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Some studies have placed Sample entropy on the same data length constraint of
10m–20m (m: pattern length) as approximate entropy, even though Sample entropy is
largely independent of data length and displays relative consistency over a broader
range of possible parameters (r , tolerance value; m, pattern length; N, data length)
under circumstances where approximate entropy does not. This is particularly erroneous
for some fMRI experiments where the working data length is less than 100 volumes
(when m = 2). We therefore investigated whether Sample entropy is able to effectively
discriminate fMRI data with data length, N less than 10m (where m = 2) and r = 0.30,
from a small group of 10 younger and 10 elderly adults, and the whole cohort of 43
younger and 43 elderly adults, that are significantly (p < 0.001) different in age. Ageing
has been defined as a loss of entropy; where signal complexity decreases with age.
For the small group analysis, the results of the whole brain analyses show that Sample
entropy portrayed a good discriminatory ability for data lengths, 85 ≤ N ≤ 128, with an
accuracy of 85% at N = 85 and 80% at N = 128, at q < 0.05. The regional analyses show
that Sample entropy discriminated more brain regions at N = 128 than N = 85 and some
regions common to both data lengths. As data length, N increased from 85 to 128, the
noise level decreased. This was reflected in the accuracy of the whole brain analyses
and the number of brain regions discriminated in the regional analyses. The whole brain
analyses suggest that Sample entropy is relatively independent of data length, while the
regional analyses show that fMRI data with length of 85 volumes is consistent with our
hypothesis of a loss of entropy with ageing. In the whole cohort analysis, Sample entropy
discriminated regionally between the younger and elderly adults only at N = 128. The
whole cohort analysis at N = 85 was indicative of the ageing process but this indication
was not significant (p > 0.05).

Keywords: ageing, blood oxygen level dependent (BOLD), data length, functional magnetic resonance imaging
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INTRODUCTION
Recently, the application of entropy measures to investigate sig-
nal complexity and irregularity in human data has become quite
popular (Yentes et al., 2013). Entropy values reflect the number of
times the patterns in a signal are repeated and thus measure the
randomness and predictability of stochastic process and in more
general terms, increase with greater randomness (Sokunbi et al.,
2013). The computation of entropy in biological data processing
became a possible solution to the shortcomings posed by some
metrics of nonlinear time series analysis techniques such as corre-
lation dimension (Pritchard et al., 1994) and Lyapunov exponent
(Wolf et al., 1985), which require a large data set (Eckmann
and Ruelle, 1992) and assume that the time series is stationary
(Grassberger and Procaccia, 1983), a feature normally not true
for biological data. Approximate entropy (ApEn) (Pincus, 1991)
and sample entropy (SampEn) (Richman and Moorman, 2000)
are a few of the different types of entropy measures that have

evolved from the concept of entropy. Regularity and complex-
ity statistics such ApEn and SampEn are measures without the
shortcomings that correlation dimension and Lyapunov expo-
nent possess (Richman and Moorman, 2000). ApEn and SampEn
can effectively discriminate both stochastic processes and noisy
deterministic data sets in instances where measures such as spec-
tral and autocorrelation analyses exhibit minimal distinctions
(Pincus, 2001). They are also nearly unaffected by low level noise,
are robust to occasional, very large or small artifacts and give
meaningful information with a reasonable number of data points,
and are finite for both stochastic and deterministic processes
(Zhang and Roy, 2001).

The ApEn algorithm counts each sequence as matching itself
to avoid the occurrence of ln(0) in the calculations, which led to
the discussion of the bias of ApEn (Pincus, 1995). This bias causes
ApEn to be heavily dependent on data length and uniformly lower
than expected for short data lengths. Also, ApEn lacks relative
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consistency. To reduce this bias, SampEn was introduced as an
improvement of ApEn where self-matches are excluded, i.e., vec-
tors are not compared to themselves (Richman and Moorman,
2000). SampEn is the negative natural logarithm of the condi-
tional probability that two sequences remain similar at the next
point, where self-matches are not included in calculating the
probability (Richman and Moorman, 2000). Hence, a lower value
of SampEn also indicates more self-similarity in the time series.
The algorithm of SampEn is simpler than the ApEn algorithm,
requiring less time for computation. SampEn is largely inde-
pendent of data length and displays relative consistency over a
broader range of possible parameters (r, tolerance value; m, pat-
tern length; N, data length) under circumstances where ApEn
does not (Richman and Moorman, 2000).

SampEn has been used to characterize human data from a
number of imaging modalities. To mention a few, it has been
used to analyze the electroencephalogram (EEG) background
activity in Alzheimer’s disease patients (Abasolo et al., 2006). It
has further been used to analyse the spontaneous magnetoen-
cephalography (MEG) signals in patients with ADHD (Gomez
et al., 2011) and to probe the complexity of resting state fMRI
activity in adult patients with ADHD (Sokunbi et al., 2013). More
recently, it has been used to examine the whole brain entropy
patterns of a large cohort of normal subjects using fMRI (Wang
et al., 2014). In all three brain imaging modalities, fMRI had the
shortest data length. Since there are no laid down guidelines for
choosing parameters to compute SampEn for all modalities of
biomedical signals, some investigators have made suggestions for
selecting parameters to use. Abasolo et al. (2006) suggested that
to estimate SampEn of EEG accurately, a data length of 10m–20m

is required. Here, they used parameters m = 1, r = 0.25, and
N = 1280 data length. In a recent study, Yentes et al. (2013)
examined the robustness of ApEn and SampEn algorithms by
exploring the effect of changing parameter values on short data
sets using both theoretical and experimental data (musculoskele-
tal data with a data length of 200). In conclusion, they suggested
to use a data length larger than 200, an m of 2, and to examine
several r-values before selecting parameters. However, they also
noted that SampEn was less sensitive to changes in data length and
demonstrated fewer problems with relative consistency. Also, in
another recent study of fMRI multiscale sample entropy analysis,
SampEn was placed at the same data length threshold of 10m–20m

with ApEn (Yang et al., 2013), even though it is largely inde-
pendent of data length and displays relative consistency under
circumstances where ApEn does not (Richman and Moorman,
2000).

The developers of SampEn (Richman and Moorman, 2000)
tested the consistency of SampEn for very short data sets
using theoretical data (independent, identically distributed (i.i.d)
Gaussian numbers) and found that SampEn statistics deviated
from predictions for very short data sets. They calculated the
biased results of SampEn (2, 0.2, N) for the range of 4 ≤ N ≤ 102.
For Gaussian random numbers with m = 2 and r = 0.2, they
found that the deviation was less than 3% for data lengths greater
than 100 points but as high as 35% for data length of 15 points.
They found that the bias of SampEn for very small data sets is
largely due to “non-independence of templates” (Richman and

Moorman, 2000) and that this bias appears to be present only for
very small data lengths. They did not suggest or recommend a
data length constraint for estimating SampEn.

FMRI is a potent research tool and has found more applica-
tions in research than clinical use. In contrast to EEG and MEG,
fMRI possesses poor temporal resolution (in order of seconds)
but excellent spatial specificity. As a result, most fMRI experi-
ments are usually short, in the range of 100–200 data lengths.
Prior data analysis, standard fMRI data processing requires that
the first 3 or 4 volumes (data lengths) of fMRI data are discarded
to enable signal conditioning. For fMRI data acquisitions of 100
data length, this results in a data length of 97 or 96. Our experi-
ence of characterizing fMRI data with SampEn shows that it is
possible to obtain reliable results while using robust and opti-
mal parameters such as m = 2, r = 0.46 (a high r-value) and a
data length less than 100 (97 data points) (Sokunbi et al., 2013).
We further tested the ability of SampEn to effectively discrimi-
nate fMRI data with data length, N less than10m (where m = 2)
using a resting state fMRI data set from a small group of 10
healthy right-handed younger and 10 right-handed elderly adults
that are significantly (p < 0.001) different in age, extracted from
the International Consortium for Brain Mapping (ICBM) rest-
ing state dataset. We also investigated the discriminatory ability
of SampEn on the whole ICBM resting state cohort of 43 younger
and 43 elderly adults that are significantly (p < 0.001) different
in age. We used m = 2 which is superior to m = 1 since it allows
more detailed reconstruction of the joint probabilistic dynamics
of the time series (Pincus and Goldberger, 1994).

With normal ageing, there are declines in mental domains such
as processing speed, reasoning, memory and executive functions,
some of which is underpinned by a decline in a general cognitive
factor (Deary et al., 2009). The bases for this decline are not fully
understood. There has been progress in normal cognitive ageing
from genetics, general health, biological processes, neurobiolog-
ical changes, diet, lifestyle and many other areas of biomedical
and psychosocial sciences. For example, the complexity of longi-
tudinal physiological measurements such as EEG has been shown
to vary with age and disease (Gaal et al., 2010). Complexity can
be described as the difficulties associated with predicting a signal
and this can be estimated by measuring the signal’s entropy (Lu
et al., 2008). Some studies have suggested that the characteriza-
tion and analysis of the brain’s output in terms of its complexity
may reveal a better understanding of an individual’s health and
robustness (Goldberger et al., 2002), adaptive capacity in terms
of brain ageing (Sokunbi et al., 2011) and diseases (Sokunbi
et al., 2013, 2014), and in-vivo effect of drugs (Ferenets et al.,
2007). Healthy systems portray chaotic and complex behaviors
whereas pathological states exhibit predictable behaviors (Pool,
1989). Estimating the complexity of the blood oxygen level depen-
dent (BOLD) fMRI signals can help to probe different aspects of
complex signals brought about by ageing and disease, revealing
subtle patterns which may provide fundamental insights that can
lead to clinical and biomedical applications.

Investigators have argued that the pathway of change in the
behavior and physiology of an organism with age and disease
can either result in a decrease or an increase in the complexity
of the system’s output (Vaillancourt and Newell, 2002; Sokunbi
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et al., 2014). Vaillancourt and Newell (2002) postulate that the
directional change in output complexity of a physiological or
behavioral system with ageing or disease depends on the sys-
tem having an underlying fixed point or an oscillatory attractor
determining output. An attractor is the state to which a system
returns to after perturbation (Vaillancourt and Newell, 2002). In
the fixed-point attractor system, complexity decreases with age
and disease (Sokunbi et al., 2013) while in the oscillatory attrac-
tor system complexity increases with age and disease (Sokunbi
et al., 2014). Ageing has been defined as a loss of entropy
(Lipsitz, 2004) and specific brain regions have been implicated
in the ageing process (Craik and Salthouse, 2000). Also, func-
tional entropy has been shown to increase with age (Yao et al.,
2013). In the present analysis, we expect SampEn to decrease
with age according to Lipsitz’s (2004) entropy definition of age-
ing and Vaillancourt and Newell’s (2002) fixed-point attractor
postulate. Most importantly, we expect SampEn results at N less
than 100 to be indicative of this ageing process since it is largely
independent of data length and displays relative consistency
(Richman and Moorman, 2000).

MATERIALS AND METHODS
SUBJECTS
A small group of 10 healthy right-handed younger adults [5
male, mean age (22.40 ± 3.44)] and 10 healthy right-handed
elderly adults [5 male, mean age (69.60 ± 9.25)] with significant
(p < 0.001) age difference were extracted from the ICBM rest-
ing state dataset made publicly available in the 1000 Functional
Connectomes project. The subjects used for the small group anal-
ysis are listed in the supplementary data, Table S1. The whole
ICBM resting state cohort of 43 younger adults [21 male, mean
age (29.05 ± 8.66)] and 43 elderly adults [20 male, mean age
(59.33 ± 10.27)] with significant (p < 0.001) age difference was
also investigated. The study was approved by the local research
ethics committee and subjects had no history of neurological
or psychiatric disorders. Written informed consent was obtained
from the subjects. Information regarding this dataset is available
at https://www.nitrc.org/projects/fcon_1000/.

BRAIN IMAGING
Functional MR images were acquired with a T∗

2 weighted gradient
echo echo-planar imaging sequence (EPI) using a standard head
coil on a 3T scanner. A total of 23 axial slices were obtained for
each of 133 volumes using a TR of 2 s and matrix 64 × 64. A total
of 128 volumes of fMRI data remained after discarding the first
five volumes to allow for signal conditioning. Subjects were asked
to lie in the scanner with their eyes closed.

IMAGE PRE-PROCESSING
FMRI data pre-processing were performed using SPM8 soft-
ware (The Wellcome Department of Imaging Neuroscience, UCL,
London, UK). The images were realigned to correct for head
movement distortion. Temporal high pass filtering was performed
(128 s) to reduce low frequency noise and spatial smoothing was
performed to reduce white noise using the full-width at half max-
imum (FWHM) of the Gaussian smoothing kernel [8 8 8]. Each
voxel time series was standardized to a mean of zero and standard

deviation of unity. This allows a signal value of r (tolerance) to be
used for all voxels independent of amplitude and variance.

COMPUTATION OF SampEn
The SampEn of a time series of length N (x1, x2, ....., xN) can be
computed from the given sets of equations (Sokunbi et al., 2013):

SampEn(m, r, N) = − ln

[
Um + 1 (r)

Um (r)

]

Um(r) = [N − mτ ]−1
N−mτ∑

i = 1

Cm
i (r) (1)

Where

Cm
i (r) = Bi

N − (m + 1)τ

Bi = number of j where d
∣∣Xi, Xj

∣∣ ≤ r (2)

Xi = (
xi, xi + τ , ....., xi+(m − 1)τ

)
(3)

Xj = (
xj, xj + τ , ....., xj+(m − 1)τ

)
(4)

1 ≤ j ≤ N − mτ, j �= i

N specifies the data length, m is the pattern length, r is the toler-
ance value, and τ is the time delay as shown in Equation (1). In
Equation (2), the two patterns i and j of m measurements of the
time series are similar if the difference, d

∣∣Xi, Xj

∣∣, between any pair
of corresponding measurements of Xi and Xj is less than, or equal
to, r. In Equations (3 and 4), Xi and Xj are pattern vectors (length
m) whose components are time-delayed versions of the elements
in the original time series with time delay, τ .

We evaluated the ability of SampEn to discriminate the
younger from the elderly adults, using the value of the receiver
operating characteristic (ROC) area (Zweig and Campbell, 1993).
ROC areas are used as a guide to classify the precision of a diag-
nostic test. Areas with values between 0.90 and 1 indicate that the
precision of the diagnostic test is excellent, when the values are
between 0.80 and 0.89, it means the test is good. It is fair if the area
values are between 0.70 and 0.79, poor when the area is between
0.60 and 0.69 and bad for values ranging from 0.50 to 0.59. Using
the small group of 10 younger and 10 elderly adults, we deter-
mined the optimal r-value where this discrimination occurs by
computing the ROC area for a range of r-values. The ROC area
was computed from the mean whole brain SampEn values of each
subject in the small group using a robust value of m = 2 (Pincus
and Goldberger, 1994), data length N = 128 and by varying the
r-value from 0.05 to 0.5 at intervals of 0.05. Figure 1A shows that
this optimal r-value occurred at r = 0.30.

Whole brain SampEn was computed for each subject in the
small group using m = 2, the optimal r-value of 0.30 (Figure 1A),
multiplied by the SD of the fMRI time series, τ = 1 and fMRI data
lengths of 128, 120, 110, 100, 90, 95, and 85. Only data lengths
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FIGURE 1 | Small group analysis. (A) ROC area for determining the
optimal r -value for fMRI data of 128 volumes, for 0.05 ≤ r ≤ 0.5 at
intervals of 0.05. The optimal r -value was obtained at r = 0.30;

(B) ROC area of SampEn (m = 2, r = 0.30, 85 ≤ N ≤ 128) for fMRI
data lengths N. SampEn shows good discriminating ability and
relative consistency for all the data lengths.

where all 20 subjects returned SampEn values were included in
the study. Data lengths less than 85 could not be included in the
study because some of the subjects did not return SampEn val-
ues as a result of a lack of templates to compare. Whole brain
SampEn maps were generated on a voxel by voxel basis using the
same approach as Sokunbi et al. (2011) on a MATLAB and C
platform. A threshold of 0.1 times the maximum signal was used
to exclude voxels being calculated outside the brain. The mean
whole brain SampEn value for each subject was computed. Also,
the ROC area for discriminating between both groups was com-
puted from the mean whole brain SampEn value of each subject
in both groups for all the data lengths. SampEn showed good
discriminating ability for 85 ≤ N ≤ 128 as shown in Figure 1B.

Similarly, whole brain SampEn maps were generated for the
cohort of 43 younger and 43 elderly adults using m = 2, the opti-
mal r-value of 0.30 (Figure 1A), multiplied by the SD of the fMRI
time series, τ = 1 and fMRI data lengths of 128 and 85. The ROC
area for discriminating between the cohort of 43 younger and 43
elderly adults was computed from the mean whole brain SampEn
value of each subject in both groups for data lengths N = 128
and N = 85.

STATISTICAL ANALYSIS
The ROC analyses were performed on the mean whole brain
SampEn values using the International Business Machines
Corporation (IBM) Statistical Package for Social Sciences (SPSS
20.0; New York, USA) software. Independent t-tests for the
different data lengths, N, were performed between the mean
whole brain SampEn values of both groups using SPSS software.
Also, correlations using the Pearson correlation analyses between
the mean whole brain SampEn and age for the whole popu-
lation were performed in SPSS, for the different data lengths,
N. False discovery rate (FDR) for multiple comparisons correc-
tion (q < 0.05) in R-Statistics (http://www.r-project.org/) was
used to correct the p-values of the independent t-tests and p-
values of the Pearson’s correlation analyses. The Pearson’s cor-
relation coefficients (r-values) were interpreted using Dancey
and Reidy’s categorisation (Dancey and Reidy, 2004). Here, r-
value of ±1 is interpreted as a perfect correlation, r-values

between ±0.7 to ±0.9 are interpreted as strong correlations, r-
values in the range ±0.4 to ±0.6 are categorized as moderate
correlations, r-values between ±0.1 to ±0.3 are weak correla-
tions and an r-value of 0 is zero correlation, implying there is no
correlation.

The SampEn map of each subject was normalized to a stan-
dard echo planar imaging (EPI) template, and a regional (spatial)
analysis was performed using the two-sample t-test in SPM8,
comparing the SampEn maps of the younger and elderly adults
at a family-wise error (FWE) corrected cluster level significance
of p < 0.05 and threshold p = 0.005. This was only done for data
lengths N = 85 and N = 128. Correlations between the SampEn
maps and age for the whole population were tested using multiple
regression approach in SPM8.

RESULTS
SMALL GROUP OF 10 YOUNGER AND 10 ELDERLY ADULTS
The subjects’ characteristics and SampEn measures for the
small group of 10 younger and 10 elderly adults are shown in
Table 1. The ROC results of the mean whole brain SampEn for
data lengths 85 ≤ N ≤ 128 were in the range 0.850–0.890. This
implies that the ability of SampEn to effectively discriminate the
younger from the elderly adults across all the data lengths is
good and that this ability is not dependent on data length. The
ROC curves and characteristics for 85 ≤ N ≤ 128 are shown in
Figure 2A. The sensitivity and specificity obtained from the ROC
analysis ranged between 80 and 90% for all the data lengths, while
the accuracy was 85% for all data lengths except for N = 128
where the accuracy dropped to 80% (see Figure 2B and Table 2).
For data lengths 85 ≤ N ≤ 128, the mean whole brain SampEn
values of the younger adults were significantly (p < 0.05) higher
than the mean whole brain SampEn values of the elderly adults.
After corrections for multiple comparisons using the FDR, the
mean whole brain differences for all the data lengths remained
significantly (q < 0.05) higher. The mean whole brain differ-
ences between the younger and elderly adults for all the data
lengths are shown in Figure 3. Moderate negative correlations (r-
values between −0.581 and −0.626) were obtained at p < 0.01
between the mean whole brain SampEn values and the age of the
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Table 1 | Subjects’ characteristics and SampEn measures for the small group of 10 younger and 10 elderly adults.

Younger adults Elderly adults Significance Significance FDR corrected

(p-values) (q-values)

Age (years) 22.40 ± 3.44 69.60 ± 9.25 p < 0.001
Sex (M/F) 5/5 5/5
SampEn at N = 85 1.7413 ± 0.0298 1.6888 ± 0.0400 p = 0.004 q = 0.007
SampEn at N = 90 1.7354 ± 0.0280 1.6779 ± 0.04631 p = 0.003 q = 0.007
SampEn at N = 95 1.7309 ± 0.0260 1.6729 ± 0.0472 p = 0.003 q = 0.007
SampEn at N = 100 1.7258 ± 0.0268 1.6687 ± 0.0458 p = 0.003 q = 0.007
SampEn at N = 110 1.7164 ± 0.0278 1.6595 ± 0.0506 p = 0.006 q = 0.007
SampEn at N = 120 1.7082 ± 0.0288 1.6489 ± 0.0529 p = 0.006 q = 0.007
SampEn at N = 128 1.6980 ± 0.0359 1.6407 ± 0.0517 p = 0.010 q = 0.010

FIGURE 2 | ROC analyses portraying SampEn discriminatory characteristics for all the data lengths in the small group (A) ROC curves for

85 ≤ N ≤ 128. (B) Plot of Sensitivity, Specificity and Accuracy against N.

Table 2 | ROC characteristics for the small group of 10 younger and 10

elderly adults.

Data Threshold Sensitivity Specificity Accuracy Area under

length, (%) (%) (%) the ROC

N curve

85 1.7332 80 90 85 0.880
90 1.7244 80 90 85 0.880
95 1.7183 80 90 85 0.880
100 1.7026 90 80 85 0.890
110 1.6902 90 80 85 0.880
120 1.6888 80 90 85 0.880
128 1.6710 80 80 80 0.850

population, for all the data lengths (85 ≤ N ≤ 128). Also, after
corrections for multiple comparisons using FDR, the moderate
negative correlations between the mean whole brain SampEn
values and age remained significant (q < 0.05). This implies that
for all the data lengths SampEn decreased with age. Table 3
shows the Pearson’s correlation coefficients, r, the p-values and
the q-values (FDR) for data lengths 85 ≤ N ≤ 128. Figures 4A–G
shows the regression curve estimation between SampEn and age
for the population. A graph was plotted to further investigate how
the Pearson’s correlation coefficients, r (correlation of SampEn

and age) varied with the different data lengths 85 ≤ N ≤ 128.
The graph shown in Figure 5 shows that the Pearson’s correla-
tion coefficients, r remained relatively constant with the different
data lengths. This implies that the correlation between SampEn
and age was relatively consistent with the changes in data length.

To investigate regional differences and similarities in data
lengths, the whole brain SampEn maps for the minimum and
maximum data lengths (85 ≤ N ≤ 128) were tested regionally
with a family-wise error (FWE) corrected cluster level significance
of p < 0.05 using the two-sample t-test in SPM8. The results con-
sistent with that of the mean whole brain analysis show that the
younger adults exhibited significantly (p < 0.05) higher SampEn
values than the elderly adults at a threshold of p = 0.005 with cor-
responding discriminated brain regions. For data length N = 85,
only the frontal lobe of the brain was discriminated while for
N = 128, the frontal lobe and parietal lobe were discriminated.
These discriminated brain regions are listed in Table 4. Figure 6
shows the rendered images of the two-sample t-tests between the
younger and elderly adults, for data lengths, N = 85 and N =
128. Also, correlations between the whole brain SampEn maps
and age, of the whole population, for data lengths, N = 85 and
N = 128 were performed using multiple regression analysis in
SPM8. Again, SampEn portrayed a significant (p < 0.05) nega-
tive correlation with age, for both data lengths as shown by the
rendered images in Figure 7. For N = 85, the frontal, limbic and
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FIGURE 3 | Mean whole brain SampEn (m = 2, r = 0.30, 85 ≤ N ≤ 128)

difference between younger and elderly adults for data length N in the

small group analysis. Here, the mean whole brain SampEn values of the
younger adults were significantly (p < 0.05) higher than the mean whole
brain SampEn values of the elderly adults.

parietal lobes were discriminated while for N = 128 the frontal
lobe, limbic lobe, parietal lobe and sub-lobar brain regions were
discriminated. See Table 5 for a list of the discriminated brain
regions.

COHORT OF 43 YOUNGER AND 43 ELDERLY ADULTS
The subjects’ characteristics and SampEn measures for the whole
ICBM resting state cohort of 43 younger and 43 elderly adults
are shown in Table 6. The ROC results of the mean whole brain
SampEn for data lengths N = 85 and N = 128 were 0.600 and
0.603 respectively. This implies that the ability of SampEn to effec-
tively discriminate the younger from the elderly adults of both
data lengths is poor. For data length N = 85, the sensitivity was
65.10%, the specificity was 53.50% and accuracy was 59.30% at
a threshold of 1.7298. While for data length N = 128, the sensi-
tivity was 58.10%, the specificity was 58.10% and accuracy was
58.10% at a threshold of 1.6986. For both data lengths, the mean
whole brain SampEn values of the younger and elderly adults were
not significantly (p > 0.05) different but the younger adults had
higher mean whole brain SampEn values than the elderly adults.
Weak negative correlations, r-values of −0.078 and −0.099 were
obtained at p > 0.05 between the mean whole brain SampEn val-
ues and the age of the population, for data lengths N = 85 and
N = 128 respectively.

For data length, N = 128, the result of the regional analysis
show that the younger adults exhibited higher SampEn val-
ues than the elderly adults at a threshold of p = 0.005 with a
family-wise error (FWE) corrected cluster level significance of
p < 0.05 at the parietal and frontal lobes. These discriminated
brain regions are listed in Table 7. For data length, N = 85, the
younger adults also exhibited higher SampEn values than the
elderly adults at the left parietal lobe (−24, −48, 54, Sub-Gyral,
White Matter; −22, −52, 44, Precuneus, White Matter; −32, −40,

Table 3 | Correlation of SampEn with age for the small group of 10

younger and 10 elderly adults.

Pearson’s Significance Significance FDR

correlation (p-values) corrected

(r-values) (q-values)

SampEn at N = 85 −0.602 p = 0.005 q = 0.006

SampEn at N = 90 −0.624 p = 0.003 q = 0.006

SampEn at N = 95 −0.626 p = 0.003 q = 0.006

SampEn at N = 100 −0.624 p = 0.003 q = 0.006

SampEn at N = 110 −0.599 p = 0.005 q = 0.006

SampEn at N = 120 −0.608 p = 0.004 q = 0.006

SampEn at N = 128 −0.581 p = 0.007 q = 0.007

52, Postcentral Gyrus, White Matter) with a threshold of p =
0.005 and at an uncorrected p-value of 0.005. When the analysis
at N = 85 was corrected for multiple comparisons, the discrim-
inated brain region was not significant (p > 0.05). There were
no significant (p > 0.05) correlations between the whole brain
SampEn maps and age, of the whole population, for both data
lengths (N = 85 and N = 128).

Figure 8 shows the rendered images of the two-sample t-tests
between the younger and elderly adults, for the small group (10
younger and 10 elderly adults) and the whole cohort (43 younger
and 43 elderly adults) at data length N = 128. The images show
that both analyses had overlapping discriminated brain regions
between the frontal and parietal lobes.

DISCUSSION
The aim of this study was to test the ability of SampEn to effec-
tively discriminate between two different age groups of resting
state fMRI data with data length, N less than 10m (where m = 2).
For the small group analysis, the results of the whole brain anal-
yses shows that the ROC areas for N = 85, 90, and 95 were the
same (0.880), the ROC area for N = 100 was 0.890, the areas for
N = 110 and 120 were 0.880, and for N = 128 was 0.850. The dis-
proportionality of these ROC areas to the respective data lengths
is in line with the notion that SampEn is largely independent of
data length. Furthermore, the same level of accuracy (85%) exhib-
ited by all the data lengths with the exception of N = 128 having
accuracy of 80%, indicates that SampEn displays some relative
consistency. Also, the mean whole brain SampEn of the younger
adults was significantly (p < 0.05) higher than the elderly adults
across data lengths, 85 ≤ N ≤ 128. There were also moderate
negative correlations (r-values between −0.581 and −0.626) (see
Table 3) between the mean whole brain SampEn values and age
for 85 ≤ N ≤ 128 at q < 0.05. Wang et al. (2014) showed that
data length has only a minor effect on SampEn, which ensured
including all the resting state fMRI data at the 1000 Functional
Connectomes project repository, even with different time points
for their brain entropy (BEN) mapping.

In the regional analyses of the small group, the younger adults
exhibited significantly higher SampEn than the elderly adults,
only at the frontal lobe for N = 85, and at the frontal and parietal
lobes for N = 128. For N = 85, there was a significant nega-
tive correlation between SampEn and age at the frontal, limbic
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FIGURE 4 | Regression curve estimation between SampEn (m = 2,

r = 0.30, 85 ≤ N ≤ 128) and age for all the data lengths N in

the small group analysis. SampEn of the population decrease

with an increase in age, for all data lengths. (A) N = 85, (B)

N = 90, (C) N = 95, (D) N = 100, (E) N = 110, (F) N = 120, (G)

N = 128.

FIGURE 5 | Correlation of SampEn (m = 2, r = 0.30, 85 ≤ N ≤ 128) with

age against N in the small group analysis. Here, the Pearson’s
correlation coefficient is relatively constant with changing data length N.

and parietal lobes while for N = 128, this negative correlation
occurred at the frontal lobe, limbic lobe, parietal lobe and sub-
lobar region. These associations indicate that there is reduction
in entropy with increase in age. This reduction in entropy is com-
mon to both analyses (at N = 85 and N = 128), independent
of the different data lengths and overlaps at the frontal, lim-
bic and parietal lobes of the brain. The frontal lobe has been
implicated in age-related processes resulting in a decline in mem-
ory functions (Craik and Salthouse, 2000). In a diffusion tensor
imaging (DTI) study of a healthy population of 25–70 years, the
limbic system which is responsible for emotion processing and

memory function has been shown to undergo degradation with
ageing (Gunbey et al., 2014). The sub-lobar brain region has been
implicated in white matter structures associated with cognitive
ageing (Staff et al., 2006). Also, decreased fractional anisotropy
(FA) measurements in the frontal and parietal lobes has been
associated with poorer cognitive performance in a study inves-
tigating the relationship between FA and selected measures of
cognition across a broad age group (20–73 years of healthy sub-
jects) to explore a possible structural basis for cognitive changes
with age (Grieve et al., 2007). Our findings of decrease in entropy
with age are consistent with Lipsitz’s (2004) entropy definition
of ageing (loss of entropy) and Vaillancourt and Newell’s (2002)
fixed-point attractor postulate where complexity decreases with
age and disease.

Comparing the whole cohort (43 younger and 43 elderly
adults) to the small group (10 younger and 10 elderly adults)
analysis at data lengths N = 85 and 128, the small group anal-
ysis discriminated between the younger and elderly adults, and
showed that the fMRI brain complexity decreases with age at
both data lengths. The whole cohort analysis only discriminated
between the younger and elderly adults at N = 128. The whole
cohort analysis at N = 85 was indicative of the ageing process
but this indication was not significant (p > 0.05). The inability
of SampEn to portray the same discriminatory effect for both the
small group and whole cohort analyses may be due to two factors.
Firstly, it may be due to the variance in the heterogeneous distri-
bution of the subjects’ ages in both datasets. For the small group,
the mean age of the younger and elderly adults is (22.40 ± 3.44)
and (69.60 ± 9.25) respectively, while in the whole cohort the
mean age of the younger and elderly adults is (29.05 ± 8.66)
and (59.33 ± 10.27) respectively. Clearly, there is disparity in the
mean and SD of the younger and elderly adults between the
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Table 4 | SampEn differences for the small group of 10 younger and 10 elderly adults.

Data Cluster number and Brain region Talairach Brain label Tissue type Cluster Voxel

length, extent coordinate p-value t-value

N (X, Y, Z ) (FWE corrected)

85 Cluster 1
Extent = 2181

Frontal lobe −34, 2, 66 Left middle frontal gyrus Gray matter p < 0.001 5.47

128 Cluster 1
Extent = 889

Frontal lobe −22, −14, 66 Left middle frontal gyrus Gray Matter p = 0.007 4.02

Parietal lobe −28, −44, 56 Left inferior parietal lobule White matter p = 0.007 4.26

Parietal lobe −46, −22, 60 Left post-central gyrus Gray matter p = 0.007 3.90

Location coordinates are those of the peak significance in each region (threshold p = 0.005, FWE corrected cluster p < 0.05).

FIGURE 6 | SampEn (m = 2, r = 0.30, N) differences between younger

and elderly adults for the small group analysis. N = 85 is red and
N = 128 is green. Overlap is yellow. SampEn values of the younger adults
were significantly (p < 0.05) higher than SampEn values of the elderly
adults with the corresponding brain regions as shown.

small group and whole cohort. The second factor may be due
to the limited discriminatory ability of SampEn. This study was
conducted with SampEn on a single scale, a multiscale SampEn
analysis is superior to a single scale analysis and portrays a supe-
rior discriminatory ability (Costa et al., 2002; Yang et al., 2013).
Another approach which may show superior discriminatory abil-
ity to SampEn is single scale Fuzzy approximate entropy (fApEn)
(Xie et al., 2010), which has not been investigated in comparison
to SampEn and in fMRI datasets.

FIGURE 7 | Correlation of SampEn (m = 2, r = 0.30, N) with age for the

small group analysis. N = 85 is red and N = 128 is green. Overlap is
yellow. SampEn for the population decrease as age increase with
corresponding brain regions as depicted.

An increase in functional entropy with age (Yao et al., 2013)
was found in a recent study, where Shannon entropy; a measure
of information, choice and uncertainty (in bits) (Shannon, 1948)
was used as a bivariate measure to characterize the correlation
coefficient (considered as a random variable) of a distinct pair
of brain regions. The resulting entropy measure in bits was called
functional entropy. The functional entropy measured the disper-
sion (or spread) of functional connectivity that exists within the
brain. At the population level, they found that the functional

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 69 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sokunbi Short fMRI sample entropy measurements

Table 5 | SampEn correlation with age for N = 85 and N = 128, for the small group of 10 younger and 10 elderly adults.

Data Cluster number and Brain region Talairach Brain label Tissue type Cluster Voxel

length, extent coordinate p-value t-value

N (X, Y, Z ) (FWE corrected)

85 Cluster 1
Extent = 768

Frontal lobe 36, −22, 48 Right post-central gyrus White matter p = 0.015 6.96

Frontal lobe 30, −22, 38 Right sub-gyral White matter p = 0.015 5.30

Limbic lobe 20, −24, 40 Right cingulate gyrus White matter p = 0.015 5.14

Cluster 2
Extent = 3320

Frontal lobe −34, 2, 66 Left middle frontal gyrus Gray matter p < 0.001 5.69

Parietal lobe −46, −22, 60 Left post-central gyrus Gray matter p < 0.001 5.42

128 Cluster 1
Extent = 1247

Frontal lobe −30, 16, 16 Left sub-gyral White matter p = 0.004 8.40

Limbic lobe 2, 2, −4 Right anterior cingulate Gray matter p = 0.004 5.28

Sub-lobar −6, −2, 4 Left extra-nuclear White matter p = 0.004 5.26

Cluster 2
Extent = 3406

Parietal lobe −26, −42, 56 Left sub-gyral White matter p < 0.001 5.90

Parietal lobe −20, −54, 40 Left pre-cuneus White matter p < 0.001 5.32

Parietal lobe −50, −28, 58 Left post-central gyrus Gray matter p < 0.001 4.85

Cluster 3
Extent = 1246

Parietal lobe 32, −34, 54 Right post-central gyrus Gray matter p = 0.004 5.09

Frontal lobe 20, −18, 64 Right middle frontal gyrus White matter p = 0.004 4.65

Parietal lobe 28, −28, 48 Right sub-gyral White matter p = 0.004 4.48

Location coordinates are those of the peak significance in each region (threshold p = 0.005, FWE corrected cluster p < 0.05).

Table 6 | Subjects’ characteristics and SampEn measures for the

whole ICBM resting state cohort of 43 younger and 43 elderly adults.

Younger Elderly Significance

adults adults (p-values)

Age (years) 29.05 ± 8.66 59.33 ± 10.27 p < 0.001

Sex (M/F) 21/22 20/23

SampEn at
N = 85

1.7387 ± 0.0526 1.7172 ± 0.0597 p = 0.080

SampEn at
N = 128

1.6979 ± 0.0545 1.6735 ± 0.0655 p = 0.065

entropy of the human brain increases with age where a higher
level of randomness reflected the way different brain-regions
functionally interacted with one another. At the regional level,
they found some regions where the functional entropy increases,
decreases and where it remains almost constant. They noted a
decrease in functional entropy with age in the left and right insu-
lars. Furthermore, a computational model based on DTI was
used to investigate the origins of the relationship between func-
tional entropy and age. The model implicated a brain entropy
that decreases when the excitatory connection strength and neu-
ron number in each brain region are simultaneously reduced.
In the present study, our analysis entailed a univariate charac-
terization of a voxel with SampEn. Here, SampEn is used as an
estimate of complexity and returns a dimensionless numerical
value. Our results showed that sample entropy decrease with age.
SampEn and ApEn are not the same as Shannon entropy, they
are used to indicate system complexity because both of them
were defined as approximates to the Kolmogorov complexity
(Wang et al., 2014).

In the small group analysis, the reduction in the accuracy of
SampEn to effectively discriminate the younger from the elderly
adults (in the mean whole brain analyses) from 85% for data
lengths 85 ≤ N ≤ 120 to 80% for data length N = 128 may be
attributed to the “averaging effect” which is basically the simplest
form of a digital filter and is a means of reducing the effect of ran-
dom noise (Smith, 1999). Averaging the BOLD fMRI response
of a voxel over a number of data lengths can help to improve
the BOLD signal to noise ratio. The amount of noise reduction
that this “averaging effect” can produce is equal to the square-
root of the data length in the average (Smith, 1999). For example,
data lengths of N = 85, 90, 95, 100, 110, 120, and 128 of BOLD
fMRI signal would reduce the noise by a factor of 9.22, 9.49,
9.75, 10.00, 10.49, 10.96, and 11.31 respectively. As a result of
this, the level of noise in data length N = 128 is less compared
to data length N = 85 and vice versa. The level of noise in data
length N = 85 is higher than N = 128. Since noise is the signal
with the most complex dynamics and highest measured entropy
(Lu et al., 2008), it is expected that the entropy of the younger
and elderly adults for data length N = 85 would be higher than
the corresponding groups in data length N = 128 and was there-
fore reflected in the measured accuracies. This is evident in the
mean whole brain SampEn measurements for 85 ≤ N ≤ 128 in
Table 1. Here it can be clearly seen that the measured SampEn
values decreases as the data length increases from N = 85 to
N = 128, implying that the level of noise decrease from N = 85
to N = 128. Another obvious evidence suggesting the influence
of noise in the accuracy was demonstrated in the regional analy-
ses where noise played an opposite effect. Here, Sample entropy
discriminated more brain regions at N = 128 than N = 85. The
difference in the discriminated brain regions can be attributed to
the influence of a higher noise level in N = 85 than N = 128.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 69 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sokunbi Short fMRI sample entropy measurements

Table 7 | SampEn differences for the whole ICBM resting state cohort of 43 younger and 43 elderly adult.

Data Cluster number and Brain region Talairach Brain label Tissue type Cluster Voxel

length, extent coordinate p-value t-value

N (X, Y, Z ) (FWE corrected)

128 Cluster 1
Extent = 2251

Parietal lobe −24, −46, 56 Left sub-gyral Gray matter p < 0.001 4.41

Parietal lobe −24, −56, 52 Left precuneus White matter p < 0.001 3.58

Parietal lobe −46, −22, 60 Left inferior parietal lobule Gray matter p < 0.001 3.11

Frontal lobe −26, −30, 66 Left precentral gyrus Gray matter p < 0.001 3.00

Frontal lobe −28, −24, 46 Left sub-gyral White matter p < 0.001 2.95

Location coordinates of the significant regions (threshold p = 0.005, FWE corrected cluster p < 0.05).

FIGURE 8 | SampEn (m = 2, r = 0.30, 128) differences between

younger and elderly adults for the small group (10 younger and 10

elderly adults) and the whole cohort (43 younger and 43 elderly

adults). Small group is cyan, whole cohort is yellow, and overlap is green.
SampEn values of the younger adults were significantly (p < 0.05) higher
than SampEn values of the elderly adults with the corresponding brain
regions as shown.

Sample entropy (an optimized approximate entropy) is nearly
unaffected by low level noise, is robust to occasional very large
or small artifacts, gives meaningful information with a reason-
able number of data lengths, and is finite for both stochastic and
deterministic processes (Zhang and Roy, 2001).

In the computation of Sample entropy from an fMRI signal,
a high noise level is a potential confounder and may prevent

Sample entropy from discriminating effectively between system
complexities. The noise present in fMRI data consists of system
noise (white noise), arising from both thermal noise and hard-
ware imperfections, and 1/f low-frequency noise, physiological
fluctuations from respiratory and cardiac activities. The noise
level can be reduced as we have done by applying high pass fil-
tering to reduce the low frequency components of the noise and
spatial smoothing to reduce the system noise. With the level of
noise reduced, an optimized and robust computation of Sample
entropy can be implemented with an appropriate tolerance value,
r. To avoid a significant contribution from noise in the calcula-
tion of the entropy, one must choose r larger than most of the
noise (Pincus, 1991). A higher r-value shows better robustness
to reduced noise in distinguishing the nonlinear system dynam-
ics (Xie et al., 2010) of the experimental and control groups.
When a small r-value is used, the algorithm identifies two sec-
tions being compared as dissimilar when the difference may be
brought about by noise. Using a larger r avoids the misclassifi-
cation. Using a large r, however, may result in some signal detail
being lost. The selection of the appropriate r is essentially a com-
promise between these two phenomena: i.e., an r large enough
that allows the Sample entropy algorithm to distinguish the sys-
tem signal from noise, but small enough to allow the algorithm to
assess the detail present in the signal (Chen et al., 2009). We have
used a higher r-value to obtain an optimized and robust compu-
tation of Sample entropy in the presence of minimal noise. The
r-value (r = 0.30) we used showed better robustness to reduced
noise in distinguishing the nonlinear system dynamics of both
younger and elderly adults (Figure 1A).

Some studies have suggested that the bias of SampEn from
short data lengths may be compensated for by using a small
pattern length (m = 1) and a relatively large similarity fac-
tor (tolerance value), r, to accommodate the short and noisy
BOLD data (Yang et al., 2013). The choice of m = 2 is supe-
rior to m = 1 because it allows more detailed reconstruction of
the joint probabilistic dynamics of the time series (Pincus and
Goldberger, 1994). It has also been shown that using m = 2
is more consistent than m = 1 over a wider range of tolerance
values, r (Sokunbi et al., 2013). Using m = 2 implies that the
SampEn of fMRI data with data length less than 100 can be
computed with robust and optimized parameter contrary to the
suggestion of others (Abasolo et al., 2006; Yang et al., 2013),
avoiding erroneous data length constraint. Also, m = 2 has been
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used for data length N = 50 of i.i.d uniform random numbers
(Chen et al., 2009).

Richman and Moorman (2000) concluded that the SampEn
(m, r, N) statistics are not completely unbiased under all con-
ditions. They found that the bias of SampEn was less than
3% for data lengths greater than 100 but as high as 35% for
data length of 15 points and that the bias of SampEn for very
small data sets is largely due to non-independence of templates.
They suggested that one method of removing this bias would
be to partition the time series but noted that this unbiased
approach has the potentially severe limitation of reducing the
number of possible template matches and enlarging the con-
fidence intervals about the SampEn estimate. They also argue
that because this bias appears to be present only for very small
N, the disjoint template approach does not appear necessary in
usual practice. One notable limitation of the present study is
that we would expect the bias of our fMRI SampEn (2, 0.30,
85 ≤ N ≤ 128) analyses to be in the proximity of the bias of
less than 3% for data lengths greater than 100. Another limi-
tation of SampEn is that SampEn values for data lengths less
than 85 could not be obtained because of a lack of templates to
compare.

CONCLUSION
The small group fMRI SampEn analyses provided additional
evidence that it is possible to obtain good discriminating fea-
ture from fMRI data with data lengths less than 100, indicating
that SampEn is largely independent on changes in data length
and displays some relative consistency. While it is better to
acquire data with longer data lengths for best analysis results,
low noise level and minimum bias, it is not always possible to
do this with fMRI data because of the nature of some fMRI
experiments and its temporal limitation. SampEn is a possible
analysis tool amongst time series analysis techniques because it
is less sensitive to changes in data length and relatively consis-
tent. SampEn is well suited for short data sets like fMRI data,
though a compromise has to be made with the increase in
noise level as data length decreases. The heterogeneous distri-
bution of the subjects ages in the whole cohort ages compared
to the small group ages may have limited the single scale dis-
criminatory ability of SampEn in the whole cohort analyses. A
multiscale SampEn analysis may portray a superior discrimi-
natory ability. In the present study, using m = 2 ensures that
SampEn is computed for fMRI data (having data length less
than 100) with robust and optimized parameter thereby avoid-
ing the erroneous data length constraint of 10m–20m. Finally,
before characterizing data sets, especially short data sets with
SampEn, we would recommend using optimal parameters; an m
of 2 or as appropriate and to determine the r-value (by examining
several r-values) where SampEn displays its best discriminating
ability.
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