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NEVESIM is a software package for event-driven simulation of networks of spiking
neurons with a fast simulation core in C++, and a scripting user interface in the Python
programming language. It supports simulation of heterogeneous networks with different
types of neurons and synapses, and can be easily extended by the user with new neuron
and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is
designed to decouple the simulation logic of communicating events (spikes) between
the neurons at a network level from the implementation of the internal dynamics of
individual neurons. In this paper we will present the simulation framework of NEVESIM, its
concepts and features, as well as some aspects of the object-oriented design approaches
and simulation strategies that were utilized to efficiently implement the concepts and
functionalities of the framework. We will also give an overview of the Python user
interface, its basic commands and constructs, and also discuss the benefits of integrating
NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate
exactly and efficiently networks of stochastic spiking neurons from the recently developed
theoretical framework of neural sampling. This functionality was implemented as an
extension on top of the basic NEVESIM framework. Altogether, the intended purpose
of the NEVESIM framework is to provide a basis for further extensions that support
simulation of various neural network models incorporating different neuron and synapse
types that can potentially also use different simulation strategies.
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1. INTRODUCTION
Computer simulations of networks of spiking neurons are indis-
pensable in modeling studies in computational neuroscience.
Because of their importance, there have been many advancements
in the development of simulation techniques for spiking neural
systems. The growing body of work includes both innovations in
novel algorithmic strategies that improve the efficiency, precision
and scalability of the neural simulations, as well as innovations in
design of software frameworks and software tools. There is a vari-
ety of useful neural simulation software tools that have emerged,
and while they follow somewhat different approaches driven by
a set of different requirements, there are also common princi-
ples in the algorithms and design that are shared among different
simulators.

As any software project, the development process of a neu-
ral simulation software is faced with a challenge to design a
software framework that satisfies best the defined requirements
for the simulator. This entails finding the right concepts, and
the relations between the concepts in the framework, that orga-
nize well the desired functionalities that are to be implemented.
A well designed framework can make a big difference toward
achieving at the same time generality, i.e., capability of sim-
ulating a broad range of different neural models, as well as
flexibility and easy extensibility, while having minimum or no
impact on the speed efficiency of the simulation. Therefore, it

is of importance, in addition to publishing novel algorithms
and data structures that improve the state of the art of simu-
lation of certain types of neural systems, to also publish and
share knowledge about software design approaches which enable
many of these algorithms and models to seamlessly coexist orga-
nized in a single software framework. Indeed, there has been
previous work (Diesmann and Gewaltig, 2001; Peck et al., 2003;
Eppler et al., 2009; King et al., 2009; Pecevski et al., 2009;
Djurfeldt et al., 2010) which reports on certain design aspects of
the software framework and architecture of a particular neural
simulation tool. As different neural simulators do have com-
mon points and common objectives in the development, devel-
opers of a new simulation tool can clearly benefit from this
published work. They can learn from previous experience and
improve their productiveness by borrowing already proven design
ideas.

In this article we describe NEVESIM (Neural EVEnt-based
SIMulator), an object-oriented framework for simulation of net-
works of spiking neurons developed in C++, with a Python
interface. NEVESIM is intended for simulation of simple point
neuron models, as well as neuron models composed of a few com-
partments. We will mainly focus on the software framework of
the simulator, its concepts and constructs, as well as some useful
design approaches that we adopted during the development of the
framework.
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The main motivation that lead to the development of
NEVESIM was the need to be able to implement exactly and
efficiently a certain class of neural models based on the recently
developed theoretical framework of neural sampling (Buesing
et al., 2011; Pecevski et al., 2011). The neural sampling framework
formulated theoretical principles that enable construction of net-
works of stochastic spiking neurons which through their stochas-
tic dynamics can perform probabilistic inference via Markov
chain Monte Carlo (MCMC) sampling. A particular feature of the
theoretically ideal neural sampling networks, which becomes rel-
evant in context of their exact simulation in software1, is that the
neurons communicate spikes between each other with a synap-
tic delay equal to 0. Although allowing small non-zero delay in
the synaptic connections also leads to functional neural sampling
models in most cases, for many purposes during our research
work with neural sampling it was also desirable to be able to
simulate the theoretically ideal neural sampling networks. For
example, when analysing the performance properties of neural
sampling, i.e., how fast the neural networks converge to a solu-
tion, it was important to include in the analysis the theoretically
optimal models. It was also important to be able to simulate in
a single simulation environment both the theoretically optimal,
and the biologically more realistic models, in order to compare
their performance. Furthermore, in addition to modeling and
analyzing brain computations, the theory of neural sampling is
also useful for implementing functional neural systems in neu-
romorphic hardware. Therefore it was of interest to perform
software simulations of neural sampling networks that have some
of the characteristics of the hardware, as an intermediate stage
before porting the models to the hardware. As in some hard-
ware systems the delays of the synaptic connections can be of
an order of magnitude lower compared to biological neural sys-
tems, this was another example where simulations of networks
with zero or very small delays (e.g., microseconds) were neces-
sary. This entailed that, in order to enable simulation of networks
with zero delay in the synaptic connections, we had to use an
event-driven simulation algorithm with one centralized priority
event-queue for the whole network to ensure correct causality.
Other neural simulators in common use, like NEST (Gewaltig
and Diesmann, 2007), have already developed frameworks and
algorithms for efficient simulation of time-driven neuron models
with precise spike times, as well as for embedding purely event-
driven neuron model implementations in globally time-driven
simulations (Hanuschkin et al., 2010). However, their simulation
framewowk assumes a minimum delay dmin in the network con-
nections which is larger than zero. This assumption brings several
advantages, as the queue for handling events can be implemented
with an efficient ring buffer data structure, and the simulation
algorithm can be parallelized by having many event queues (in
different processes on different machines) that are synchronized
at time intervals equal to dmin (Morrison et al., 2005). Due to
these advantages, other neural simulators have also adopted the
same event handling strategy (Pecevski et al., 2009). Nevertheless,
in the particular case of neural sampling networks this simulation

1By exact simulation we mean a simulation algorithm which numerical
precision is determined by thedouble floating point number representation.

framework was not applicable due to the specific requirements
for simulating networks with zero delays. For these reasons, we
chose to develop a new event-driven simulation framework to
satisfy our simulation requirements. Moreover, for many prob-
abilistic inference problems the corresponding neural sampling
networks exhibit sparse connectivity (and hence sparse activ-
ity), i.e., they fall in the class of neural networks for which a
globally event-driven simulation framework could be more effi-
cient than a time-driven simulation framework with precise spike
times. This is because with sparse activity and small delays the
average number of input spikes per neuron per time-step can
be smaller than 1 (Hanuschkin et al., 2010). Thus, apart from
being able to handle correctly simulations of networks with zero
delay connections, the event-driven framework had the potential
of improving simulation efficiency for this type of sparse activity
neural networks.

In addition to the algorithmic requirements, there was also a
need for flexible configuration of the neural sampling networks
that we used in our research work. For example, we needed to test
neural networks with different shapes of EPSPs. We also wanted
to analyse learning approaches, and for that purpose we needed
to simulate networks that have plastic synapses with different
plasticity rules as well as neurons with different intrinsic plas-
ticity rules. Furthermore, for the purpose of learning there were
additional mechanisms needed to be implemented, like chang-
ing the learning rate throughout the learning process, as well as
injection of external currents in the neurons that represent the
supervised signal given during learning. As several of these addi-
tional mechanisms required clock-driven simulation logic, it was
also necessary to be able to embed clock-driven network elements
in the simulation that encapsulate these mechanisms. The clock-
driven network elements should update their state at equidistant
time intervals, while the rest of the neural network is simulated in
a purely event-driven way. Given these requirements, it was clear
from the beginning that developing an ad-hoc specific simula-
tor for neural sampling without any object-oriented framework
would not suffice, as it would be cumbersome to maintain and
extend it. Instead we needed to derive an event-driven simula-
tion framework general enough to allow extensions in various
directions, for various types of models. For this reason, one of
the main objectives in the design was to support simulation of
heterogeneous networks composed of different types of neurons
and synapses, or other simulated network elements. Taking into
account all the requirements, we set out to develop a conceptual
software framework that contains just a few basic concepts, but is
still able to integrate different simulation techniques and models
and also exhibit good performance and extensibility.

An important component of every simulation tool is its user
interface. The user interface should expose the functionalities
of the simulator framework in a simple and intuitive way, and
should allow easy and elegant expression of various operations
on the neural models that are simulated. Because of their succinct
syntax and flexibility, scripting languages are a natural choice for
a simulator user interface (Hines and Carnevale, 1997; Bower and
Beeman, 1998; Gewaltig and Diesmann, 2007). In particular, the
Python programming language stands out as a scripting language
that has been widely adopted by neural simulators and other
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neuroscience related software tools (Davison et al., 2009b,a). As
it is a free, versatile, general-purpose, dynamic programming lan-
guage with advanced features, and it has already proven to be
very useful for many software packages in neuroscience, we also
adopted Python as the best choice for a scripting user inter-
face of NEVESIM. One of the additional advantages of Python
is that there exist quite advanced wrapping tools that can be used
to create a wrapper interface in Python for a software tool that
is developed in another programming language (Abrahams and
Grosse-Kunstleve, 2003; Beazley, 2003). In addition to present-
ing the overall framework of NEVESIM, we will also present in
this paper aspects of the Python interface. In particular, we will
cover some of its characteristic features and commands, presented
through an example. We will also discuss how these features and
commands relate to the conceptual framework of the simulator.

The contribution of this paper is twofold. The first and
main contribution is the novel conceptual simulation framework
together with its design principles and methods. One of the key
design principles in the framework is construction of composite
synapse and neuron models built out of more primitive com-
ponents. This is enabled through the basic framework concept
of network element which can be specialized to represent a sin-
gle neuron, but also simpler functional parts within the neuron
model. Another key feature of the framework is its capability
of hybrid simulation of event-driven and time-driven network
elements at the same time, achieved again by using the flexi-
bility of the network element concept. The framework and its
features bring many advantages, the most important ones being
easy extensibility, better reusability of already implemented com-
ponents that avoids code duplication, good organization of the
code and easy code maintenance. A notable novel aspect of the
framework is its ability to simulate configurable neural sampling
models, which to the best of our knowledge was not addressed
specifically in any previous work. Moreover, the applicability of
the framework has a broader scope than neural sampling, as
the simulator can be extended for simulation of various types
of neural systems. The NEVESIM framework, its concepts and
the design approaches are described in Section 2. Throughout
this section there is also analysis, discussion and simple exam-
ples that motivate the framework constructs and the design
choices made during development. In order to further demon-
strate the useful features and advantages of the framework, in
Section 3 we provide additional examples of how the framework
concepts can be utilized to build specific neuron and synapse
model implementations. We also describe in the same section
how clock-driven simulation can be realized without introduc-
ing any additional framework concepts or mechanisms, which is
another demonstration of the flexibility of the NEVESIM frame-
work. The reader audience that would benefit mostly from the
first contribution are developers of simulation tools that can
adopt some of the design principles of the framework if they
fit their requirements. Knowledge about the conceptual software
framework would be certainly also valuable for researchers who
want to extend NEVESIM for their own modeling and simulation
needs. The second contribution of the paper is the presentation
of the simulation software, where the main target reader audience
are potential future users of NEVESIM. This part includes the

description of the Python interface in Section 4, and the results
of NEVESIM simulations of two example neural network mod-
els in Section 5 together with the code for implementing the
model of the second example. In addition, in Section 5 we test the
accuracy as well as the performance of the simulator in context
of the model examples. The purpose of the second contribution
is for the readers to get a first idea, impression of the capabili-
ties, features, user-friendliness and performance of the simulation
software, so that they can decide whether they want to use it for
their research work.

2. THE NEVESIM SIMULATION FRAMEWORK
2.1. BASIC CONCEPTS OF THE FRAMEWORK
2.1.1. Network elements and event connections
The dynamics of mathematical models of networks of spiking
neurons can be described through the equations governing the
dynamics of each neuron and the communication of spikes, which
represent point events, between the neurons. This allows one to
make a first conceptual separation in the simulation engine in two
parts: (i) handling of the communication of point events and (ii)
numerical integration of the equations describing the dynamics
of each neuron. As NEVESIM employs event-driven simulation
strategy, the highest level of the simulation algorithm that drives
the simulation forward in time is the emitting, scheduling and
delivering of events. Furthermore, in NEVESIM the aim was to
simulate heterogeneous networks of spiking neurons, where each
neuron and synapse in the network can potentially be of differ-
ent type and have an arbitrary different model dynamics. This
was achieved by introducing an abstract concept of a network
element from which all other neuron and synapse types will be
derived. The concept of network element is implemented via
the abstract class EvSimObject, and the simulation engine
during execution of the simulation acts upon the network ele-
ments in the network only through the interface of this abstract
class, without knowing the inner-workings of each individual net-
work element. Thus, a simulated network in NEVESIM can be
viewed as a network composed of interconnected network ele-
ments, which communicate to each other events in continuous
time.

The concept of network element is quite general and is not
restricted to just being a base concept for models of biological
neurons and synapses. For example, input spike train gener-
ators and spike recorders are also implemented in NEVESIM
as network elements. Moreover, in certain cases it is conve-
nient to implement the computations of a sub-network of the
biological neural network model with a more efficient non-
neural algorithm, instead of instantiating a neural network for it.
Additionally, in closed-loop experiments when the neural model
needs to be coupled with an external environment, the envi-
ronment can be implemented as a network element which is
connected to the neural network via spiking connections in both
directions. All these various cases of different network elements
indicated the necessity for a network element to have maximum
flexibility in forming incoming and outgoing connections with
other network elements. This is accomplished in NEVESIM by
allowing a network element to have multiple input and multiple
output ports, through which it can receive or emit events.
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The semantics of ports of the network elements can be sum-
marized through the following definitions. Every instantiated
network element in a NEVESIM network has an ID which
uniquely identifies it within the network. The network element
ID is a separate C++ data type, currently set to be equal to
unsigned integer, which for most computer architectures has
width of 32-bits2. An output port of a network element is iden-
tified by the ID of the network element it belongs to, and by
the port number which is an integer value. The output ports
that belong to a single network element are enumerated con-
secutively from 0 to the number of output ports minus 1. The
same is true for the input ports. An event connection is defined
through the quintuple (src_id, src_port, dest_id,
dest_port, delay_time), meaning that events originat-
ing from the output port src_port of the network ele-
ment with ID src_id are communicated to the input port
dest_port of the network element with ID dest_id with a
delay delay_time. The delay delay_time is a non-negative
real number (can be also 0) specifying the delay in seconds.

2.1.2. Coupling of network elements
Apart from interaction between the network elements via events,
in NEVESIM there can exist also, what we call in the NEVESIM
framework, coupling between the network elements. Two net-
work elements A and B are considered to be coupled when the
C++ object of A accesses during the simulation the C++ object
of B either through invocation of a method of the C++ object, or
by directly accessing one of its member variables. This is conve-
nient and desirable in many cases, in particular when we want
to have a processing node in the network (e.g., neuron) com-
posed of many network elements. For example, the dynamics of
certain point models of biological neurons can be decomposed
into the dynamics of each of its input synapses and the dynam-
ics of its membrane potential together with the spike generation
mechanism. Thus, instead of having a neuron implemented as a
single network element, in NEVESIM each synapse can be a sepa-
rate network element which is coupled to its post-synaptic neuron
(another network element). Furthermore, in synapses that exhibit
synaptic plasticity one can implement the plasticity mechanisms
in a separate network element and couple it to the network ele-
ment implementing the synaptic dynamics. There are numerous
other use cases where one can use multiple coupled network
elements to implement a certain synapse or neuron model. We
will present examples of coupled network elements on concrete
implementations later in this section and in Section 3.

We distinguish between one-way and two-way coupling of net-
work elements. If the network element A accesses methods or
member variables of the network element B, and B does not access
anything from A, then we call this one-way coupling from A to B.
If the network element B also accesses A, then we have two-way
coupling.

2As to this end NEVESIM does not support parallel simulation, this is enough
for network size ranges that can be simulated in one thread. If in the future
there is a need to simulate larger networks, the network element ID data type
can be easily changed to a 64-bit unsigned integer by modifying just one line
of code.

The approach to use composition of coupled network ele-
ments is not a novel idea, actually it follows the same principles
of a well established design approach in object-oriented software
design called object composition (Gamma et al., 1994). Thus,
the advantages of using object composition that have been iden-
tified in software design in general, apply also to the case of
coupled network elements in NEVESIM. One salient advantage
of the approach is that it enables greater reusability of the net-
work elements. Namely, one can break down the algorithmic
logic of the neuron models (or also other processing nodes in
the network) into well defined elementary functionalities, and
for each elementary functionality there can be different con-
crete implementations. Then the elementary network elements
can be combined in different ways to form a variety of neuron
models. An example would be synaptic plasticity as elementary
functionality and different types of plasticity as different concrete
implementations implemented in different network elements.
Moreover, with composition this can be done directly in run-time
while constructing the NEVESIM network, without the need to
recompile the C++ code.

The NEVESIM design methodology fully encourages compo-
sition through coupling of network elements, and having a fine
granular structure of neuron and synapse models. Note that,
however, in the NEVESIM framework we do not impose any
conventions and specifications that define the way the network
elements are coupled together to form the neuron and synapse
models.

2.1.3. Causal update links
A change in the network state of one network element due to
an input spike on its input ports typically also requires a state
update of the network elements it is coupled to. A typical exam-
ple is the point neuron model that we discussed, composed of
its input synapses as network elements that are coupled to the
soma of the neuron implemented as another network element. In
such a case when one of its input synapses receives a spike, after
the synapse updates its state, the network element representing
the soma should update the membrane potential of the neuron
to reflect the change of the postsynaptic response of the synapse.
Since in NEVESIM there is not a global clock which ensures that
the state of all network elements will be updated at each time-
step, the propagation of the state-updates through the coupled
network elements should be handled explicitly by the NEVESIM
framework.

For this purpose we introduced the concept of causal update
link between network elements. A causal update link is a
directed link defined with a triplet (src_id, dest_id,
update_id) which connects two coupled network elements
with IDs src_id and dest_id. The presence of such a causal
update link means that whenever the network element src_id
updates its state (due to a received spike or a causal update link
from another network element), after that the network element
dest_id should also perform an update of its state. The integer
number update_id is an identifier which informs the network
element dest_id what type of update it should perform. The
state updates are carried out by the simulation engine based on
the causal update link graphs.
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To better illustrate the usage of causal update links and cou-
pling of network elements we will consider a simple example
neuron model, an event-based implementation of a deterministic
current-based leaky integrate-and-fire neuron model (definition
can be found in Section 4.1.1 in Gerstner and Kistler, 2002)
with Dirac-delta pulses as input currents caused by the input
spikes. We assume that the neuron model is implemented such
that its input synapses are separate network elements which are
coupled to the network element of the neuron. Each synapse
holds the value of the synaptic weight for that synaptic connec-
tion, and when an input spike arrives at the synapse at time
t, the synapse informs the neuron that the membrane poten-
tial should instantly be changed by a value proportional to the
synaptic weight. Then the neuron should update the state of
the membrane potential um(told) from the last time of update
told to the current time t, and add the value due to the input
spike from the synapse. If the new value of the um(t) crosses
the threshold, then the neuron should spike. Figure 1 shows a
small network structure with this event-based LIF neuron type
where three neurons with IDs N1, N2 and N3 are connected to
the N4 neuron, through the synapses SYN1, SYN2 and SYN3
respectively. This figure also introduces a diagram notation for
the different possible relations that can exist between network
elements, which we will use in the subsequent figures through-
out the text. As it is shown, in order to ensure proper state
update of the neuron N4 after an input spike, we need to cre-
ate causal update links from each of the input synapses to the
neuron N4.

Note that the causal update links just inform the simulation
engine in what order it should call the state update operations,
and creating a causal update link does not really perform any
coupling of the network elements. The coupling is a separate
operation that should be performed by the user with the provided
interfaces of the network elements for coupling. In fact the three
operations of creating event connections, creating causal update
links and coupling of network elements can be seen as primi-
tive operations in the NEVESIM framework. By combining these
operations more complex and higher-level operations in the user
interface can be defined. For example connecting two neurons
with a synapse can be composed of three operations:

1. Create an event connection between the output port of the
presynaptic neuron and the input port of the synapse,

2. Couple the synapse with the postsynaptic neuron, and
3. Create a causal update link between the synapse and the

postsynaptic neuron.

We will describe in the following more precisely in what order
the update operations should be executed in a given NEVESIM
network. Let us assume that an event is emitted from a certain
output port out_p of some network element. This output port
can in general have many outgoing event connections with dif-
ferent delays. We group these outgoing connections based on
their delay and consider one group of the outgoing connec-
tions that have the same delay equal to d, which we denote with
Conn(out_p, d). We name the set of network elements that
receive at least one event connection from Conn(out_p, d)

FIGURE 1 | NEVESIM network that implements a network structure of

three neurons N1, N2 and N3 connecting to a fourth neuron N4. The
small rectangles on the right/left side of the network element represent
their output/input ports, respectively. There can be three different types of
relations between the network elements, a causal update link, a coupling,
and an event connection, which are depicted as it is shown in the legend of
the figure. One-way coupling of network elements is represented in the
figure by a dashed line with one arrow at the end. The synapses SYN1,
SYN2 and SYN3 have event connections at their input ports where they
receive the spikes. There is one-way coupling from each synapse to the
neuron because after it receives an input spike the synapse accesses the
neuron and communicates to it the amplitude of the required instantaneous
jump of the membrane potential due to the input spike, e.g. by invoking a
function of the neuron network element. The neuron is not coupled back to
the synapse as it receives everything that it needs from the synapse. The
synapses also have a causal update link to the postsynaptic neuron,
because after receiving the value of the instantaneous jump of the
membrane potential from the synapse, the postsynaptic neuron should
update its state (the value of the membrane potential), and additionally it
should fire a spike and enter a refractory state if the new membrane
potential crosses the threshold.

as an event target group for the output port out_p and the delay
d, or ETG(out_p, d). The ETG(out_p, d) network ele-
ments have the property that the event emitted from the output
port out_p will be delivered exactly at the same time moment
to each of them. This implies that the propagation of subse-
quent state updates from the network elements in ETG(out_p,
d) to other linked network elements should be carried out
concurrently, with the order of the updates determined by the
graph of causal update links. More specifically, let V(out_p,
d) be the set of network elements that can be reached through
a path of causal update links originating from at least one of
the network elements in ETG(out_p, d). Additionally, with
G(out_p, d) we denote the directed acyclic graph that has
V(out_p, d) as set of vertices, and all causal update links
between them as edges. Then the update operations of the net-
work elements should be executed in an order that is a cor-
rect topological ordering of the directed graph G(out_p, d).
There can be many topological orderings of G(out_p, d), and
the update operations can be performed in any of these order-
ings. As the graph of causal update links must be acyclic, if the
user attempts to create a cycle of causal update links, NEVESIM
detects the cycle and reports an error.
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If a given network element E in G(out_p, d) has many
incoming causal update links, these should ideally have the
same value of the update identifier update_id. This value
update_id will be given as an argument when the update
operation of E is invoked. Update identifier values only become
important in the case when a network element participates in two
graphs G(out_p_1, d_1) and G(out_p_2, d_2) derived
from two different event target groups. In such a case the network
element can have different update_id values on the incoming
links depending in the two different graphs, and execute different
update operations depending on whether an event was delivered
to the first or the second event target group. We will present an
example of this later.

In the simulation engine the causal update links are imple-
mented as an array of arrays (implemented as C++ STL vector
data structures) where for each event target group ETG(out_p,
d) there is an array of pairs (net_element_id,
update_id) that represents a correct topological order
of G(out_p, d). Thus, after an emitted event is delivered to
the event target group ETG(out_p, d), in order to propagate
the state updates one should simply iterate through the associated
array of pairs. The used data structure is memory efficient as it
stores just the minimum information required to correctly prop-
agate the state updates. This is important as the number of causal
update links for some networks can scale with the number of
synapses which will make this data structure a significant portion
of the memory footprint of the simulated neural network.

2.2. AN OVERVIEW OF THE ARCHITECTURE OF NEVESIM
The NEVESIM software package consists of the C++ library
(libevesim.so) and a Python package (pyevesim) which wraps
the user interface parts of the C++ library. There are four main
components in the C++ library: the network user interface, the
simulation engine, the abstract network element and metadata
framework, and a library of already implemented and available
network elements (See Figure 2).

The network user interface is implemented through the class
EvSimNetwork that exposes to the user the set of all ele-
mentary operations in the NEVESIM conceptual framework that
we discussed previously. Through the use of these elementary
operations the user can construct various networks of network
elements and control the simulation of the constructed networks.

The simulation engine, encapsulated in the class
EvSimEngine, contains the algorithmic logic of the sim-
ulation strategy implemented in NEVESIM. As we pointed out
before, NEVESIM employs an event-driven simulation scheme
and the main execution loop of the simulation engine concerns
the routing, scheduling and delivering events that are emitted
by the network elements. The time ordering of the events is
done with two priority queues: one for the scheduled events that
are to be delivered in the future, and the second for pending
future events that can be canceled. This is a standard way to
implement event-driven simulation already previously used in
other simulators (Brette et al., 2007; Taillefumier et al., 2012). In
addition, the simulation engine is responsible for the propagation
of state updates defined by the causal update links between
coupled network elements.

FIGURE 2 | The high-level architecture of the NEVESIM software

package.

The third component includes the abstract class
EvSimObject from which all network element classes are
derived, as well as a set of auxiliary classes that provide metadata
and reflection capabilities for network element classes. With the
metadata framework, for each network element a list of fields can
be registered. A field is a member variable in the C++ class of the
network element of a primitive data type (integer, float, double,
char), which is usually either a parameter or a state variable in
the model. If a member variable is registered as a field, then the
metadata framework provides a set of facilities for accessing its
value. For instance, one can retrieve the list of the names of the
registered fields as strings, or get the physical address of a field
for a specific created network element, by providing the name of
the field as a string variable. This metadata field information is
used in many places throughout the NEVESIM framework, as it
enables configurability and access of the network elements on a
meta-level, which for certain purposes is much more convenient
as it achieves better generality with less code. It is also often used
in the user interface, for example for setting up recording of fields
during the simulation, or setting up modification of a field of one
network element by another network element in the network. We
will provide an example for this in Section 3.

NEVESIM also provides a library of already implemented net-
work elements which contains neuron and synapse models, input
generators, recorders, as well as other network elements that do
some useful, more abstract processing. Apart from these readily
available network elements, the NEVESIM framework allows the
user to easily extend NEVESIM with custom network elements.

2.3. COMPOSITE NEURONS AND SYNAPSES THROUGH C++
TEMPLATES

Typically in the implemented model dynamics of neurons and
synapses one can identify separate functional parts which inter-
act together to realize the complete functionality. Moreover, there
are neuron models which differ only in the implementation of
one or a few such functional parts, whereas the rest of the
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implementation is the same. This suggests that it would be a
good design strategy to encapsulate each functional part as a sep-
arate component through the utilization of some object-oriented
construct, which will then enable building complete neuron mod-
els by putting together their constituent functional components.
Such a fine-granularity design approach has the obvious advan-
tage that each functional component can be reused in many
different neuron models, which avoids duplication of the same
code among neuron models. Thus, if one wants to modify the
code of a specific functional part, one needs to make changes
only at one place, instead of having to update the code of each
neuron or synapse model that implements such functionality.
Furthermore, if good mapping is achieved from the logical or
functional components to object-oriented concepts, this makes
the code more amenable to growth and extensions. Indeed, if
a new feature or functionality is to be added and this can be
achieved just by adding new lightweight components (classes),
this is surely cleaner and simpler than having to modify and
reorganize the code inside existing classes that are already in the
codebase.

We already touched upon the design approach of having com-
posite neurons and synapses in one of the previous subsections
where this was achieved through object composition, or more
precisely through coupled network elements in the NEVESIM
framework. In this section we will introduce another design
approach which in addition to using object-oriented constructs,
also makes use of the generic programming capabilities of C++.
We will explain the approach through an illustrative example that
we describe in the following. The example concerns the imple-
mentation of several different types of synapse models as network
elements. The synapse models that we want to implement differ
in several aspects:

• The shape of the postsynaptic response can be either an expo-
nentially decaying, double exponential or alpha shaped,

• the synapse can be either current based or conductance based,
• it can be a dynamic synapse, i.e., exhibit short-term plasticity

or be a static synapse, and
• it can have either spike-timing-dependent plasticity, or rate-

based Hebbian plasticity active.

We see that we have four functional parts in the synapse model,
where each can have one of several different implementations.
We should point out that the separation of the synapse dynamics
into the functional parts presented above is not always possible,
i.e., it is realizable only for some types of neuron models and
simulation strategies. Nevertheless, it is a good and representa-
tive example for the approach that we want to present. In the
design approach that we propose we organize the functional parts
in a inheritance hierarchy of classes, where each functional part
is implemented at a specific level of the hierarchy. Each addi-
tional level builds on and uses the functionality of the upper
levels, and extends the functionality further with the logic of its
corresponding functional part.

If we try to implement the class hierarchy with nor-
mal inheritance it becomes clear that it is not directly
feasible to derive a class hierarchy that would encapsulate

all different implementations and avoid code duplica-
tion. Namely, let us assume that we have three base
cases for the different shape of the postsynaptic responses
ExpPostSynResponse, DoubleExpPostSynResponse
and AlphaPostSynResponse at the highest hierarchy
level. In order to extend the exponential decaying postsynaptic
response class with conductance-based functionality, i.e., add
the second level, we can derive from ExpPostSynResponse
a new class CondExpSynapse. But now if we want to
do the same extension with the alpha shaped postsynaptic
response and derive a new class CondAlphaSynapse from
AlphaPostSynResponse, we should again implement
the same conductance-based logic in CondAlphaSynapse
that we already have in CondExpSynapse. From this it is
evident that if we want to use inheritance to represent the
different functionalities in this example there is a need to have
a single class for the conductance-based logic for which we can
somehow configure its base class it is inherited from, i.e., the
type of the postsynaptic response. In our design approach we
use C++ templates to enable this type of configuration of the
base class. Templates in C++ are parameterized classes where
the parameters are typenames, i.e., types of classes, that are used
in the definition of the parameterized class. For example, let us
assume that we want to implement a data structure, e.g., a FIFO
queue. By using a C++ template, instead of providing a concrete
data type for the elements stored in the queue, we can use a type
parameter ElementType of the C++ template:

template<class ElementType>
class Queue {

/* ... the class implementation goes here ...*/
};

This enables us to use the same template implementation for
instantiating queues of different data types, e.g., Queue<int>,
Queue<double> or Queue<MyDataType>.

A useful property of C++ templates is that they can also have a
parameter data type for the base class of the parameterized class.
This is exactly the property that we use to achieve configurabil-
ity of the base class for the classes that implement functionalities
at lower levels in the inheritance hierarchy. In particular for the
second level we have two parameterized templates: one for the
conductance-based functionality and one for the current-based
functionality, as follows:

template<class BaseClassType>
class ConductanceBasedSynapse : public BaseClassType {

/* ... the implementation ... */
};

template<class BaseClassType>
class CurrentBasedSynapse : public BaseClassType {

/* ... the implementation ... */
};

Similarly, for the third level we define two template classes,
one for the dynamic synapse with short-term plastic-
ity DynamicSynapse and one for the static synapse
StaticSynapse, and accordingly for the fourth level two
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templates STDPSynapse and HebbianPlasticSynapse.
All the template classes are parameterized by the type of the base
class from which the template class inherits.

If we want to define now a current-based dynamic synapse
which has an exponentially postsynaptic response and exhibits
STDP plasticity, then we can combine the appropriate tem-
plate classes at each level to define a new synapse type which
implements the desired combination of functional parts:

typedef STDPSynapse<
DynamicSynapse<

CurrentBasedSynapse<
ExpPostSynResponse>>>

ExpCurrBasedDynamicSTDPSynapse;

In this type definition with nested templates, in the inner-
most part we first define a class type CurrentBased
Synapse<ExpPostSynResponse> where the current
based synapse CurrentBasedSynapse is inherited from
ExpPostSynResponse. Then we use this class as a template
parameter for the DynamicSynapse class which makes it a
base class for the dynamic synapse, and we continue nesting for
the other levels. In the same way we can define synapse types
for all other possible combination of functional parts at the
different inheritance levels. In order to be able to be used in such
an inheritance hierarchy the template classes should certainly
be compatible to one another. For example, all classes for the
postsynaptic response at the top level should provide the same
interface which is expected and used from the template classes at
the lower levels.

3. EXAMPLES OF NEVESIM NETWORK STRUCTURES
3.1. CLOCK-DRIVEN NETWORK ELEMENTS
As we described previously, the NEVESIM core simulation engine
implements an event-driven simulation algorithm. Nevertheless,
one of the goals during the NEVESIM development was to enable
merging different simulation strategies in a single simulation
framework, that allow simulation of heterogeneous networks of
diverse neuron models and other network elements, some simu-
lated in an event-driven, and some in a clock-driven fashion. It
turns out that the algorithmic requirements for clock-driven sim-
ulation can be already achieved by utilizing the existing concepts
in the framework. Indeed, what one needs to set up is a repeated
communication of a signal to the clock-driven network element,
usually at regular time intervals, so that it can advance its state to
the time of the next clock tick. We implement such a signal with
an additional network element that we call a clock.

In this implementation the output port 0 of the clock is con-
nected to a set of clock-driven network elements via an event
connection with delay 0. The clock also has a recurrent event
connection from its output port 0 to its input port 0 with a
delay equal to the time-step �T of the clock-driven simulation.
Whenever it receives an event at its input port 0, the clock emits
a new event at its output port 0. Hence, in such a setup the clock
will output an event from port 0 after every time interval �T.
We assume that the output port 0 of the clock is connected to
an input port of a clock-driven network element which is dedi-
cated for the time-step based update of its state, i.e., whenever the

network element receives an event at this input port, the routine
for advancing the state to the next time step is executed.

In the implementation above we considered only fixed time-
step clock-driven simulation, however they can be readily
extended to a variable time-step implementation. Namely, in
NEVESIM it is possible for a network element to emit at time t
an event with a future timestamp tev (tev > t) where tev can be
arbitrarily chosen by the network element. Thus, in order to have
a variable time-step, the clock can have a recurrent connection
to itself with a delay 0, and emit at time t event t + �Tk where
�Tk is the time-step used at the k-th iteration. This is sufficient,
however, only in the case when the variable time-steps are known
a priori, and can be implemented in the clock. A more common
scenario is when the next time-step depends on the current state
of the network element, for example when the neuron model uses
an adaptive numerical integration algorithm with a variable time-
step (Lytton and Hines, 2005). In that case the network element
itself should decide and control when it will be activated next, i.e.,
it should be its own clock. This can be achieved with a recurrent
event connection from one of the output ports of the network
element to one of its input ports, dedicated for signaling the next
time moment when the network element should be updated.

3.2. DESCRIPTION OF THE NEURAL SAMPLING MODELS
In the next examples, we show how an efficient event-based
implementation of the neural network models that implement
neural sampling (Buesing et al., 2011) can be mapped to a net-
work of interconnected network elements in NEVESIM. Before
we continue with the examples, we first give a brief description of
the neural sampling models.

The neural sampling networks are networks of spiking neurons
that in their stationary stochastic dynamics perform MCMC sam-
pling from a particular probability distribution. The neuron used
in these networks is a stochastic point neuron model with a firing
probability density at time t equal to ρ(u) = 1

τ
exp (u(t)) where

u is the membrane potential of the neuron, and τ is a parameter
which is also used in the definition of the postsynaptic responses
and the refractory period of the neuron. The membrane potential
is a weighted sum of the postsynaptic responses at the synap-
tic inputs u(t) = ∑

i wiεi(t) where wi is the synaptic weight at
the i-th synaptic input and wiεi(t) is the postsynaptic response
at the corresponding synapse. The postsynaptic response kernel
εi(t) is equal to 1 if there was a spike at the input in the time
interval [t − τ, t], and otherwise equal to 0. After a spike, the neu-
ron enters an absolute refractory period of duration equal to τ

where it is silent. After the end of the refractory period it restores
its normal stochastic firing defined above. The values of all state
variables and parameters in this definition are in arbitrary units.

The connectivity of the neural network and the weights of its
synapses are determined by the probability distribution it should
sample from. We will describe this in more detail in Section 5.2.
Notice that in the theoretically ideal neuron model defined above,
the shape of the postsynaptic response is rectangular with a dura-
tion τ . Nevertheless, it has been shown in computer simulations
that the error is not large and quite good approximations can be
obtained when the network has biologically more realistic shapes
of postsynaptic potentials. To explore such models, NEVESIM
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also supports simulation of networks with arbitrary shapes of
postsynaptic potentials in the form of piecewise constant or piece-
wise linear kernels. Additionally, in the ideal model the delay of
the synaptic connections should be 0, and also the τ parameter
should be the same for all neurons in the network.

3.3. SYNAPSES WITH SHARED POSTSYNAPTIC RESPONSES
If we analyze the neural sampling models, we see that they lend
themselves well for event-based implementation. Indeed, since
the postsynaptic spike responses are rectangular, this implies that
the membrane potential is a piecewise constant function. The
membrane potential can change its value upon two types of
events: when a new input spike arrives, or when an active post-
synaptic response pulse caused by a previous spike ends (after
time period τ ). The new value remains constant until the next
such event happens. Hence, after each input event, the mem-
brane potential is constant, and we can calculate the time of the
next spike under the assumption that the membrane potential
remains constant until the neuron spikes. If the membrane poten-
tial changes in the meantime because of a new input spike, then
the time of the next pending spike is again recalculated.

Another property of the neural sampling models that can be
used to speed up the simulation is the fact that the evolution over
time of the postsynaptic response εi(t) is identical at each synapse
originating from the same presynaptic neuron. Therefore, instead
of implementing a postsynaptic response inside the network ele-
ment of each synapse, we can have separate network elements
encapsulating the dynamics of the postsynaptic responses, one
for each neuron. In such a way the synapses that have the same
presynaptic neuron can share the same postsynaptic response. A
different, more commonly used speed-up strategy, based on a
similar idea to reduce the integration of postsynaptic responses
to one state variable per neuron, is to make the reduction at
the postsynaptic neuron, i.e., to have one state variable for the
total postsynaptic response of all input synapses of the postsy-
naptic neuron. This is possible when the postsynaptic responses
have identical linear dynamics with the same time constants.
However, although this common strategy works well for other
typical shapes of postsynaptic responses (alpha, exponential, dou-
ble exponential), for the rectangular shape it is not that efficient
as the event-based simulation of the rectangular shape requires
a delayed event for the end of the response to be scheduled in
the event queue. Thus, calculating the total postsynaptic response
at the postsynaptic neuron in a single state variable would imply
scheduling a delayed event for each delivered spike rather than
for each emitted spike. As the number of delivered spikes is much
larger than the number of emitted spikes (each emitted spike gen-
erates many delivered spikes equal to the number of outgoing
connections of the neuron that emitted the spike), it is clear that
it is more efficient to use the approach where all synapses from
the same presynaptic neuron have a shared postsynaptic response.
But note that this approach is only feasible when all outgoing
synaptic connections from the same neuron have the same delay,
as only in this case the postsynaptic responses of the synapses have
identical evolution over time.

To implement the shared postsynaptic response we use a
network element of spike response type that has a rectangular

response kernel. The spike response network elements are a type
of network elements in NEVESIM that, in general terms, imple-
ment evolution of a variable with a dynamics that is determined
by a sequence of events (spikes) and a response kernel. The
dynamics of the variable is such that each new arrived spike trig-
gers a response in the form of the response kernel which is either
added to the value of the variable (in case of additive dynamics)
or replaces the previous dynamics (in case of reset dynamics).
Examples of variables that can be implemented with a network
element of a spike response type are the input conductance or
input current of a synapse, traces in implementations of STDP
and other linear traces that occur in the dynamics of neuron
models.

Figure 3 illustrates the neural sampling implementation with
NEVESIM network elements for a network with four neurons and
four synaptic connections. As there are only two neurons that
have outgoing synaptic connections, we have two spike responses
as network elements, the spike response SR1 for the neuron N1,
and SR2 for the neuron N2. Notice that, in addition to the input
port 0 where they receive the spikes from the presynaptic neu-
ron, the spike responses have an additional input port 1 and
an output port which are connected through a recurrent event
connection. The recurrent event connection is with a delay τ

and the spike response network element uses it to signal to itself
the time moment of the end of the rectangular pulse for the
postsynaptic response. Since the neuron N1 has three outgoing
synaptic connections, all three synapses are coupled to its associ-
ated spike response SR1, i.e., these synapses share the same spike
response. The synapses are coupled, one-way only, to both their
spike response and the postsynaptic neuron. The propagation of
updates of states is carried out in the following order. When the
spike response SR1 receives a spike on one of its input ports, 0 or
1, it recalculates the value of its postsynaptic response. Then after-
ward, as there are causal update links from SR1 to the synapses

FIGURE 3 | An implementation with interconnected network elements

of a neural network with four neurons and four synaptic connections.

The network represents a small part of a neural sampling network where
synapses connecting from the same presynaptic neuron have shared
postsynaptic response. In the network the neuron N1 connects to the
neurons N2, N3 and N4 via the synapses SYN2, SYN3 and SYN4

respectively, and the neuron N2 connects back to neuron N1 through the
synapse SYN1. See the text for details on the meaning of the existing
connections and relations between the network elements.
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SYN2, SYN3 and SYN4, the state update operations of these
synapses are called. In the state update operation the synapse first
accesses the changed value of the postsynaptic response from the
shared postsynaptic response network element (hence the one-
way coupling to SR1). Then it communicates the changed value
of the postsynaptic response multiplied by the synaptic weight
to its postsynaptic neuron (hence the one-way coupling to the
neuron). Finally, the causal update links from SYN2 to N2, from
SYN3 to N3, and from SYN4 to N4 ensure that after the state
update of any of the synapses, the state update operation of its
postsynaptic neuron will be executed. The state update opera-
tion of the neuron updates the membrane potential to reflect the
changed value of the postsynaptic response and then recalculates
the time of its next spike.

The example showed that the concepts of the NEVESIM
framework are versatile enough to implement a neural sam-
pling network with shared postsynaptic responses between the
synapses, which clearly optimizes the efficiency of the simulation.
Indeed, this optimization achieves that the number of postsynap-
tic responses is equal to the number of neurons in the network,
instead of being equal to the number of synapses. As the number
of neurons is typically much smaller than the number of synapses,
this can greatly reduce the simulation time of a neural network.

3.4. SYNAPSES WITH PLASTICITY
The next two examples that we present show how synapses that
exhibit synaptic plasticity can be embedded in a neural sampling
network. In NEVESIM there are two types of plastic synapses used
within neural sampling models for learning, which are shown in
Figure 4. As it can be observed, both types of synapses assume
implementation of a neural sampling network with synapses that
have shared postsynaptic responses, which was already described
above. They are, however, somewhat differently implemented
with network elements. The first type of synapse (See Figure 4A)
assumes a synaptic plasticity rule that depends on the presynap-
tic and postsynaptic spikes, and therefore it has an input port on
which it receives the spikes of the postsynaptic neuron. Whenever
there is a postsynaptic spike the synapse receives the spike on
the input, and can update the synaptic weight according to the
plasticity rule. If a presynaptic spike occurs, the synapse gets
informed about that through the causal update link from the
shared spike response. Within the state update of the synapse due
to a presynaptic spike, in addition to communicating to the neu-
ron the needed change in the membrane potential, the synapse
can also apply the plasticity rule to modify the synaptic weight.
The plasticity rule that is implemented by such a synapse can be
some variation of a spike-timing-dependent plasticity rule. It is
assumed here that the complete logic of the synaptic plasticity
mechanism is implemented within the synapse network element.
The second type of synapse depicted in Figure 4B instead of using
the spikes, uses the spike responses of the presynaptic and the
postsynaptic neurons as traces that are used within the plastic-
ity rule. Therefore in this case the synapse network element is also
coupled to the spike response SR2 of the postsynaptic neuron to
be able to access the current value of its postsynaptic response.
There is also a causal update link from the spike response SR2
to the synapse, so that the synapse gets informed when this spike

A

B

FIGURE 4 | Two types of plastic synapses that are used within neural

sampling models. (A) Implementation of a synapse with a shared
postsynaptic response as a separate network element, and a synaptic
plasticity mechanism that uses as input the times of the presynaptic and
postsynaptic spikes. (B) Implementation of a synapse with a plasticity
mechanism that uses as input the shared postsynaptic responses of the
presynaptic and the postsynaptic neurons. See text for details.

response changes its amplitude. Thus, the state update function of
the synapse gets called either through the causal update link from
SR1 or through the causal update link from SR2. The synapse
identifies where the state update was propagated from by the
update id. Then, it can access the current value of the responses
SR1 and SR2 as necessary according to the logic of the synaptic
plasticity rule, and update the value of the synaptic weight (hence
the one way coupling to SR1 and SR2). This type of implementa-
tion is convenient for plasticity rules where the traces in the rule
have the same dynamics as the postsynaptic responses. In such
a case, the speed efficiency of the implementation of the plastic-
ity mechanism can be improved by not having to duplicate the
implementation of the trace dynamics within the synapse, as it
can be the case for the first type of plastic synapse implementation
in Figure 4A.

4. PYTHON INTERFACE
To create the Python interface of NEVESIM, the wrapping inter-
face generator tool SWIG was used, which allows for rapid devel-
opment of cross-language interfaces that interface C++ libraries
to many different programming languages, including Python
(Beazley, 2003). The Python interface has one to one mapping
between the Python wrapper classes and the C++ classes in
NEVESIM and preserves the same structure of classes as much
as the semantics of the two languages allows. The benefit of this
is that all instantiated network elements in the simulated network
can be accessed and manipulated individually as Python objects
in Python, in almost the same way as they can be manipulated in
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C++, which allows for full control of the NEVESIM functionality
from within Python.

To illustrate the Python interface of NEVESIM, we consider
an implementation of a very simple NEVESIM network, through
which we present the commands in the Python interface that cor-
respond to the basic concepts in the framework. The example
implements a neuron that spikes stochastically with an instan-
taneous firing probability ρ(t) = 50 exp (u(t)), where u(t) is
the membrane potential that evolves through time according to
the sine function u(t) = 2 sin (t) − 1. After it spikes, the neu-
ron enters an absolute refractory period of 1 ms duration, after
which it restores its normal firing behavior according to ρ(t).
The neuron type in NEVESIM that implements such stochastic
firing is ExpPoissonNeuron. This neuron is typically instan-
tiated with input synapses that modify the value of its membrane
potential according to their postsynaptic responses induced by
the input spikes. Here, however, we should modulate the mem-
brane potential according to a predefined sine function. For that
purpose we use a network element called modifier which has
the functionality to repeatedly update the value of the mem-
brane potential variable “Vm” which is registered as a field in
the neuron. The field is updated according to a predefined array
of values given to the modifier, such that every time the mod-
ifier receives an input event on input port 0, it performs an
update of the value of the field with the next value in the array.
In the example the input events to the modifier are generated
with a clock network element which emits events at regular time
intervals. The diagram of the NEVESIM network is given in
Figure 5A.

1 import numpy as np
2 import pyevesim as ev
3
4 net = ev.EvSimNetwork()
5
6 nrn_id = net.create( ev.ExpPoissonNeuron() )
7
8 clock_id = net.create( ev.EvSimRegularClock(0.001) )
9
10 sine_arr = 2*np.sin(np.arange(0,T,.001))-1
11 modifier_id = net.create(
12 ev.DoubleVariableModifier(net, nrn_id,

"Vm", sine_arr) )
13
14 net.causalUpdateLink(modifier_id, nrn_id)
15
16 net.connect(clock_id, 0, modifier_id, 0, 0)
17
18 recorder_id = net.record( nrn_id )
19
20 net.simulate( T )
21
22 spike_times =

net.getObject( recorder_id ).getRecordedValues()

Code Block 1 | A simple NEVESIM simulation example implemented in

Python. See text for an explanation of the code.

The Python code that implements this simple NEVESIM
network is given in Code Block 1. The construction of the net-
work is started with construction of a network object of type
EvSimNetwork in line 4. After creating the network object, we
create the stochastic neuron in the network in line 6, by executing
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FIGURE 5 | Illustration of the example used to explain the main

commands of the Python user interface. (A) The diagram of the
NEVESIM network that implements the simulation example. Since it
modifies a field of the neuron the modifier is clearly coupled to the
neuron, as indicated in the diagram, but as it can be observed, there
is also a causal update link from the modifier to the neuron. The
reason for this is that the neuron must update its state and
recalculate the time of its next spike right after the value of its
membrane potential was changed by the modifier. Additionally, there
is an event connection from the clock to the modifier, which
transmits the input events that trigger the update of the field, and a
recorder network element connected to the output port of the
neuron, which receives and stores the spikes that the neuron fires.
(B) Depiction of the rate modulated firing of the neuron.

the methodcreate of the network object, and giving as an argu-
ment a prototype neuron object of type ExpPoissonNeuron.
The constructor of the prototype does not have any parame-
ter values which means that default values for the parameters
will be used. The provided prototype neuron object is then
copied in order to create the actual neuron object within the
NEVESIM network. Similar to this, in line 8 the clock network
element of type EvSimRegularClock is created, which is
setup to emit regular events with time interval of 0.001 s. With
the next two statements in the code we create and setup the
modifier network element which is specialized for modifying
fields of double precision floating-point data type (hence the
name DoubleVariableModifier for the modifier type). It
accepts in the constructor four arguments: the network object,
the ID of the network element with the field to be modified, the
name of the field as a string variable (Vm in this case) and the pre-
defined array of values sine_arr according to which the field
is modified. During the construction of the modifier within the
NEVESIM network also the coupling between the modifier and
the neuron is setup. The coupling in this case assumes setting up
the modifier to hold a handle (pointer) to the field Vm of the neu-
ron. Apart from the coupling, we also setup a causal update link
between the modifier and the neuron as required, by invoking the
causalUpdateLink method of the network object with the
IDs of the two network elements as arguments (line 14). After
that, in line 16 an event connection is created from the output
port 0 of the clock to the input port 0 of the modifier. This is
accomplished with the connect method of the network object,
which accepts as arguments the ID and port number of the source,
the ID and port number of the destination of the event connec-
tion and the connection delay. At this point the only thing left
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to do regarding the construction is to setup the recording of the
spikes of the neuron. As setting up a recording is a very common
operation, there exist a convenient record method in the net-
work object to do this. In line 18 we execute this method with
the ID of the neuron as an argument, which creates a recorder
and connects it to the output port of the neuron. The ID of the
recorder network element is given as a return value of the method.
The recorded spikes during the simulation can be retrieved, as
shown in line 22, by first getting a handle of the recorder and then
invoking its method getRecordedValues, which returns a
numpy array of the recorded spike times. The handle of the
recorder is obtained by executing the method getObject of the
network object with the ID of the recorder as the argument.

The retrieval of the recorded spikes after the simulation makes
use of a useful feature of the Python interface, namely that we
can access and manipulate every created network element inside
the NEVESIM network as a Python object. This is made eas-
ily possible with SWIG by setting up automatic generation of
Python wrapper classes for all network element classes in C++.
Another feature of the NEVESIM architecture that is utilized in
this example is the metadata framework, i.e., the possibility to
access member variables in the C++ classes, which are registered
as fields, by providing their name as a string. More specifically, in
the example the modifier uses the metadata information of the
neuron class to access the Vm member variable. The benefit of
this approach is that the modifier class implementation is gen-
eral in a sense that it can be used for modification of the value of
any member variable of any network element type, which would
otherwise be difficult to achieve in C++.

When running the code of the example we obtain a spiking
activity of the neuron as shown in Figure 5B. The neuron pro-
duces rate modulated firing in phase with the sinusoidal curve of
the membrane potential.

5. SIMULATION EXAMPLES AND PERFORMANCE
EVALUATION

5.1. BENCHMARK MODEL: RANDOM LIF NETWORK
As a first neural network example we simulated the standard
benchmark 4 network model from Brette et al. (2007), which is
a random connectivity, current-based LIF network with voltage
jump synapses (i.e., the input currents due to input spikes are
Dirac pulses). This type of network is very suitable to be simu-
lated with an event-based algorithm as the differential equations
can be easily solved analytically. Furthermore, as we already dis-
cussed in Section 2.1, the implementation of the neuron model
nicely fits within the NEVESIM framework. We simulated the
same network model as defined in Brette et al. (2007), with the
same parameter values. The network consists of two populations
of neurons, one excitatory and one inhibitory, forming 80% and
20% of the neurons, respectively, and the neurons are connected
randomly using a connection probability of p = 0.02 (for other
details of the model see Brette et al., 2007). As for the benchmark
4 the delays of the synaptic connections were not clearly spec-
ified in Brette et al. (2007), we set the the delay of all synaptic
connections to be equal to 1 ms.

We performed simulations to test how the simulation time and
the memory consumption scales with the size of the network. In

each simulation run the network was simulated for 1 s of biolog-
ical time. The simulations were done on a single core of a DUAL
Xeon HEXA i7 3,46 GHz CPU with 96 GB RAM. The upper plot
of Figure 6A shows the results, where it can be seen that the simu-
lation time scales quadratically with the size of the network. This
is expected, as the simulation time is mainly determined by the
number of delivered spikes which scales as O(rpN2) where r is the
average firing rate of each neuron, p is the connection probability
and N is the number of neurons in the network. We determined

FIGURE 6 | Results from the simulation with the Benchmark 4 random

LIF network from Brette et al. (2007). (A) Upper plot: simulation time as a
function of the size of the network. Each point is an average over 10
simulation runs with different randomly generated networks of the same
size. The standard deviation was too small and therefore it was not plotted.
In each simulation run the network is simulated for 1s of biological time.
The blue curve is a quadratic polynomial fit of the data points. Lower plot:
same as in the upper plot but here the scaling of used memory with the
size of the network is plotted. The red curve is a quadratic polynomial fit of
the data points. (B) Simulation of a LIF neuron that receives input spikes
from inhibitory (red spikes) and excitatory (black spikes) neurons and
produces output spikes (blue) in response. The blue curve shows the
membrane potential recorded in the NEVESIM simulation.
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empirically the average firing rate r in simulations, and it turned
out that it is approximately r ≈ 115 Hz for all network sizes. Thus,
the number of delivered spikes indeed scales quadratically which
results in quadratic scaling of the simulation time with the net-
work size. In order to induce spontaneous network activity in this
benchmark network, the resting potential was set in Brette et al.
(2007) to be EL = −49 mV, which is above the threshold potential
equal to −50 mV. This causes a high spontaneous firing rate of
a neuron even without any input synaptic connections, which
explains the high average firing rate in the benchmark network.
The memory usage in the simulations scales also quadratically
as is shown in the lower plot of Figure 6A. There are actually
two main factors that contribute to the memory consumption.
The first factor is the memory of the queue of scheduled events
and the memory footprint of the network elements, which scales
linearly with the network size. This is because we used two
synapse network elements per neuron, which was possible since
the weights of all excitatory synapses and all inhibitory synapses
are the same in the model. The second factor is the memory used
for the data structure for routing the events according to the event
connections, which scales quadratically with the network size. As
it can be seen in the lower plot of Figure 6A, the quadratic curve
that fits the points is almost linear, suggesting that for the simu-
lated network sizes the main memory consumption comes from
the event queue and the network elements.

In addition to testing the performance, we also performed an
accuracy test on a single LIF neuron that receives random presy-
naptic spikes from excitatory and inhibitory neurons, where we
compared the recorded membrane potential of the neuron in
NEVESIM, with the membrane potential obtained by analytically
solving the differential equation. To record the membrane poten-
tial of the neuron in NEVESIM with a good resolution, we setup
a variable recorder with a sampling rate of 5 kHz. Figure 6B shows
the membrane potential from the NEVESIM simulation which
matches very well the analytical solution. The mean squared dif-
ference between the two calculated membrane potentials was less
than 10−16 (the analytical solution is not plotted as its plot is iden-
tical to the membrane potential from NEVESIM because of the
small error).

5.2. NEURAL SAMPLING NETWORKS
As we already pointed out, one marked feature of NEVESIM
is its capability to efficiently simulate, through an exact event-
driven simulation, neural models derived from a novel theoretical
framework for computation with network of spiking neurons
called neural sampling (Buesing et al., 2011; Pecevski et al., 2011;
Habenschuss et al., 2013). The neural sampling theory gives a new
perspective of how biological networks of neurons can perform
probabilistic inference computations, by showing that, given cer-
tain assumptions, their stochastic dynamics can be interpreted as
MCMC sampling. One of the values of this theoretical result is
that it creates a link between many existing probabilistic compu-
tational models on a behavioral and cognitive level, and models
of networks of spiking neurons which model brain computations
on a neural level. Furthermore, neural sampling provides a bridge
for porting a large body of useful results from the field of Machine
Learning on MCMC sampling and stochastic computations with

artificial neural networks, to the modeling research that uses net-
works of spiking neurons as more detailed, lower level models
of brain computation. Thus, the capability to simulate neural
sampling models brings an additional value to NEVESIM as a
simulation tool. Indeed, it can be very useful for users that want
to explore further the potential of the neural sampling theory
and neural sampling models for elucidating various aspects of the
organization of computation in networks of spiking neurons in
the brain.

Let us consider a neural sampling network N that in its sta-
tionary dynamics samples from a probability distribution with
second-order interactions in the following form

p(z) = 1

ZN
exp

⎛
⎝∑

i < j

wijzizj +
∑

i

bi

⎞
⎠ (1)

where z = (z1, z2, . . . , zK ) is a vector of binary random variables
(RVs), wij and bi are the parameters of the distribution and ZN is
the normalization constant. The constructed network N consists
of K spiking neurons ν1, . . . , νK , one for each RV in the distri-
bution. Each neuron νk is a stochastic firing neuron as defined
in Section 3.2 in the description of neural sampling models.
According to the neural sampling theory, a sufficient condition
for the network to sample from p(z) is that the membrane poten-
tial of neuron νk at time t is equal to uk(t) = bk + ∑K

i = 1 wkizi(t).
Here bk is the bias of the neuron, wki is the strength of the synap-
tic connection from neuron νi to νk, and zi(t) is the post-synaptic
potential caused by a firing of the neuron νi that has value 1
during the time interval of duration τ after a spike of νi, and
otherwise value 0. If the network N satisfies the sufficient con-
dition, then its firing activity in the stationary regime generates,
at any point in continuous time, a correct random sample from
the distribution p(z). The samples are defined by the spikes of
the neurons, by setting zk(t) = 1 if and only if the neuron νk has
fired within the preceding time interval (t − τ, t] of length τ , and
otherwise setting zk(t) = 0. A convenient property of neural sam-
pling, similar to other stochastic systems in MCMC sampling in
general, is that the same network N that samples from p(z) can
also estimate marginal posterior distributions derived from p(z).
Marginal posterior distributions are calculated in probabilistic
inference tasks when we have concrete evidence about some of
the RVs, and we want to estimate the probability of some of the
unknown RVs given the evidence.

In the following we describe a simulation example of a neu-
ral sampling network, in which we test whether the simulated
network performs correct MCMC sampling from its underlying
probability distribution. The neural network is composed of 40
neurons with absolute refractory period τ = 20 ms, similarly as in
Buesing et al. (2011). The values for the bi and wij parameters were
drawn from a normal distribution with mean μb = −1.5 and
standard deviation σb = 0.5, and μw = 0 and σw = 0.3, respec-
tively. The spiking activity of this network is shown in Figure 7A.
The probability distribution p(z) is estimated by counting the
produced samples z(t) by the simulated network in continuous
time. In other words, if we refer to z(t) as the state of the net-
work at time t, then the probability of each state is estimated as
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B

FIGURE 7 | NEVESIM simulation example with a spiking neural

network sampling from the target distribution. (A) Spiking activity
of the neural network. The spikes of 4 neurons corresponding to
the RVs for which the marginal distribution is calculated in (B) are
plotted within a blue box. (B) Comparison between the marginal
probability distribution p(z20, z21, z22, z23) over 4 RVs obtained with

Gibbs sampling (white bars) and the estimated marginal probability
distributions from the simulation of the neural network with
rectangular PSPs (light gray bars) and the neural network with alpha
shaped PSPs (dark gray bars). The bars show the probabilities of all
possible assignment of values to the RVs z20, z21, z22 and z23,
except the zero assignment (0,0,0,0).

the fraction of time the network spends in the particular state
during the simulation. According to the neural sampling theory,
the empirically estimated distribution should converge during
the simulation to the target distribution p(z), which we have
demonstrated in our simulation example (See Figure 7B).

1 net = NeurSamplingNetwork()
2 nrn_ids= [ net.create(ExpPoissonNeuron(

1.0/tau, b[i], tau))
for i in range(K)]

3 for syn in synapses:
4 syn_factory = CompositeSynapse(
5 BasicActiveSynapse(syn[’w’]),

ResetRectSpikeResponse(tau))
6 net.connect(nrn_ids[syn[’pre’]],

nrn_ids[syn[’post’]], syn_factory)
7 net.simulate(T)

Code Block 2 | A code snippet for generic implementation of a neural

sampling network in NEVESIM.

The described neural sampling network can be implemented
in NEVESIM with a few lines of code given in Code Block 2. In
the code one assumes that the network consists of K neurons with
refractory period of duration tau. We additionally assume that
the biases of all neurons are given in one dimensional array b
while the synapses variable is a list of dictionaries. Each dic-
tionary in the list describes one synapse that is to be created in

the network, and contains the ID of the presynaptic neuron, the
ID of the postsynaptic neuron and the weight of the synapse. The
network is simulated for T seconds. In the first line of the code
we create a NEVESIM network object net which is an instance
of the NeurSamplingNetwork class. In the next line we cre-
ate K neurons via the create method of the net object. To
simplify the code we use here list comprehension construct in
Python which is a convenient way to create a Python list with a
for loop. The return value of the statement in the second line is a
Python list with the IDs of all created neurons. The used neuron
type ExpPoissonNeuron to create the neurons implements
a stochastic neuron according to the neuron definition in neural
sampling (See Section 3). Its constructor accepts three arguments,
where the first argument is the coefficient C in the firing rate
function, in this case set to C = 1/tau, the second argument
is the bias of the neuron set to b[i], and the third argument is
the duration of the refractory period set to tau. After the sec-
ond line we have a for loop which iterates over all synapses to
be created. For each synapse the connect method of the net
object is invoked in order to create a synaptic connection from
the neuron with ID given by syn[’pre’] to the neuron with ID
given by syn[’post’], by utilizing a so-called synapse factory
object syn_factory (line 6). The utility of the synapse factory
object is for the user to specify all traits of the synaptic connection
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that is to be created between the two neurons. In the particular
case we specify that we want to have a composite synapse, which
means that the synaptic connection will be composed of two
network elements, the synapse network element and a separate
network element for the spike response. For the synapse net-
work element we use the type BasicActiveSynapse which
is appropriate for neural sampling, and for the spike response
we use the type ResetRectSpikeResponse which imple-
ments a rectangular shaped PSP. Note that the connect method
of the NeurSamplingNetwork class differs from the basic
connect method of the EvSimNetwork class, in that it imple-
ments a more complex functionality of connecting two neurons
with a synapse, rather than just connecting two network elements
with an event connection. Other than the rectangular shaped PSP,
NEVESIM also has spike response classes that implement piece-
wise constant and piecewise linear shapes of responses, which can
be used for approximating other arbitrary shapes of PSPs, like
for example an alpha shape which we also used in our simula-
tions. In this case, however, having higher precision of PSP shapes
requires more segments in the spike response which comes at a
price since it reduces the efficiency of the simulation. The piece-
wise constant and piecewise linear PSPs are intended to be used
with the stochastic neuron model in neural sampling as well as
other similar stochastic neuron models. The reason for this is that
for this neuron model for many kernel functions typically used
for the shape of the PSPs there is not an available analytical solu-
tion for the probability distribution of time of the next spike. For
piecewise constant and piecewise linear PSPs, on the other hand,
there exist a simple analytical solution for this distribution.

NeurSamplingNetwork class is derived from the
EvSimNetwork class and implements additional methods
for easier construction of neural sampling models, such as a
connect method which is capable to connect two neurons with
a synaptic connection. This type of operation is not available in
EvSimNetwork, but can be achieved through the combination
of methods that are available in EvSimNetwork. This is an

example of another possible way to extend the general NEVESIM
framework, apart from implementing custom network elements,
i.e., by extending the network user interface with different more
complex commands related to creation of user specific models.

In another set of simulations we evaluated the performance of
NEVESIM for simulating neural sampling networks. For this pur-
pose we simulated networks of different sizes which have random
symmetric connectivity with p = 0.02 connection probability3.
We used τ = 20 ms, rectangular PSP shape and set the biases
of all neurons to b = −1. The synaptic weights were set to w =
0.3/(p(N − 1)) where N is the number of neurons in the network,
and p is the connection probability. This achieved that the aver-
age sum of the input synaptic weights for each neuron is 0.3 for
all network sizes, which resulted in the same average firing rate
of the neurons independent of network size. In order to examine
the speed up that is obtained when using the optimized imple-
mentation of neural sampling with shared postsynaptic responses
for the synapses with the same presynaptic neuron, we performed
the same simulations both with the optimized implementation
and the implementation with each synapse having its own post-
synaptic response network element. Figure 8 shows the results for
both implementations. Comparison of Figure 8A and Figure 8B
shows that using shared postsynaptic responses brings significant
speed up for simulation of large networks. For the implemen-
tation with shared postsynaptic responses the simulation time
should scale linearly with the number of delivered spikes, i.e.,
T(N) = O(rpN2), similarly as for the benchmark 4 networks. For
the second, not optimized implementation an additional factor
for the simulation time is the number of scheduled events in the
queue. As the reason why we simulated the same networks with
the second implementation was just to demonstrate the speed

3For each pair of neurons A and B, a binary value is drawn from a Bernoulli
distribution with parameter p to decide whether they should be connected,
and if the drawn value is 1 then A is connected to B and also B is connected
to A.

A B

FIGURE 8 | Evaluation of the simulation performance for neural

sampling networks. (A) Scaling of simulation time with the size of the
network for the implementation that used a shared postsynaptic
response among the synapses with the same presynaptic neuron. Each
point is an average simulation time, averaged over 10 simulation runs with

different randomly generated networks of the same size. The vertical
bars show the standard deviation. The solid line is a quadratic polynomial
fit of the points. In each simulation run the network was simulated for 1 s
of biological time. (B) The same as in (A) but for the implementation
where the postsynaptic responses of the synapses are not shared.
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up when using shared postsynaptic responses, we do not analyze
further the complexity for this less efficient implementation.

6. DISCUSSION
We presented in this article the NEVESIM simulation framework
suitable for efficient event-driven simulation of spiking neural
networks derived from the theory of neural sampling. Although
the initial intention was to develop a simulator for neural sam-
pling networks, the NEVESIM framework was designed to be
general and extensible so that it can be extended for simulat-
ing also other types of neural systems with lightweight (simple)
neural units. Furthermore, the concepts in the framework are
not neural network specific and can potentially be utilized to
define various types of abstract processing network nodes, which
increases the flexibility of the simulator to be adapted to various
kinds of simulated networks.

The central concept in the framework is the basic building
block of a NEVESIM network, a network element. As we showed
through examples, the concepts in the framework are capable to
accommodate various types of neural models, and to support
composite neurons and synapses, i.e., separation of the func-
tional mechanisms of a neuron in different network elements.
With this one can achieve better efficiency of the simulation when
one has a mechanism encapsulated in a network element which
is shared, i.e., used simultaneously by many network elements,
as in the neural sampling model example with synapses sharing
the same postsynaptic response. Another benefit of the approach
is that if one already has a network element that implements
some functional part in one neuron model, it can be reused in
another neuron model that has an overall different implemen-
tation, but needs exactly the same functional part. Furthermore,
another property of the framework is that it is designed with the
goal to support simulation of heterogeneous neural (and other
event-based) systems. Namely, every instantiated network ele-
ment in a NEVESIM network can be of different type which is
derived from the abstract concept of network element. This is a
desirable feature as neural models with heterogeneous compo-
nents are becoming more of a rule than an exception. Actually,
the possibility to simulate heterogeneous systems is tightly con-
nected with the support for composite neurons and synapses,
since the composite neurons and synapses are composed of net-
work elements that are of different type, i.e., encapsulate different
functionalities.

Other than the approach that uses coupled network elements
to break down the neuron and synapse models into smaller
lightweight functional units, we outlined a second, complemen-
tary approach to achieve this through inheritance with C++
templates. In principle there is no general rule of thumb whether
the first or the second approach is more appropriate to be
used for a certain implementation. The choice depends largely
on the current context and the particular requirements that
one has, as well as on the design preferences of the developer.
There are some authors, however, who argue that object com-
position should be favored over inheritance (See Gamma et al.,
1994).

Compared to implementing the whole neuron model in a
single network element, using the approach of separating the

functional components of a neuron in multiple coupled network
elements does introduce a certain overhead, both in memory
consumption and execution speed. Regarding memory overhead,
having multiple network elements implies usage of extra mem-
ory for each network element to store pointers to the network
elements it is coupled to, and another extra pointer per network
element to the table of virtual functions. The data structure that
stores the causal update links between the coupled network ele-
ments also introduces an extra memory consumption. Regarding
speed efficiency, it is more difficult to foresee the impact a cer-
tain implementation with multiple coupled network element
would have on the execution speed, as it depends on the specific
implementation, and also nowadays the compilers and processors
introduce many optimizations that could make certain parts of
the overhead irrelevant. In principle if there is a “heavy” interac-
tion between the coupled network elements, and this interaction
represents a performance critical part of the code, this could result
in slower execution due to the fact that the network elements
interact through function invocation, most of which are polymor-
phic, or through indirect access of their data members through
pointers. Most of these extra function invocations and indirect
accesses are avoided when everything is implemented a single
network element. Nevertheless, a heavy interaction is usually an
indication of a bad design, and one should aim for lightweight
interaction where most of the processing is done not across, but
within the network elements that are coupled. It is important
to note that the NEVESIM framework does not force the user
to implement the neuron model into coupled network elements
in a specific way. Namely, if there is a use case when suitable
memory usage or desired execution speed can not be achieved
with coupled network elements, it is perfectly possible to have a
single network element for the whole neuron model. It is even
possible to have a single network element for a population of
neurons as we will discuss later in Section 6.2 in context of spe-
cific optimizations for simulations of homogeneous networks.
Nevertheless, as there are many use cases where separating the
implementation into coupled network elements is beneficial, and
improves the re-usability and flexibility of the code, the purpose
of the framework is to provide basic conceptual tools that help
the user to implement composite neuron models in a well orga-
nized way rather than using arbitrary ad-hoc solutions for each
model.

In contrast to the coupled network elements approach, the
template-based inheritance approach introduces virtually no
overhead in execution speed and memory consumption. One of
the reasons for that is that it does not have to use polymorphic
(or virtual) functions for the interfaces of the classes. Namely, in
object composition in order to achieve configurability in a sense
that we can change the implementation of one functional unit
with another without changing the code of the other functional
units, we need to use abstract interfaces that are composed of
polymorphic functions, and in C++ calling polymorphic func-
tions is slightly more expensive than calling normal functions.
With template-based inheritance we do not need polymorphic
functions as the binding of functions is resolved in compile time
instead of run-time. Moreover, in template-based inheritance the
functions in the interfaces can be inline functions, so that the code
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can be further optimized by the compiler4. However, the template-
based inheritance approach is not applicable in cases where the
number and structure of the functional components within the
neuron depends on the properties of the constructed network
(i.e., connectivity, parameters or similar). For example, it is not
possible to use it to separate each input synapse of the neuron as
a separate functional component, which can easily be done with
coupled network elements.

To date, in the built-in library of network elements of
NEVESIM there are about 70 already implemented network ele-
ment types. One subgroup of the network elements in the library
consists of neuron and synapse models for different versions of
neural networks that perform neural sampling, for example neu-
rons with rectangular, piecewise constant or piecewise linear PSPs
shapes, synapses with different plasticity mechanisms that are
variations of the STDP rule in Nessler et al. (2013) and dif-
ferent intrinsic plasticity mechanisms. The library also contains
the event-based implementation of current-based leaky integrate-
and-fire neuron model with voltage jump synapses, used in the
simulation example in this article that simulates the benchmark
4 network from Brette et al. (2007). Apart from the neuron and
synapse models, there are also network elements that implement
some useful basic functionality typically needed within the neural
network simulations, for example input neurons that inject pre-
defined spike patterns in the network, spike and signal recorders,
clocks, variable modifiers, continuous time signal generators and
others.

6.1. RELATED WORK
The growing use of networks of spiking neurons for biological
modeling, as well as for implementation of spiking neuromor-
phic computing systems, has resulted in an increased interest in
efficient algorithms for event-driven simulation of spiking neu-
ral networks. There have been a number of studies that made
progress on that topic (Watts, 1993; Delorme et al., 1999; Mattia
and Giudice, 2000; Lee and Farhat, 2001; Claverol et al., 2002;
Marian et al., 2002; Connolly et al., 2003; Delorme and Thorpe,
2003; Makino, 2003; Reutimann et al., 2003; Rochel and Martinez,
2003; Brette, 2006; Ros et al., 2006; Rudolph and Destexhe,
2006; Brette, 2007; Tonnelier et al., 2007; D’Haene et al., 2008;
Garrido et al., 2011; Rudolph-Lilith et al., 2012; Taillefumier
et al., 2012) (See Brette et al., 2007 for a review). Concerning
the part of the simulation algorithm for scheduling and deliv-
ering the events, various efficient solutions have been proposed
based on different implementations of priority queues, like circu-
lar lists (Claverol et al., 2002), skip lists (Reutimann et al., 2003),
heap trees (Lee and Farhat, 2001; Ros et al., 2006; Taillefumier
et al., 2012) and quick-sort pools (Marian et al., 2002). If the
connections delays are restricted to a finite set of values, it is
also possible to use a set of FIFO queues (Mattia and Giudice,
2000). In Connolly et al. (2003) the authors provide a comparative
performance evaluation of event-driven spiking neural network

4Inline functions are compiled by replacing every call of the function in the
code with the function body, thus avoiding assembly call instructions and
passing the function arguments through the stack, which can speed-up the
execution of the critical parts of the code.

simulation algorithms using different implementations of prior-
ity queues. In NEVESIM we used two priority queues for handling
the events, both implemented as heap trees, one variable length
queue that holds the already emitted events and one constant
length queue that holds the next pending event for each neu-
ron. This event-handling strategy with two queues is well known
(Brette et al., 2007) and already used in other implementations
(Taillefumier et al., 2012). Apart from the event-handling algo-
rithms, research work was also done on efficient event-driven
simulation of more biologically realistic neuron models. In partic-
ular, efficient algorithms have been devised for a specific version
of the spike response model (Makino, 2003), for current-based
LIF neurons with exponentially decaying currents with different
time constants (Brette, 2007; D’Haene et al., 2008), nonlinear
quadratic IF neurons (Tonnelier et al., 2007) and conductance-
based LIF neuron models (Rudolph and Destexhe, 2006; Brette,
2007; Rudolph-Lilith et al., 2012). Additionally, other studies
have provided algorithms for stochastic LIF neuron models,
either by analytically solving the probability distributions for
the membrane potential and the next spike time of the neuron
(Taillefumier et al., 2012) or by using precalculated look-up tables
to represent these distributions (Reutimann et al., 2003). The
approach that uses precalculated look-up tables to perform the
calculations required for the neuron dynamics was also adopted
in Ros et al. (2006) which enabled fast simulation of more com-
plex neuron models in an event-driven framework for real-time
applications.

The NEVESIM framework does not make any assumptions
about the required properties of a neuron model that can be sim-
ulated, except that it communicates via spikes to other neurons.
Hence, each of these discussed event-based neuron models can
in principle be implemented within the framework and added
to the library of network elements. How and whether the inte-
gration of the different state variables in the neuron should be
decoupled in separate network elements depends on the specifics
of the algorithm for the particular neuron model. Let us con-
sider for example the conductance-based IF neuron model that
has the same time constant for all input synaptic conductances
and one state variable for the total input synaptic conductance.
For this neuron model it is not necessary to calculate a spike
response (input conductance) for each synapse in a separate net-
work element representing the synapse, i.e., one can have a single
spike response network element for the total input conductance
coupled to the network element representing the neuron.

6.2. HYBRID EVENT-DRIVEN AND CLOCK-DRIVEN SIMULATION
Another aspect of the simulation framework that we analyzed
was the possibility to incorporate clock-driven network elements
within an intrinsically event-driven simulation system. We
showed that this is feasible even without any changes of the
simulation framework, and can be achieved with a special type
of a network element which takes the role of a clock sending
regular events, i.e., ticks, to the clock-driven network elements,
so that they advance their state to the next time-step. Hence, from
the viewpoint of software design, we see that the event-driven
and clock-driven simulation strategies do not have conflicting
demands and in principle it does not require a big effort to make
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them consistently coexist in the same simulation engine. It has
already been argued that if one uses continuous spike-times that
are not aligned to the time-step grid and performs exact time-
step based integration of the neuron dynamics, the discrete-time
simulation algorithm acquires event-driven features, and it is
best to consider it as hybrid simulation algorithm, instead of
either purely event-based or time-step based (Morrison et al.,
2006; D’Haene et al., 2014). Related to this is the question of
efficiency of time-driven vs. event-driven algorithms that has
been recently extensively analyzed in Hanuschkin et al. (2010).
There the authors show that for biologically realistic network
connectivity, firing rates and range of delays for the synaptic
connections, the time-driven algorithm with precise spike-times
for linear neuron models developed in Morrison et al. (2006) is
more efficient than the corresponding event-driven algorithm,
while preserving the same numerical accuracy of the simulation.
Furthermore, the algorithm from Morrison et al. (2006) has been
generalized in Hanuschkin et al. (2010) to be applicable to any
nonlinear neuron model with a threshold condition for spike
generation, like for example the AdEx neuron model from Brette
and Gerstner (2005).

In addition to the efficiency analysis of the developed sim-
ulation algorithms, the authors in Hanuschkin et al. (2010)
also address the issue of implementing both event-driven and
clock-driven neuron models in a single simulation framework.
In particular, they outlined a generic approach for embedding
an event-driven algorithms in a globally time-driven simulation
framework. They used this approach to implement two event-
driven algorithms for the purpose of comparing the simulation
efficiency of those two algorithms to the time-driven algorithm
with precise spike-times they developed. In this paper we also
treated the question of hybrid simulation algorithms from the
perspective of software framework design, where we showed that
an extension is also possible in the other direction, i.e., that
clock-driven neuron models can be embedded easily in a globally
event-driven simulation framework. We expect that the oulined
approaches from the NEVESIM framework are capable to pro-
vide the basic skeleton for implementation of the time-driven
and event-driven algorithms described in Morrison et al. (2006);
Hanuschkin et al. (2010). Another somewhat similar approach
to NEVESIM for hybrid event and time-driven simulation was
implemented in the EDLUT simulator (Garrido et al., 2011),
where the authors introduce two different types of events sched-
uled in the event queue, one for the spikes and one for the state
updates of all time-driven neuron models.

Closely related to the topics of discrete-time simulation algo-
rithms is an optimization that can in some cases be achieved in
such algorithms for homogeneous networks. Namely, one can use
matrix and vector operations to speed up the computations for
the numerical integration of the neuron dynamics. There already
exist simulators implemented in a dynamic scripting language
that achieve good performance by exploiting such a technique
(Goodman and Brette, 2008), but one could possibly benefit
from this idea also in C++, as there exist highly-optimized C++
libraries for matrix and vector operations. The NEVESIM frame-
work is compatible with such an optimization, as a homogeneous
population of neurons can be implemented in a single network

element, with vector and matrix operations used in the imple-
mentation to make it more efficient. Being able to have a network
element in NEVESIM with multiple input and multiple output
ports makes it easy to implement such a network element and
connect the population of neurons it contains to the rest of the
network.

6.3. PYTHON INTERFACE
The wrapping of the NEVESIM framework in the Python
programming language brings many advantages to NEVESIM.
Namely, it greatly improves the usability of the simulator, i.e.,
it simplifies the construction, simulation and analysis of neural
models. Moreover, there are many high-quality software packages
in Python for general scientific computing that can be utilized by
the user together with the code for the neural model (Hunter,
2007; Oliphant, 2007; Pèrez and Granger, 2007). There are also
useful software packages in Python for handling various accom-
panying tasks in a neural simulation project that are not handled
by the simulator itself (Muller et al., 2009). This clearly brings
great value to NEVESIM as it can be used together with a chain
of powerful tools available in Python for handling different sub-
tasks that arise in a modeling and simulation project. Regarding
the generation of the Python interface, the used wrapper tool
SWIG, with its support of automatic code generation of wrap-
per classes, made the whole process quite simple. Apart from
simply running SWIG on the header files containing the defini-
tion of the C++ classes that needed to be wrapped, only a little
extra effort was needed to make the Python interface functional.
Although SWIG is a mature tool that handles quite well the map-
pings between corresponding programming constructs, concepts
and functionalities between C++ and Python, as we have expe-
rience also with the wrapper tool Boost.Python (Abrahams and
Grosse-Kunstleve, 2003) used for the simulator PCSIM (Pecevski
et al., 2009), we must note that Boost.Python is to a certain degree
more powerful than SWIG. Nevertheless, an important practi-
cal advantage that goes in favor of SWIG is that the compilation
of the generated code is much faster than Boost.Python, and it
was a suitable choice for NEVESIM as it certainly fulfills well its
wrapping requirements.

6.4. FUTURE WORK
Although the NEVESIM framework is designed to enable and
support implementation of custom neurons and synapse mod-
els, the user still needs to have knowledge of C++ in order to
be able to implement extensions. This could represent an entry
barrier for potential users who want to use NEVESIM with their
own implemented network elements, but do not have experience
with C++. A typical approach to resolve this problem, adopted
by many simulation software packages also outside of neuro-
science, is to develop a higher-level language for specification
of neuron and synapse models in a concise and intuitive way
through text-based and/or visual diagrammatic specification. A
special-purpose compiler can be then used to translate this speci-
fication to C++ code compatible with the NEVESIM framework.
As NEVESIM would certainly benefit from adding such a specifi-
cation language, it is one of the planned extensions that we want
to implement in the future.
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When extending NEVESIM for simulation of a specific type
of neural systems, apart from the implementation of the needed
network elements it is also important to implement a custom net-
work interface to enable construction of the neural networks with
suitable higher level operations. Depending on future require-
ments, the network user interfaces of NEVESIM will be extended
to enable convenient construction and simulation of different
types of neural systems and architectures, for example construc-
tion of balanced random networks. Additionally, operations for
population and projection based constructions in the spirit of
PyNN (Davison et al., 2009a) are also planned to be added, as
well as support for PyNN.

The current implementation of the NEVESIM simulation
engine performs a single-thread simulation, but in principle it
is possible to extend it to a distributed simulation. The only
constraint, in order to have an efficient parallelization, would
be that the delay of event connections between network ele-
ments residing on different machines must be larger than some
minimum delay value, where the minimum delay should be
larger than 0. To provide parallel capabilities of NEVESIM
our plan is to integrate NEVESIM with the PCSIM simulator
(Pecevski et al., 2009) which already has a simulation engine
that supports distributed simulation. Another emerging trend is
to use GPUs for simulation of large-scale spiking neural net-
works, which provides very good scalability for much cheaper
hardware in comparison to CPU-based distributed architec-
tures (Fidjeland et al., 2009; Nageswaran et al., 2009; Thibeault
et al., 2011; Minkovich et al., 2014). Using GPUs would be
also an attractive option for NEVESIM to achieve good scala-
bility. However, as one of the primary features of NEVESIM is
to be user extensible and to enable simulation of heterogeneous
networks that are composed of network elements of different
types, this is in conflict with typical optimization techniques
usually applied in GPU-based computing to achieve good per-
formance and scalability (see discussion in Minkovich et al.,
2014). Namely, GPU-based simulators for spiking neural net-
works are usually optimized for specific neuron and synapse types
and typically simulate homogeneous networks. Thus, although
in principle it is feasible to devise a GPU-based implementa-
tion of the NEVESIM simulation engine, it will most proba-
bly scale much worse than the specialized GPU-based neural
simulators.

6.5. NEVESIM RESOURCES
More resources about NEVESIM can be found on its web
page at http://sim.igi.tugraz.at/nevesim/. The web page contains
installation instructions, as well as user manual with exam-
ples. NEVESIM is an open-source software project registered
on sourceforge at http://sourceforge.net/projects/neuroeve from
where the full source code can be downloaded.

ACKNOWLEDGMENTS
This paper was written under partial support by the European
Union project FP7-269921 (BrainScaleS), project FP7-248311
(AMARSI) and project FP7-604102 (Human Brain Project). The
NEVESIM simulator was developed by Dejan Pecevski with con-
tributions from David Kappel.

REFERENCES
Abrahams, D., and Grosse-Kunstleve, R. W. (2003). Building hybrid systems with

Boost.Python. C/C++ Users J. 21, 29–36.
Beazley, D. (2003). Automated scientific software scripting with SWIG. Fut. Gen.

Comput. Syst. 19, 599–609. Tools for Program Development and Analysis. Best
papers from two Technical Sessions, at ICCS2001, San Francisco, CA, USA, and
ICCS2002, Amsterdam, Netherlands.

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System, ed Allan M. Wylde,
Santa Clara, CA: Telos. doi: 10.1007/978-1-4612-1634-6

Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic con-
ductances. Neural Comput. 18, 2004–2027. doi: 10.1162/neco.2006.18.8.2004

Brette, R. (2007). Exact simulation of integrate-and-fire models with expo-
nential currents. Neural Comput. 19, 2604–2609. doi: 10.1162/neco.2007.19.
10.2604

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons.
PLoS Comput. Biol. 7:e1002211. doi: 10.1371/journal.pcbi.1002211

Claverol, E. T., Brown, A. D., and Chad, J. E. (2002). Discrete simulation of
large aggregates of neurons. Neurocomputing 47, 277–297. doi: 10.1016/S0925-
2312(01)00629-4

Connolly, C. G., Marian, I., and Reilly, R. G. (2003). Approaches to Efficient
Simulation with Spiking Neural Networks, Chapter 22. London, UK: World
Scientific Publishing Co. Inc., 231–240.

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., et al.
(2009a). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Davison, A. P., Hines, M., and Muller, E. (2009b). Trends in program-
ming languages for neuroscience simulations. Front. Neurosci. 3:36. doi:
10.3389/neuro.01.036.2009

Delorme, A., Gautrais, J., van Rullen, R., and Thorpe, S. (1999). SpikeNET: a simu-
lator for modeling large networks of integrate and fire neurons. Neurocomputing
26,27, 989–996. doi: 10.1016/S0925-2312(99)00095-8

Delorme, A., and Thorpe, S. J. (2003). SpikeNET: an event-driven simulation pack-
age for modelling large networks of spiking neurons. Network 14, 613–627. doi:
10.1088/0954-898X/14/4/301

D’Haene, M., Hermans, M., and Schrauwen, B. (2014). Toward unified hybrid sim-
ulation techniques for spiking neural networks. Neural Comput. 26, 1055–1079.
doi: 10.1162/NECO_a_00587

D’Haene, M., Schrauwen, B., Van Campenhout, J., and Stroobandt, D. (2008).
Accelerating event-driven simulation of spiking neurons with multiple synap-
tic time constants. Neural Comput. 21, 1068–1099. doi: 10.1162/neco.2008.02-
08-707

Diesmann, M., and Gewaltig, M. (2001). NEST: An environment for neural systems
simulations. Forschung und wisschenschaftliches Rechnen, Beiträge zum Heinz-
Billing-Preis 58, 43–70.

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans, T. C., et al.
(2010). Run-time interoperability between neuronal network simulators based
on the MUSIC framework. Neuroinform 8, 43–60. doi: 10.1007/s12021-010-
9064-z

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform 2:12.
doi: 10.3389/neuro.11.012.2008

Fidjeland, A., Roesch, E., Shanahan, M., and Luk, W. (2009). “NeMo: a platform
for neural modelling of spiking neurons using GPUs,” in Application-Specific
Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE International
Conference on (Washington, DC: IEEE Computer Society), 137–144. doi:
10.1109/ASAP.2009.24

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA: Addison-Wesley.

Garrido, J., Carrillo, R., Luque, N., and Ros, E. (2011). “Event and time
driven hybrid simulation of spiking neural networks,” in Advances in
Computational Intelligence Vol. 6691 of Lecture Notes in Computer Science,

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 70 | 19

http://sim.igi.tugraz.at/nevesim/
http://sourceforge.net/projects/neuroeve
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Pecevski et al. NEVESIM: event-driven neural simulator

eds J. Cabestany, I. Rojas, and G. Joya (Berlin, Heidelberg: Springer),
554–561.

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, UK: Cambridge University Press. doi:
10.1017/CBO9780511815706

Gewaltig, M., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural
networks in Python. Front. Neuroinform 2:5. doi: 10.3389/neuro.11.005.2008

Habenschuss, S., Jonke, Z., and Maass, W. (2013). Stochastic computa-
tions in cortical microcircuit models. PLoS Comput. Biol. 9:e1003311.
doi:10.1371/journal.pcbi.1003311

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M. (2010).
A general and efficient method for incorporating precise spike times in
globally time-driven simulations. Front. Neuroinform 4:113. doi: 10.3389/fn-
inf.2010.00113

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hunter, J. (2007). Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

King, J. G., Hines, M., Hill, S. L., Goodman, P. H., Markram, H., and Schürmann,
F. (2009). A component-based extension framework for large-scale parallel sim-
ulations in NEURON. Front. Neuroinform 3:10. doi: 10.3389/neuro.11.010.2009

Lee, G., and Farhat, N. H. (2001). The double queue method: a numerical
method for integrate-and-fire neuron networks. Neural Netw. 14, 921–932. doi:
10.1016/S0893-6080(01)00034-X

Lytton, W. W., and Hines, M. L. (2005). Independent variable time-step integration
of individual neurons for network simulations. Neural Comput. 17, 903–921.
doi: 10.1162/0899766053429453

Makino, T. (2003). A discrete-event neural network simulator for general neuron
models. Neural Comput. Appl. 11, 210–223. doi: 10.1007/s00521-003-0358-z

Marian, I., Reilly, R., and Mackey, D. (2002). “Efficient event-driven simulation
of spiking neural networks,” in Proceedings of the 3rd WSEAS International
Conference on Neural Networks and Applications (Stevens Point, WI: WSEAS).

Mattia, M., and Giudice, P. D. (2000). Efficient event-driven simulation of large
networks of spiking neurons and dynamical synapses. Neural Comput. 12,
2305–2329. doi: 10.1162/089976600300014953

Minkovich, K., Thibeault, C., O’Brien, M., Nogin, A., Cho, Y., and Srinivasa, N.
(2014). Hrlsim: a high performance spiking neural network simulator for gpgpu
clusters. Neural Netw. Learn. Syst. IEEE Trans. 25, 316–331.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of high-connectivity network simula-
tion with distributed computing. Neural Comput. 17, 1776–1801. doi:
10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2006). Exact sub-
threshold integration with continuous spike times in discrete-time neural
network simulations. Neural Comput. 19, 47–79. doi: 10.1162/neco.2007.19.1.47

Muller, E., Davison, A., Brizzi, T., Bruederle, D., Eppler, M., Kremkow, J.,
et al. (2009). “Neuralensemble.org: Unifying neural simulators in Python to
ease the model complexity bottleneck,” in Front. Neur. Conference Abstract:
Neuroinformatics.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.
(2009). “Efficient simulation of large-scale Spiking Neural Networks using
CUDA graphics processors,” in Proceedings of the International Joint Conference
on Neural Networks 2009 (Piscataway, NJ: IEEE Press), 2145–2152. doi: 10.1109/
IJCNN.2009.5179043

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computa-
tion emerges in generic cortical microcircuits through spike-timing-dependent
plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.1003037

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.
doi: 10.1109/MCSE.2007.58

Pecevski, D., Buesing, L., and Maass, W. (2011). Probabilistic inference in general
graphical models through sampling in stochastic networks of spiking neurons.
PLoS Comput. Biol. 7:e1002294. doi: 10.1371/journal.pcbi.1002294

Pecevski, D., Natschläger, T., and Schuch, K. (2009). PCSIM: a parallel simu-
lation environment for neural circuits fully integrated with Python. Front.
Neuroinform 3:11. doi: 10.3389/neuro.11.011.2009

Peck, C. C., Kozloski, J., Rao, A. R., and Cecchi, G. A. (2003). “Simulation infras-
tructure for modeling large scale neural systems,” in Computational Science –
ICCS 2003, Vol. 2660 of Lecture Notes in Computer Science, eds P. M. Sloot, D.
Abramson, A. V. Bogdanov, Y. E. Gorbachev, J. J. Dongarra, and A. Y. Zomaya
(Berlin, Heidelberg: Springer), 1127–1136.

Pèrez, F., and Granger, B. (2007). Ipython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Reutimann, J., Giugliano, M., and Fusi, S. (2003). Event-driven simulation of
spiking neurons with stochastic dynamics. Neural Comput. 15, 811–830. doi:
10.1162/08997660360581912

Rochel, O., and Martinez, D. (2003). “An event-driven framework for the simula-
tion of networks of spiking neurons,” in 11th European Symposium On Artificial
Neural Networks - ESANN’2003 (Belgium).

Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., and Agis, R. (2006). Event-
driven simulation scheme for spiking neural networks using lookup tables
to characterize neuronal dynamics. Neural Comput. 18, 2959–2993. doi:
10.1162/neco.2006.18.12.2959

Rudolph, M., and Destexhe, A. (2006). Analytical integrate-and-fire neu-
ron models with conductance-based dynamics for event-driven simula-
tion strategies. Neural Comput. 18, 2146–2210. doi: 10.1162/neco.2006.18.
9.2146

Rudolph-Lilith, M., Dubois, M., and Destexhe, A. (2012). Analytical integrate-and-
fire neuron models with conductance-based dynamics and realistic postsynaptic
potential time course for event-driven simulation strategies. Neural Comput. 24,
1426–1461. doi: 10.1162/NECO_a_00278

Taillefumier, T., Touboul, J., and Magnasco, M. (2012). Exact event-driven
implementation for recurrent networks of stochastic perfect integrate-
and-fire neurons. Neural Comput. 24, 3145–3180. doi: 10.1162/NECO_a_
00346

Thibeault, C. M., Hoang, R. V., and Harris, F. C. Jr. (2011). “A novel
multi-gpu neural simulator,” in Proceedings of 3rd International Conference
on Bioinformatics and Computational Biology 2011 (New Orleans, LA),
146–151.

Tonnelier, A., Belmabrouk, H., and Martinez, D. (2007). Event-driven simulations
of nonlinear integrate-and-fire neurons. Neural Comput. 19, 3226–3238. doi:
10.1162/neco.2007.19.12.3226

Watts, L. (1993). “Event-driven simulation of networks of spiking neurons,” in
NIPS, eds J. D. Cowan, G. Tesauro, and J. Alspector. (San Mateo, CA: Morgan
Kaufmann), 927–934.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 24 October 2013; accepted: 17 July 2014; published online: 14 August 2014.
Citation: Pecevski D, Kappel D and Jonke Z (2014) NEVESIM: event-driven neu-
ral simulation framework with a Python interface. Front. Neuroinform. 8:70. doi:
10.3389/fninf.2014.00070
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Pecevski, Kappel and Jonke. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 70 | 20

http://dx.doi.org/10.3389/fninf.2014.00070
http://dx.doi.org/10.3389/fninf.2014.00070
http://dx.doi.org/10.3389/fninf.2014.00070
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	NEVESIM: event-driven neural simulation framework with a Python interface
	Introduction
	The NEVESIM Simulation Framework
	Basic Concepts of the Framework
	Network elements and event connections
	Coupling of network elements
	Causal update links

	An Overview of the Architecture of NEVESIM
	Composite Neurons and Synapses Through C++ Templates

	Examples of NEVESIM Network Structures
	Clock-Driven Network Elements
	Description of the Neural Sampling Models
	Synapses with Shared Postsynaptic Responses
	Synapses with Plasticity

	Python Interface
	Simulation Examples and Performance Evaluation
	Benchmark Model: Random LIF Network
	Neural Sampling Networks

	Discussion
	Related Work
	Hybrid Event-Driven and Clock-Driven Simulation
	Python Interface
	Future Work
	NEVESIM Resources

	Acknowledgments
	References


