelle architecture, diffusivity and
of course cellular and organelle morphology. Previous work
has demonstrated the importance of investigating the spatial

organization of ion channels and their stochastic behavior,
(Oliveira et al., 2010; Brandi et al., 2011), in part using a multi-
scale modeling approach. Brandi et al. (2011) for instance present
in their abstract a platform for combining NeuroRD (Blackwell
et al., 2013) and MOOSE (Ray and Bhalla, 2008). The frame-
work employed here can be viewed as a natural extension of
previously published multi-scale approaches, with a strong focus
on resolving the intra-cellular space with additional accuracy,
rather than interpreting the intra-cellular space as a homoge-
nous space for reaction-diffusion processes. Obstacles or active
organelles, such as calcium-relevant stores (e.g., the endoplas-
mic reticulum or mitochondria), can be easily integrated into
our hybrid framework. In addition to this, our framework aims
at simulating entire neurons up to small networks with a high
level of cellular and intra-cellular detail, rather than investigat-
ing e.g., the single molecule level by Smoldyn Andrews et al.
(2010). To accomplish this, we model at the continuum scale
and make use of the massively scalable code uG, (Heppner et al.,
2013), demonstrated to perform ideal weak scaling up to 64 k
processes on the Hermit Supercomputer. In Table 2 we show
ideal weak scaling for the presented simulations on our in-house
cluster (see Materials and Methods), solving a 3D problem with
256,000 grid points in under 1 min on 64 processors. In com-
parison to other simulators, such as VCell or MCell, the VCell
website lists a 2D benchmark with a problem size of 5000–10,000
grid points and a PDE-system with 4–5 PDEs being solved in
roughly 20 min. In Balls and Baden (2004), MCell scaling stud-
ies up to 64 cores show a scaling efficiency of 85–92%, solving a
benchmark problem also in roughly 20 min. Since the underlying
models of the compared simulators differ, a direct comparison
is not necessarily valid. The presented hybrid method, based on
a continuum model is applicable ideally for whole- and multi-
cell simulations, while e.g., MCell uses particle-based methods
that so far do not go beyond spine simulations, i.e., microdomain
simulations.

In order to demonstrate some advantages of a 1D/3D hybrid
approach, we defined a standard 1D/3D simulation protocol (see
Materials and Methods) and then varied parameters, such as cal-
cium diffusivity (Allbritton et al., 1992), voltage-gated calcium
channel (VGCC) densities (Pumplin et al., 1981; Eggermann
et al., 2011), and added intra-cellular obstacles to the cytosol.

Figure 6 and the supplemental movies show calcium simu-
lations in a region of interest using the 1D/3D hybrid method,
with the calcium diffusion set to 100 µm2/s, a VGCC-density of
1000 µm−2 and no obstacle present in the cytosol (see Figure 5
for the neuron geometry used in the simulations). This exam-
ple shows how the NEURON-calculated membrane potentials
are mapped to the 3D model, where they regulate VGCCs
and detailed calcium dynamics can be simulated in full three-
dimensional space. The calcium concentrations are then mapped
back to NEURON according to the previous section.

2.6.1. Varying the diffusion coefficient
We then varied the diffusion coefficient for intracellular calcium
between 10 and 100 µm2/s, which is within the experimen-
tally observed ranges, (Allbritton et al., 1992), while the VGCC
density was set to 1000 µm−2 (Figure 7A). Figure 7B shows a
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FIGURE 6 | Time series for a simulation of intra-cellular calcium signaling

with a calcium diffusion coefficient set to 100 µm2/s, VGCC density of

1000 µm−2 and no obstacle present in the dendrite. The basal calcium
concentration is set to 100 nM. (A–F) show the propagation of calcium in a
dendrite, triggered by the the stimulation protocol listed in Table 1.
Membrane potentials were computed in NEURON and mapped to the plasma
membrane in order to compute the VGCC-dynamics regulating the calcium
exchange. Calcium concentrations were then mapped back to compute the

calcium-dependent membrane potential in NEURON. (A–F) covers 1s of real
time. Time points shown are at 0, 0.01, 0.02, 0.03, 0.1, and 1 s. Note, the
maximum single-channel conductance was set to 60 pS according to Graham
(1999). (G) Highlighted measuring points close to the plasma membrane (pm)
in between and at the center used in (H). (H) Evolvement of the calcium
concentrations at three different points over a period of 20 ms. Note that the
VGCCs close at the peak amplitude and the calcium profile quickly adjust to a
uniform value based on the intra-cellular diffusion.

linear dependence to a global variation of the cytosolic calcium
diffusion coefficient. Note, that the diffusion of calcium does not
have to be isotropic, but can have different diffusion properties in
the three space-dimensions. The diffusion coefficient then needs
to be formulated as a diffusion tensor

D :=
⎛
⎝ dx 0 0

0 dy 0
0 0 dz

⎞
⎠ ,

which can be defined in the uG-workflow (Vogel et al., in press).
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FIGURE 7 | Parameter variation. (A) Variation of the diffusion
coefficient regulates the intracellular calcium profile (using a constant
VGCC density). The concentration profiles computed by the hybrid
framework are validated in Figure S3 using an alternative, reductionist
approach. (B) Quantification of the peak amplitudes in (A), R2 = 0.9461
and p = 0.003, showing a linear dependency between the diffusion
coefficient and the peak amplitude. (C) Density variation of VGCCs
sharpens the concentration profile in the considered dendrite (using a
constant diffusion coefficient). (D) Quantification of the peak amplitudes
in (C), R2 = 0.99 and p = 0.018 showing a linear dependency between
VGCC density and peak amplitudes. Calcium profiles are validated by
calcium imaging data, Helmchen et al. (1996); Kits et al. (1997); Maravall
et al. (2000). VGCC densities are varied according to documented
physiological intervals up to 10000 / µm2, as reported in Eggermann
et al. (2011). (E,F) Placing obstacles of various sizes in the dendrite,
from 0 to 100 % (see Table 3) affects the locally available calcium
concentration, (E) before the obstacle and (F) behind the obstacle.

2.6.2. Varying channel densities
Next, we decided to vary the VGCC densities on the plasma mem-
brane. We placed N-type VGCCs (see Materials and Methods)
homogeneously along the dendrites at densities between 200
and 1000 µm−2 (Figure 7C). Due to an increased channel
density we observe changes in the rise and decay times, as
well as different peak amplitudes in the calcium profile. In
Figure 7D we see that the peak amplitude of the intra-cellular
calcium signal depends linearly on the VGCC density. Global
and time-dependent changes in the VGCC distribution of

the neuron can thus finely regulate the intra-cellular calcium
code.

2.6.3. Including intra-cellular obstacles
Where in a 1D model one needs to average the intra-cellular
space and approximate morphologies, the 3D approach allows a
full and detailed investigation. To demonstrate how intra-cellular
objects can be included into a simulation, we investigated calcium
dynamics in the observed dendrite with and without an intra-
cellular obstacle. For this we placed an obstacle (this could be
e.g., a mitochondrion or endoplasmic reticulum) in the center of
a dendrite (see Figure 5), defined as a cylinder that is 0.14 µm
long and has a variable circumference Cobstacle, embedded in a
dendrite of average local circumference Cneurite. We then define
the hindrance factor H of the intracellular obstacle with respect to
the surrounding cylinder for that particular section as:

H := Cobstacle

Ccylinder
∈ [0, 1] (11)

The obstacle sizes used in our simulations are listed in Table 3,
which correspond to a dendritic occupancy between 0 and 100%
(100% corresponds to a full blockage in the the dendrite). We
chose the obstacle location to be right before the most distal
bifurcation point of a certain neurite which emerges—and can
be visually traced in Figure 5A—from the left most bottom of
the soma itself. Note, that the obstacle is placed in the middle
of the considered neurite in the present use case. Intra-cellular
organelles, occupying parts of the cytosol, affect the intra-cellular
resistivity. To account for this in our 1D model, one can either
directly modify the axial resistance by changing the intra-cellular
resistance or by changing the diameter of the cylinders that har-
bor an organelle. The axial resistance Ra in a cylinder with length
l and diameter d is computed by:

Ra = Ri · 4l

d2π
(12)

where Ri is the intra-cellular resistance. The effective diameter can
be calculated for all affected compartments by:

dnew = dold − dobstacle (13)

Our framework automatically checks which compartments are
occupied by organelles and adjusts the diameters accordingly. We
observed that local intracellular signaling is affected by obsta-
cle size and position (Figures 7E,F). In more complex situations,
e.g., space occupancy by mitochondria, endoplasmic reticulum or
spine apparatuses in dendrites or spine necks, the inclusion of
these functional organelles in a three-dimensional model might
be necessary for explaining the intracellular dynamics of the neu-
ron. Active intra-cellular organelles can be easily added within the
presented framework. The user needs to define the geometry of
the organelle (which can be a detailed three-dimensional recon-
struction) and the biological exchange mechanisms across the
organelle membrane (e.g., IP3-receptors, ryanodine receptors,
SERCA pumps, sodium-calcium exchangers etc.).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 68 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Grein et al. 1D-3D hybrid modeling

Table 3 | Hindrance factors.

Hindrance [%] Obstacle volume [µm3] Obstacle surface area [µm2]

0 0.0000 0.0000
25 0.0022 0.3040
50 0.0344 1.9000
75 0.0945 3.7240
100 0.4076 8.6401

Listed above are the surface and volume sizes of the obstacles that were placed

in the dendrite for the simulations shown in Figure 7 with corresponding hin-

drance factors. A hindrance factor of 100 % represents a full blockage of the

dendritic cross-section.

3. DISCUSSION
Modeling and simulating cellular and network processes are
constrained by the complexity of the computational problem
and the availability of experimental data to validate the mod-
els. Experimental techniques are evolving, shedding new light on
the filigreed functioning of neurons and networks. Spatial and
time resolutions are becoming fine enough to resolve positions
of single proteins and receptors at synapses and the intra-cellular
domain can be investigated at increasing levels of detail. On the
other hand computational complexity increases when a model
includes biological and spatial detail, resulting in a highly detailed
three-dimensional model of neurons. Computational complexity
further increases when not only one neuron, but entire networks
need to be modeled.

To cope with network complexity, several approximation
methods for cellular and network function have been devel-
oped over the last decades. These approximations yield zero-
or one-dimensional models in space, describing neurons with
point- or compartment neuron models. Numerous specialized
and general purpose neuron simulators incorporate these basic
abstraction techniques (e.g., Bower and Beeman, 1997; Hines
and Carnevale, 2003; Gewaltig and Diesmann, 2007) and allow
the user to simulate large and complex neural network struc-
tures. These models and simulators were developed and evolved
not only around the limitations of computational power, but
also around the availability of experimental data to validate the
models. The evolution of experimental methods, computational
resources and numerical mathematics motivates the develop-
ment of neuron models that include greater physical detail.
This brings us to three-dimensional models that include the
detailed morphology of neurons, either by modeling physical
processes using stochastic (e.g., Andrews et al., 2010; Oliveira
et al., 2010) or deterministic models. We make use of the lat-
ter approach with the additional feature of being able to inte-
grate obstacles and intracellular organelles, which yields models
formulated on the continuum scale by means of systems of par-
tial differential equations. Solving these equations numerically
requires advanced mathematical tools. One general purpose plat-
form is uG (Bastian et al. 1997), which we used in this paper.
uG offers numerical discretization methods and efficient solvers
for systems of partial differential equations on highly unstruc-
tured grids and runs on massively parallel systems (Heppner
et al., 2013; Vogel et al., in press). As shown in the past,
these numerical tools are applicable and efficient on a cellular

level or in a networks with relatively small numbers of neu-
rons (Xylouris et al., 2007; Wittmann et al., 2009; Xylouris,
2013).

Given the limitations in computing resources, it is currently
not feasible to model and simulate large networks of neurons
with full single cell, three-dimensional detail. To make use of
the advantages of highly detailed three-dimensional models and
to cope with the complexity that comes with modeling large
networks of neurons, we developed a method to couple state
of the art general purpose neuron simulators, e.g., NEURON,
with three-dimensional models of single neurons. This 1D/3D
hybrid method includes automated tools to either reconstruct
three-dimensional neuron morphologies from raw microscopy
data (Broser et al., 2004; Queisser et al., 2008; Jungblut et al.,
2011), from anatomically recorded data (Wolf et al., 2013) or
from graph-structure morphologies as used, e.g., in the NEURON
Simulator in the form of hoc-files or swc-files.

In this paper we introduced a framework for geometry and
membrane potential and intra-cellular ion concentration map-
ping between 1D simulations and the equivalent 3D model. For
this we used the NEURON simulator to compute electrical sig-
nals in a compartment neuron and uG to simulate intracellular
calcium dynamics in 3D. With this approach we were able to
exploit the modeling and computational advantages that a gen-
eral purpose simulator for large networks brings, as well as the
necessary tools to investigate intra-cellular (or even extra-cellular)
processes on a very fine scale. By including the detailed mor-
phology of neurons—which can be subject to temporal adaption
due to neuronal activity (Silver et al., 1990; Korkotian and Segal,
1999; Muller et al., 2002; Van Aelst and Cline, 2004; Hayashi and
Majewska, 2005; Tada and Sheng, 2006; Wittmann et al., 2009;
Kanamori, 2013)—the interplay between cellular/organelle mor-
phology and cellular function can be systematically investigated.
Using defined stimulation protocols in NEURON, we ran 1D-
simulations mapping the results onto the three-dimensional mor-
phology as boundary conditions for a cellular calcium model
and vice versa. The calcium model consisted of a local distribu-
tion of N-type voltage-gated calcium channels, regulated by the
membrane potential and intracellular diffusion and reaction of
calcium ions with a mobile buffer. After presenting the function-
ality of the 1D/3D hybrid method on a reference parameter set,
we varied the density of voltage-gated calcium channels, the cal-
cium diffusion coefficient and introduced intracellular obstacles.
The results show that for one, the presented method is designed in
a general fashion and is thus applicable to a broad range of neuro-
biological questions and that the effect of intra-cellular obstacles,
locally changing channel densities and cytosolic diffusivity have a
substantial effect on intracellular signals.

For future research, problem-specific models can be used
within the presented framework. For instance, not only single
neurons, but entire networks could be simulated on the 1D level,
where a small subset of “key neurons” in the network can be
resolved in full three-dimensional detail (Xylouris et al., 2007).
Furthermore intra-cellular models for different ionic species,
detailed models of intra-cellular organelles, such as mitochondria
and endoplasmic reticulum calcium exchangers, protein synthesis
and synapses could be included on the 3D scale.
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4. MATERIALS AND METHODS
4.1. THE 1D ELECTRICAL MODEL
To simulate the electrical activity of the model neuron, we used
the classical Hodgkin-Huxley equations (Hodgkin and Huxley,
1952) including sodium, potassium, calcium and a leakage cur-
rent:

im = cm
∂V

∂t
+ n4g̃K (V − EK )+m3hg̃Na(V − ENa)

+g̃L(V − EL)+ ICa, (14)

where Vm is the membrane potential, cm the membrane capac-
ity, g̃Na, g̃K and g̃L are the maximum single channel conductances
for sodium and potassium channels, as well as a leakage current.
EK , ENa and EL are the reversal potentials. ICa is the calcium cur-
rent specified by Equation (26). The time and voltage-dependent
gating variables n, m, h determine the gating behavior of the
channels and are computed by the ordinary differential equation

∂x

∂t
= x∞ − x

τx
(15)

where x = n, m, h. The parameters x∞ and τx in the equations
above are computed by

x∞ = αx

(αx + βx)
(16)

and

τx = 1

αx + βx
+ τx,0 (17)

where τx,0 = 0 for x = n, m, h. The values for αx and βx are
derived from (Hodgkin and Huxley, 1952):

αn = 0.01(V + 10)

e
V − 10

10 − 1
(18)

βn = e
V
80

8
(19)

αm = 0.1(V + 25)

e
V + 25

10 − 1
(20)

βm = 4e
V
18 (21)

αh = 0.07e
V
20 (22)

βh = 1

e
V + 30

10 + 1
(23)

Solving a multi-compartment model where for each cylindrical
compartment an equation of the type

dVm

dt
= −im + Ielectrode (24)

is computed using the NEURON simulator. Numerically, the aris-
ing sets of ordinary differential equations are solved with the

Crank-Nicolson method implemented in NEURON. We chose
the CA1 stratum radiatum hippocampal interneuron published
in Katona et al. (2011) and ran the following stimulation protocol:

We inserted a current clamp at the mid of the soma and stim-
ulated with amplitude of 0.1 nA with timestep dt = 0.1 ms for a
total time of 10 ms. We then simulated 1 s of membrane potential
propagation in NEURON evoked due to that stimulation.

4.2. VOLTAGE-GATED CALCIUM CHANNEL MODELS
In order to include voltage-gated calcium channels, we used the
Borg-Graham model described for different ion channel types in
detail in Graham (1999). In our setup we included N-type cal-
cium channels gates, though the implementation allows us to also
include other types (e.g., L-/T-type gates). We define a mapping
of the calcium fluxes calculated by the VGCC-model onto the 3D
morphology:

Borg Graham : R3 × R
+ × R→ R : (xb, t, vmb ) 
→ F (25)

The dynamics of calcium ionic fluxes are described in the fol-
lowing way (Graham, 1999) and are computed inside the 1D-
simulation loop:

ICa(V, t, [Ca]i, [Ca]o) = G(V, t)F(V, [Ca]i, [Ca]o) (26)

G describes the properties of the gating functions, in particular
the open and close state-probabilities of the channels and is spec-
ified in Equation (28). F can be computed using the GHK model,
yielding

F(V, [Ca]i, [Ca]o)

= pCa
z2F2V

RT

[
[Ca2+]i − [Ca2+]o exp(− z FV

RT )

1− exp(− z FV
RT )

]
(27)

where pCa is the permeability and for N-type calcium channels is
set to the value 10−8 cm3/s. F denotes the Faraday constant, R the
gas constant and T the temperature. For the VGCCs used in the
simulations, the gating function G is defined as

G(V, t) = k(V, t)l2(V, t) (28)

Here, k and l fulfill the ordinary differential equation (15) and eqs.
(16, 17), using the following values:

αx(V) = Kx exp

(
zxγx(V − V1/2,x)F

RT

)

βx(V) = Kx exp

(−zx(1− γx)(V − V1/2,x)F

RT

)
(29)

The parameters V1/2, z, γ, K, τ0 also depend on the particular
channel and are documented in Graham (1999). We set the
values accordingly:
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V1/2,k := − 21 mV

zk :=2

γk :=0

Kk :=1.7 ms

τk,0 :=1.7 ms

V1/2,l := − 40 mV

zl :=1

γl :=0

Kl :=70 ms

τl,0 :=70 ms

It is sufficient to solve Equation (15) using the first order explicit
Euler method, in which the required membrane potential is taken
from the membrane potential mapping (Vm2uG) in each time
step.

4.3. NUMERICAL APPROACH
The calcium model used in the presented simulations is based
on a cytosolic diffusion equation with boundary conditions that
include the plasma membrane calcium exchange mechanisms,
i.e., Neumann boundary conditions representing an ionic flux
over a given surface area of the plasma membrane. This can be
stated as:

∇ · (D∇u(�x, t)) = ∂

∂t
u(�x, t) in � ⊂ R

3 (30)

with boundary conditions

∂u

∂n
= g(Channels) (31)

where u denotes the intracellular calcium concentration, D the
diffusion tensor (a 3× 3-Matrix) and g(Channels) the calcium
flux depending on the channels defined in the simulation (see
previous section). To solve Equation 30, we discretized in space
by means of first order finite volumes, treating the time derivative
by an implicit Euler method.

For this we discretized the plasma membrane geometry with a
triangular surface grid and the volume of the cell with a tetrahe-
dral volume grid. In the following we denote the discrete volume
of the neuron as � and each arising control volume box as Bi, i =
1, . . . , n. Therefore � =⋃n

1 Bi. The Finite Volume method (cf.
Eymard et al., 2000) defines an ansatz space Vh ⊂ H1(�) which
is spanned by piecewise linear ansatz functions �i(�xi) = δij and
is used as the approximation for the solution u. The approxima-
tion of u is then defined as the linear combination of these ansatz
functions, resulting in a system of linear equations

n∑
j

Aijuj = bi (32)

where A is the stiffness matrix. To solve the linear system of equa-
tions, we applied a geometric multigrid solver (smoother ILU) as

a preconditioner along with BiCGstab as the base solver for the
linear part (inner loop) and a Newton solver for the non-linear
part (outer loop), see e.g., (Hackbusch, 1985, 2003). The numeri-
cal setup and simulations were carried out in uG [see Bastian et al.
(1997); Vogel et al. (in press)].
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Supplemental Movie 1 | Simulation of 200 ms real time, perspective 1.

Supplemental Movie 2 | Simulation of 200 ms real time, perspective 2.
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