
TECHNOLOGY REPORT ARTICLE
published: 26 August 2014

doi: 10.3389/fninf.2014.00071

Harnessing modern web application technology to create
intuitive and efficient data visualization and sharing tools
Dylan Wood1*, Margaret King1, Drew Landis1, William Courtney1, Runtang Wang1, Ross Kelly1,

Jessica A. Turner1,2 and Vince D. Calhoun1,3

1 The Mind Research Network and LBERI, Albuquerque, NM, USA
2 Department of Psychology, Georgia State University, Atlanta, GA, USA
3 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA

Edited by:

Xi Cheng, Lieber Institue for Brain
Development, USA

Reviewed by:

Fred Prior, Washington University
School of Medicine, USA
Benjamin Thyreau, Tohoku
University, Japan

*Correspondence:

Dylan Wood, The Mind Research
Network, 1101 Yale Blvd NE,
Albuquerque, NM 87131, USA
e-mail: dwood@mrn.org

Neuroscientists increasingly need to work with big data in order to derive meaningful
results in their field. Collecting, organizing and analyzing this data can be a major
hurdle on the road to scientific discovery. This hurdle can be lowered using the same
technologies that are currently revolutionizing the way that cultural and social media
sites represent and share information with their users. Web application technologies
and standards such as RESTful webservices, HTML5 and high-performance in-browser
JavaScript engines are being utilized to vastly improve the way that the world accesses
and shares information. The neuroscience community can also benefit tremendously from
these technologies. We present here a web application that allows users to explore
and request the complex datasets that need to be shared among the neuroimaging
community. The COINS (Collaborative Informatics and Neuroimaging Suite) Data Exchange
uses web application technologies to facilitate data sharing in three phases: Exploration,
Request/Communication, and Download. This paper will focus on the first phase, and
how intuitive exploration of large and complex datasets is achieved using a framework
that centers around asynchronous client-server communication (AJAX) and also exposes
a powerful API that can be utilized by other applications to explore available data. First
opened to the neuroscience community in August 2012, the Data Exchange has already
provided researchers with over 2500 GB of data.

Keywords: open neuroscience, big data, neuroinformatics, data sharing, query builder, javascript

INTRODUCTION
Many of the questions faced by the human neuroimaging com-
munity can no longer be answered through studying small
data sets due to the wide structural and functional variance
between individual subjects. Instead, neuroimaging researchers
need to look at large populations in order to accurately dis-
tinguish between overarching trends and individual outliers.
Accumulating such large data sets can be time consuming and
expensive—often prohibitively so. In response to this challenge,
some members of the neuroimaging community are molding a
new approach to data collection. This new approach has been
dubbed Open Neuroscience, and it necessitates that individual
researchers will openly share phenotypic, genotypic and neu-
roimaging data and collection methodologies (Milham, 2012).

Thus far, several large datasets and sharing platforms have
been released in the spirit of the Open Neuroscience initiative
with great support and success. One of the earliest examples was
the fMRI Data Center (fMRIDC), which consolidated and shared
thousands of datasets from 2000 to 2007 (Van Horn et al., 2001;
Van Horn and Gazzaniga, 2013). Later came the 1000 Functional
Connectomes Project (FCP), which released a curated dataset
of 1300 subjects in December 20091. Other recent examples of

1https://fcon_1000.projects.nitrc.org/ accessed 1/28/2014

curating and centralizing multi-site data for open distribution
include the Biomedical Informatics Research Network (BIRN),
the Functional Biomedical Informatics Research Network (F-
BIRN) and The International Neuroimaging Data-sharing
Initiative (INDI). INDI hopes to expand on the success of the FCP
project by focusing on establishing strong phenotypic datasets to
accompany the imaging data2.

All of the approaches mentioned thus far have utilized a
curation process in which data is manually checked for qual-
ity and adherence to project-specific data collection and pro-
cessing standards. An alternative approach is seen in XNAT
Central and the National Database for Autism Research (NDAR),
which are centralized repositories for researchers to deposit
data3 (Hall et al., 2012). Other researchers may then analyze
and download the posted neuroimaging datasets. Data that is
deposited in these databases is openly available to the commu-
nity, and therefore must be fully anonymized before upload.
XNAT Central does not rely on manual curation to ensure quality
and standards, and places the burden of data-verification on the
downloader.

2http://fcon_1000.projects.nitrc.org/indi/docs/INDI_MISSION_STATEMENT.
pdf
3XNAT Central https://central.xnat.org/

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00071/abstract
http://community.frontiersin.org/people/u/107121
http://community.frontiersin.org/people/u/38012
http://community.frontiersin.org/people/u/177495
http://community.frontiersin.org/people/u/4522
http://community.frontiersin.org/people/u/9286
http://community.frontiersin.org/people/u/884
mailto:dwood@mrn.org
https://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/indi/docs/INDI_MISSION_STATEMENT.pdf
http://fcon_1000.projects.nitrc.org/indi/docs/INDI_MISSION_STATEMENT.pdf
https://central.xnat.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Wood et al. Sharing data using modern web technologies

Here we propose another approach to providing an Open
Neuroscience sharing infrastructure. The proposed approach
does not require manual curation by a centralized organization,
yet promises stricter adherence to standards than a completely
open approach. The key to this approach is a neuroinformatics
data management platform called the Collaborative Informatics
and Neuroimaging Suite (COINS) (Scott et al., 2011). Researchers
have noted the importance of managing data within an infor-
matics platform from the time of collection onward (Mennes
et al., 2013). By doing so, data is stored according to generaliz-
able ontologies that can be mapped across studies, sites and even
between data management platforms. In addition to offering a
framework to organize data for universal mapping, COINS allows
researchers to store all of their research data in one place, and then
selectively (or globally) share that data in a manner that satisfies
the Health Information Privacy and Accountability Act (HIPAA)
and secures Protected Health Information (PHI) against acciden-
tal exposure. The COINS Data Exchange (DX) is a vehicle for
the greater research community to explore, request and download
this shared data. The following text outlines the technology used
by DX as well as an analysis of the success of the system.

MATERIALS AND METHODS
The COINS Data Exchange (DX; http://coins.mrn.org/dx) was
designed to be a repository where researchers from all over the
world can intuitively share data. DX performs two main pro-
cesses: The first provides an intuitive interface through which
researchers can explore, request and download data stored within
the COINS database. The second allows researchers who are not
already storing their data in COINS to upload that data for shar-
ing. This paper will focus on the first step of the first process: data
exploration.

DX uses a unique exploratory interface to visually construct
ad-hoc queries. The interface consists conceptually of a single
workspace that represents a request. The request can have one or
more logical groups, each of which can have zero or more child
groups and zero or more filters. The groups define the logical rela-
tionship (and vs. or) between individual children of that group.
The workspace is populated with groups and filters by clicking
and dragging elements on the screen into the workspace. In addi-
tion, filters may be converted to templates by super users, and
those templates can be used as a starting point for other users
looking for similar data. An example of the interface, which is
called the Data Catalog, is shown in Figure 1.

The Data Catalog is made possible by modern web application
technologies such as JavaScript and JQuery, HTML5 APIs and
CSS3. The development of the Data Catalog was expedited by uti-
lizing Node.js, which facilitated the reuse of libraries in the client
and the server (Tilkov and Vinoski, 2010). Historically, web-based
applications have been created using one server-side program-
ming language (e.g., java, ruby, php), and a completely different
client-side language (JavaScript). Node.js is a paradigm shift from
this methodology in that it allows developers to use JavaScript on
both the server- and client-side. This code reuse allows developers
to program much more efficiently. Other notable companies also
using node.js are PayPal, Groupon, eBay, and LinkedIn. PayPal
estimates that they were able to create new features twice as fast

with fewer people, use 33% fewer lines of code, and generate 40%
fewer files when they used node.js as compared to their previous
methodology utilizing disparate client and server languages4.

ARCHITECTURE
The interface is delivered to the browser in the form of a HTML
web page dynamically generated by PHP scripts and several
javascript libraries. All files are served from the same Linux-
Apache-PostgreSQL-PHP (LAPP) servers that host other COINS
web applications. Since the Data Catalog is accessed within the
COINS web application, security is managed by the COINS
Central Authentication System. After a user logs in, their PHP
session information is stored on a centralized memcached server,
which is accessible to the COINS web application servers as well as
the Node.js servers that host the Data Catalog web services (Brad,
2004; Olson et al., 2014). Once the Data Catalog interface has
been loaded into the browser, all data queries will be sent to a sep-
arate webservice running on a Node.js server. This is illustrated in
Figure 2.

The components of the Data Catalog workspace mentioned
above, and shown in Figure 1 are represented as JavaScript objects
that are defined in the libraries used by both the browser and
Node.js server. This allows for objects that represent the user’s
query (discussed below) to be easily passed from the server to
the client and back. This communication is handled via standard
asynchronous HTTP(S) requests, and can also be leveraged by
other automated services (also shown in Figure 2). For instance,
the NIH-Funded SchizConnect Data Federation is working with
COINS and XNAT Central and the Human Imaging Database
(HID) to create a tool that will automatically compile a com-
prehensive catalog of data available on both sharing resources.
This tool retrieves information about data available in DX via a
RESTful API5 (SchizConnect Data Federation).

USER INTERFACE INITIALIZATION
When the user interface of the Data Catalog is first initialized, a
new Request object is constructed. As part of the construction,
the top-group Group object is also constructed, and the filter-
able modalities are asynchronously retrieved from the server and
loaded into the modalities property of the new Request object
from the server. Each modality represents a mode of data for
which there is at least one filterable attribute, and for which
statistics should be calculated and displayed.

When the request is modified (either by assigning it a label,
or adding a new Filter or Group object, it will be persisted to
the server. This is done by calling the Request object’s write()
method. The write() method utilizes the Request object’s toJ-
SON() method, which in-turn calls the toJSON() methods of all
child objects (Groups and Filters) in order to properly serialize
them. The JSON representation of the object is then sent to the
server via a POST HTTP request. On the server, a new Request is
once again constructed using the same library that was used on
the client. Next, the new Request object’s fromJSON() method is

4https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/ Dec
23, 2013
5http://niacal.northwestern.edu/projects/18

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 2

http://coins.mrn.org/dx
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
http://niacal.northwestern.edu/projects/18
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Wood et al. Sharing data using modern web technologies

FIGURE 1 | DX data catalog exploratory filtering tool.

invoked, which in-turn recursively calls the fromJSON() methods
of each child object to properly unserialize all objects. Following
unserialization, the write() method of the server-side Request
object is invoked, which overloads the write() method defined in
the shared definition of Request. This method writes the relevant
properties of the Request to the database, setting the id property
to the value assigned by the database. Write() also recursively calls
the write() methods of all child objects, so that they are also per-
sisted to the database and assigned identifiers accordingly. Finally,
the Request is once-again serialized to JSON, and sent back to the
client, where it is unserialized and replaces the current Request
object before being rendered.

As filters and groups are added or modified, objects repre-
senting those entities are created or updated on the client. Those
objects are then encoded into JavaScript Object Notation (JSON)
strings and sent to the server for processing via asynchronous
HTTP(S) requests (Bray, 2014). The server then parses the JSON
strings into proper objects, and forms SQL queries to retrieve
statistics about the objects from the COINS database. The result-
ing statistics are then appended as properties of the objects before
JSON encoding them and sending them back to the client where
they are used to update the interface with statistics about the
current request.

JAVASCRIPT DATA MODEL
A simplified model of the Javascript objects that comprise the
Data Catalog is shown in Figure 3. Some properties were excluded
from the model for clarity. Each object’s prototype encapsulates a

method to render itself in HTML: a functionality only used on
the client. The prototype for each object also contains methods to
deconstruct itself into a JSON string that can be sent across a wire.
Similarly, each prototype has a method to reconstruct itself from
a JSON string or standard object. These methods are employed on
both the client and the server to facilitate passing the objects back
and forth. Each of the objects illustrated in Figure 3 are explained
in more detail below.

The Request object is the top-level object for the Data Catalog
UI, and as such, it contains pointers to all other objects rele-
vant to the UI. When a new, blank request is first started by a
user, it is assigned a unique identifying integer, which is recorded
in the server-side database, and assigned as the id property for
the request. Another property of the Request object is populated
upon initialization: modalities. Each modality is an object which
specifies the type of data for which metrics are to be displayed,
and for which filters should be available. A user-specified label
may also be associated with the request, and will be persisted to
the server-side database as well.

The topGroup property of the Request is populated upon
request initialization, and points to a group object. Each group
object also has a server-defined identifier (id), and properties to
list child other groups and filters that reside within the current
group. Additionally, groups have a type property which can be
either “and” or “or.”

Groups may contain zero or more filter objects. Filter objects
contain a list of attributes, which correspond to rows of the
dx_source_attributes table mentioned elsewhere in this paper. At

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Wood et al. Sharing data using modern web technologies

FIGURE 2 | COINS DX infrastructure.

present, the user interface only supports one attribute per fil-
ter, however, the attributes property is an array in anticipation
of future changes. Other properties of each filter object includes
the type and statistics associated with the modality of the filter,
and a server-issued identifier, which corresponds to a persistent
representation of the filter in the COINS database.

Filter attributes have properties that define the source_attribute
to which the property corresponds, as well as the value and its
description, as selected by the user for that attribute (optionId and
optionDesc, respectively).

SERVER-SIDE PROCESSING
Server-side-only libraries extend the object prototypes in order to
add database-related functionality. For example, each server-side
object prototype (e.g., ServerRequest, ServerGroup, ServerFilter)
exposes a method to persist a representation of each object
to the database for persistence. Other server-side-only methods
generate PL/SQL code to process statistics or metadata about
the object in the database. In the case of a filter object, the
PL/SQL code inserts the primary keys of all data that matches
the filter’s filterAttributes into a temporary table where it can
be intersected or unioned with other filters’ data (depend-
ing on what type of group the filter is in). As with the
JSON (un)serialization methods, all aforementioned methods
call their correlate-methods of all child objects (Request.render()

will call Group.render() for all Groups in the request, and
so on).

MODALITIES AND FILTERS
When a request is first initiated in the client, a list of available
modalities and filters is retrieved from the database. These data
are manually curated by modifying data stored in the COINS
database. Figure 4 depicts the tables discussed in this paper, and
a more general understanding of the COINS database was pub-
lished in 2010 by Scott et al. (2011). The modalities are populated
from a table in the database, which consists of modality labels
and pointers to the tables and primary keys that they correspond
to. Statistics displayed for each modality are calculated by tally-
ing the number of unique primary key values are matched by the
user’s query. For example, the Study modality corresponds to the
a materialized view of available studies and the anonymization_ids
of subjects that are enrolled in them (dx_studies_mv), and the
study_id primary key.

Filters for each modality are also configured and stored in
the COINS database. The table mrs_source_attributes stores avail-
able attributes which can be filtered upon. Each attribute is
linked to a modality via a foreign key constraint. Other columns
of mrs_source_attributes specify which columns of the modal-
ity’s table should be used for the available values and value-
descriptions available for each filterable attribute. Continuing

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Wood et al. Sharing data using modern web technologies

FIGURE 3 | Simplified model of a data catalog request.

with the previous example of the Study modality, the value and
value-description properties of the Study Label filter-attribute
correspond to the label and description columns of mrs_studies.

QUERY GENERATION
Among the methods exposed by the server-side-only libraries
are methods to convert each filter’s attributes into SQL queries.
Server-side filter objects expose a method generateSQL(), which
generates SQL to select the identifiers of data that is matched
by each filter-attribute’s “optionId” and “operator.” Similarly, the
group object exposes a generateSQL() method that will union
(type = or) or intersect (type = and) the modular queries created
by the group’s filters and child-groups.

In order to allow groups to contain filters of disparate modal-
ities, some additional logic is necessary. SQL modules generated
by child-groups and filters of the same modality should be com-
bined using the modality’s primary key (e.g., subjects with age ≥
25 AND subjects with age ≤ 55). SQL modules generated by child-
groups and filters of varying modalities must be combined using
the subject-anonymization-identifier (e.g., subjects with age ≥ 25
AND MR with series label = “MPRAGE”).

This additional logic is assisted by automatically redrawing
user-defined groupings every time the user modifies the request
object. The re-drawing looks for groups that contain three or

more filters, where at least two of which are of the same modal-
ity and at least one of which is of a different modality than the
others. These filters are then split up into sub-groups according
to their modalities: for instance, an “and” group containing two
subject filters and two MR filters will be redrawn to contain two
child groups: one for subject filters and one for MR filters.

The generateSQL() methods are called for each object
by the object’s parent (i.e., The request object calls top-
Group.generateSQL(), which in turn calls the generateSQL()
method of each of its child groups and filters, and so on). When
all method calls have returned, the request receives a single SQL
statement that will yield the subject-anonymization-identifiers
and modality-specific-primary-keys of all data that is matched by
the request. Additionally, the SQL generated by each object can be
run independently to retrieve statistics about the amount of data
matched by that object.

A note about security
Whenever utilizing client-generated values to generate SQL, it is
important to screen for SQL injection attacks. The data catalog
implements the same security measures practices elsewhere in the
COINS application. First, the login-role used by the application
does not have read or write access to underlying tables that con-
tain data. Instead, all database reads are performed by selecting

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Wood et al. Sharing data using modern web technologies

FIGURE 4 | Database schema for data catalog.

data from views, rather than directly from tables. Similarly, all
write operations are performed by calls to stored functions. In the
case of the data catalog application, the login-role’s read access is
restricted to data-catalog related views and functions that persist
user’s requests to the database. Thus, any SQL injection attacks
would not reveal any more information than is readily avail-
able through the user interface. For the sake of added caution,
other standard protections are also implemented, such as type-
checking, query parameter binding, user authentication, a 30-min
logout window, and record-modification history logging.

RESULTS
APPLICATION AND FEATURES
The Data Catalog is a critical component of the COINS Data
Exchange. It allows users to construct complex ad-hoc queries
against sharable data in the COINS database in an exploratory
way to form a request for data. After constructing a request, the
request can be submitted, which will notify all COINS users that
own the data being requested that some of their data is being
requested. The submitted request can be accepted or denied by
the data owners after the requester and owner have exchanged

messages through the integrated messaging system. All messages
are stored indefinitely, and can be used as official documents or an
audit trail if needed. If one data-owner approves the request, and
another denies it, only the approved subset of data will be made
available to the requester. Data associated with accepted requests
is packaged and zipped on the COINS servers, and the requester is
notified when the package(s) are ready for download. The pack-
aging, zipping, and download process is also quite interesting, but
will not be explained in detail here.

INTEGRATION WITH COINS
Data collected via COINS is easily shareable in DX. Study admin-
istrators are provided very fine-grained control over which data
is shared: individual subject types, subjects, scans, instruments
or assessments may be excluded or included. Additionally, shar-
ing benefits from the centralized approach of COINS. Studies
that have collected data using shared instruments can now expose
their data to sharing more easily. This allows a Data Catalog user
to request data from two studies that have collected data using
the Balanced Depression Inventory II (BDI-II) with a single filter
(Instrument label = “BDI-II”).

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Wood et al. Sharing data using modern web technologies

DATA SHARED
The first publicly-available dataset to be shared on COINS DX
was the6 ABIDE dataset. Released in the COINS DX on August
30th 2012, the ABIDE dataset consists of functional and structural
imaging and phenotypic data from more than 1000 participants
gathered from 15 different sites around the world (Nooner et al.,
2012). The ABIDE dataset was imported into the COINS data
management system and made available for sharing. To date,
166 individuals have downloaded over 2450 GB of ABIDE data
through COINS DX.

Next, the NKI Rockland Sample made their first data release
in March 20137. Unlike the ABIDE dataset, the NKI Rockland
Sample dataset was collected directly using COINS. This allows
the NKI research team to make periodic releases by simply select-
ing which subjects and data is ready to be shared in DX. Their
changes are reflected instantly in the Data Catalog. Researchers
requesting access to the NKI Rockland Sample dataset require
individual approval after agreeing to a DUA. Despite the more rig-
orous approval process, over 1200 GB of data have been approved
for sharing and downloaded by 15 researchers from around the
world.

DISCUSSION
The COINS Data Catalog harnesses modern web technologies
to extend a popular neuroinformatics platform for use in the
context of Open Neuroscience. The architecture of the applica-
tion has proven flexible, maintainable, and secure. Moreover, two
large datasets have been successfully shared on an international
scale. One of those datasets was collected and compiled outside of
COINS, then successfully imported. The other dataset is part of
an ongoing collection effort using COINS tools, and can be easily
curated by the data owners. Over all, over 3500 GB of data have
been shared through the COINS Data Exchange since September
2012.

There remains a huge potential to share an increasing amount
of data using DX: There are currently over 500 studies being man-
aged with COINS. These studies have collected 342,000 clinical
assessments and 31,400 MRI and MEG scan sessions from 22,100
participants at many sites across the United States including
The Mind Research Network, Nathan Kline Institute, University
of Colorado—Boulder, Olin Neuropsychiatry Research Center
(King et al., 2014). Each of these studies can easily elect to allow
some or all of their data to be explored and requested through DX.

As more studies elect to share their data through DX, the
greater the number of filtering options will become during data
exploration. If the number of filtering options grows too large, it
may become difficult for a researcher to locate the options that
apply to their own interests. It is important therefore to create
data dictionaries and ontological mappings for the large amount
of data currently stored within COINS. Such mappings will allow
for multi-level filtering options that correspond to other popular
common data elements.

Looking ahead, the developers of the COINS DX are excited
to implement more features to aid sharing within the Open

6http://fcon_1000.projects.nitrc.org/indi/abide/
7http://neuro.debian.net/

Neuroscience community. Dynamic requests are being developed,
which will periodically alert researchers if new data is made avail-
able which matches one of their existing filters. Further improved
API performance and documentation is on the way, and will aid
in integration with projects such as SchizConnect (SchizConnect
Data Federation) and Neurodebian8.

ACKNOWLEDGMENT
This work was supported in part by NIH grants 2R01EB005846,
P20GM103472 and 1U01MH097435.

REFERENCES
Brad, F. (2004). Distributed caching with memcached. Linux J. 124, 5–10.
Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format

Internet Engineering Task Force (IETF), 7159, ISSN: 2070–1721.
Hall, D., Huerta, M. F., McAuliffe, M. J., and Farber, G. K. (2012). Sharing hetero-

geneous data: the national database for autism research. Neuroinformatics 10,
331–339. doi: 10.1007/s12021-012-9151-4

King, M. D., Wood, D., Miller, B., Kelly, R., Landis, D., Courtney, W., et al. (2014).
Automated collection of imaging and phenotypic data to centralized and dis-
tributed data repositories. Front. Neuroinform. 8:60. doi: 10.3389/fninf.2014.
00060

Mennes, M., Biswal, B. B., Castellanos, F. X., and Milham, M. P. (2013). Making
data sharing work: the FCP/INDI experience. Neuroimage 82, 683–691. doi:
10.1016/j.neuroimage.2012.10.064

Milham, M. P. (2012). Open neuroscience solutions for the connectome-wide
association era. Neuron 73, 214–218. doi: 10.1016/j.neuron.2011.11.004

Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M.,
Moreno, A. L., et al. (2012). The NKI-Rockland sample: a model for acceler-
ating the pace of discovery science in psychiatry. Front. Neurosci. 6:152. doi:
10.3389/fnins.2012.00152

Olson, P., Achour, M., Betz, F., Dovgal, A., Lopes, N., and Magnusson, H. (2014).
PHP Manual. PHP Documentation Group. Available Online at: http://www.php.

net/docs.php, accessed May 20145
Scott, A., Courtney, W., Wood, D., de la Garza, R., Lane, S., King, M., et al. (2011).

COINS: an innovative informatics and neuroimaging tool suite built for large
heterogeneous datasets. Front Neuroinform 5:33. doi: 10.3389/fninf.2011.00033

Tilkov, S., and Vinoski, S. (2010). Node.js: using javascript to build high-
performance network programs. IEEE Internet Comput. 14, 80–83. doi:
10.1109/MIC.2010.145

Van Horn, J. D., Grethe, J. S., Kostelec, P., Woodward, J. B., Aslam, J. A., Rus,
D., et al. (2001). The Functional Magnetic Resonance Imaging Data Center
(fMRIDC): the challenges and rewards of large-scale databasing of neuroimag-
ing studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1323–1339. doi:
10.1098/rstb.2001.0916

Van Horn, J. D., and Gazzaniga, M. S. (2013). Why share data? Lessons learned from
the fMRIDC. Neuroimage 82, 677–682. doi: 10.1016/j.neuroimage.2012.11.010

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 03 February 2014; accepted: 23 July 2014; published online: 26 August 2014.
Citation: Wood D, King M, Landis D, Courtney W, Wang R, Kelly R, Turner JA and
Calhoun VD (2014) Harnessing modern web application technology to create intu-
itive and efficient data visualization and sharing tools. Front. Neuroinform. 8:71. doi:
10.3389/fninf.2014.00071
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Wood, King, Landis, Courtney, Wang, Kelly, Turner and Calhoun.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

8http://neuro.debian.net/

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 71 | 7

http://fcon_1000.projects.nitrc.org/indi/abide/
http://neuro.debian.net/
http://www.php.net/docs.php
http://www.php.net/docs.php
http://dx.doi.org/10.3389/fninf.2014.00071
http://dx.doi.org/10.3389/fninf.2014.00071
http://dx.doi.org/10.3389/fninf.2014.00071
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://neuro.debian.net/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Harnessing modern web application technology to create intuitive and efficient data visualization and sharing tools
	Introduction
	Materials and Methods
	Architecture
	User Interface Initialization
	JavaScript Data Model
	Server-Side Processing
	Modalities and Filters
	Query Generation
	A note about security

	Results
	Application and Features
	Integration with COINS
	Data Shared

	Discussion
	Acknowledgment
	References

