
ORIGINAL RESEARCH ARTICLE
published: 25 September 2014
doi: 10.3389/fninf.2014.00079

LEMS: a language for expressing complex biological
models in concise and hierarchical form and its use in
underpinning NeuroML 2
Robert C. Cannon1*†, Padraig Gleeson2 †, Sharon Crook3, Gautham Ganapathy1, Boris Marin2,4,

Eugenio Piasini2 and R. Angus Silver 2*

1 Textensor Limited, Edinburgh, UK
2 Department of Neuroscience, Physiology and Physiology, University College London, London, UK
3 School of Mathematical and Statistical Sciences and School of Life Sciences, Arizona State University, Tempe, AZ, USA
4 CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil

Edited by:

Daniel Gardner, Weill Cornell
Medical College, USA

Reviewed by:

Arnd Roth, University College
London, UK
Thomas Nowotny, University of
Sussex, UK

*Correspondence:

Robert C. Cannon, Textensor
Limited, 30/2 Frederick Street,
Edinburgh EH2 2JR, UK
e-mail: robert@textensor.com;
R. Angus Silver, Department of
Neuroscience, Physiology and
Pharmacology, University College
London, Gower Street, London
WC1E 6BT, UK
e-mail: a.silver@ucl.ac.uk

†These authors have contributed
equally to this work.

Computational models are increasingly important for studying complex neurophysiological
systems. As scientific tools, it is essential that such models can be reproduced and
critically evaluated by a range of scientists. However, published models are currently
implemented using a diverse set of modeling approaches, simulation tools, and computer
languages making them inaccessible and difficult to reproduce. Models also typically
contain concepts that are tightly linked to domain-specific simulators, or depend on
knowledge that is described exclusively in text-based documentation. To address these
issues we have developed a compact, hierarchical, XML-based language called LEMS
(Low Entropy Model Specification), that can define the structure and dynamics of a
wide range of biological models in a fully machine readable format. We describe how
LEMS underpins the latest version of NeuroML and show that this framework can define
models of ion channels, synapses, neurons and networks. Unit handling, often a source
of error when reusing models, is built into the core of the language by specifying physical
quantities in models in terms of the base dimensions. We show how LEMS, together
with the open source Java and Python based libraries we have developed, facilitates the
generation of scripts for multiple neuronal simulators and provides a route for simulator
free code generation. We establish that LEMS can be used to define models from systems
biology and map them to neuroscience-domain specific simulators, enabling models to be
shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a
new, comprehensive framework for defining computational models of neuronal and other
biological systems in a machine readable format, making them more reproducible and
increasing the transparency and accessibility of their underlying structure and properties.

Keywords: model description language, standardization, simulation, spiking neural networks, model sharing

1. INTRODUCTION
Computational models are essential tools for understanding com-
plex systems with many interacting entities. In biology, models
have been used to explore the properties of biochemical interac-
tions within cells at the protein and genetic levels (Kitano, 2002;
Chen et al., 2004; Feist et al., 2008), as well as to investigate electri-
cal signaling in neurons and networks (Segev and London, 2000;
Vogels and Abbott, 2005; Herz et al., 2006). Biologically accu-
rate models can incorporate the dynamical properties of different
processes spanning multiple spatial and temporal scales and this
approach has recently been used to simulate the complete life
cycle of a single bacterium (Karr et al., 2012). In neuroscience,
multi-scale modeling is particularly important for understanding
how low level non-linear mechanisms underlie brain function.
For example, models have shown how ion channels present on
the membrane of neurons affect higher level properties including

neuronal computation (Poirazi et al., 2003; Rothman et al., 2009;
Farinella et al., 2014), network excitability (Vervaeke et al., 2012)
and neuronal network dynamics (Traub et al., 2005; Vervaeke
et al., 2010; Marder and Taylor, 2011). The value of models built
from well characterized low level experimental measurements is
that they can test the physical plausibility of hypotheses and make
quantitative predictions about higher level properties, that can
then be tested experimentally. Detailed multi-scale models also
provide a mechanism to consolidate and refine knowledge about
the properties of brain regions which are increasingly being gath-
ered and organized in great detail (Thomson and Lamy, 2007;
Bezaire and Soltesz, 2013). However, for computational model-
ing to be more widely adopted as a scientific tool in neuroscience,
it is crucial that models are made available in accessible formats
that allow them to be easily reproduced, compared and critically
evaluated by a wider range of scientists.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://community.frontiersin.org/people/u/101511
http://community.frontiersin.org/people/u/2215
http://community.frontiersin.org/people/u/32935
http://community.frontiersin.org/people/u/148898
http://community.frontiersin.org/people/u/172002
http://community.frontiersin.org/people/u/181652
http://community.frontiersin.org/people/u/1339
mailto:robert@textensor.com
mailto:a.silver@ucl.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

Models in neuroscience and systems biology are increasingly
being made available through repositories including ModelDB
(Hines et al., 2004), the BioModels database (Le Novère et al.,
2006) and the CellML Model Repository (Lloyd et al., 2008).
In neuroscience, most models of the electrical behavior of neu-
rons and networks are built and made available in the specialized
scripting languages of domain specific simulators that have been
used to construct the model. This is problematic for model and
component exchange, accessibility and reproducibility because
the structure of the code is simulator and programmer specific,
making it difficult to understand exactly how model components
were implemented and even to reproduce the data in a pub-
lished paper. Moreover, porting of models to different platforms
is extremely time consuming making cross-simulator validation
impracticable in many cases (Gleeson et al., 2010). An addi-
tional complication is that researchers working at different levels
of description and in different fields implement models using a
diverse set of approaches, simulation tools, and computer lan-
guages resulting in fragmentation in model specification and
implementation.

The need to make computational models more Reproducible,
Accessible, Portable, and Transparent (RAPT) has led to the
development of a number of simulator-independent model speci-
fication languages in computational biology. Two different strate-
gies have been adopted: domain-specific and generic approaches.
The Systems Biology Markup Language, SBML (Hucka et al.,
2003), focuses on allowing existing simulation tools to share
machine readable representations of biological processes using
a domain-specific approach. The primary goal is to capture the
commonalities of the internal representation of the biological sys-
tems modeled in different simulators. The language contains a
variety of biological concepts that are widely implemented in sys-
tems biology simulation tools such as reactants, products and
well stirred compartments. A related approach has been used
for NeuroML version 1.x (Gleeson et al., 2010), which has been
developed for representing neuroscience models and contains
concepts from this field such as ion channels, synapses and neu-
ronal morphologies. This, together with the hierarchical structure
of such domain-specific languages, makes the model descrip-
tions compact and easy to understand for users who are famil-
iar with the field. This “building-block” approach has enabled
developers to add support for models expressed in NeuroML
to a wide range of applications1 . However, within this frame-
work the data and logic required to fully describe and execute
the model is spread across the model scripts, the documen-
tation of the model description language (e.g., Supplementary
Text 1 describing NeuroML v1.x in Gleeson et al., 2010) and
the simulation engine (e.g., NEURON Carnevale and Hines,
2006 and GENESIS Bower and Beeman, 1997). This hampers
the exchange of models between software tools and their trans-
formation into human readable formats, limiting the RAPT of
models defined in such formats. In contrast to domain-specific
languages, generic model description languages such as CellML
(Lloyd et al., 2004) provide a lower level description of the math-
ematical expression of a model. This provides an unambiguous

1http://www.neuroml.org/tool_support.php

mathematical representation of the model without requiring any
additional domain-specific knowledge. This approach provides
machine readability and considerable flexibility for implement-
ing new mechanisms as they are discovered, without the need to
alter the inner structure of the language. However, the lack of
intrinsic structure within such generic approaches has the dis-
advantage that models can be represented and constructed in
many different ways, making it harder to work with and com-
bine models from different sources. This flexibility also makes
generic languages harder to implement and makes verifying
an application’s compliance to the language specification more
difficult.

Here we present a new machine readable declarative lan-
guage for describing complex physio-chemical systems, that is
sufficiently flexible to support new domain specific concepts,
yet allows models to be defined in a manner with little redun-
dancy. These properties of the Low Entropy Model Specification
(LEMS) language arise from its nested hierarchical structure and
the fact that the general definition of model components is sep-
arated from instantiations of models with particular parameter
values. Moreover, the internal variables of models are defined
in terms of their dimensions allowing automated consistency
checking and facilitating the handling of units. This bottom up
approach enables domain specific knowledge of the system to
be incorporated in a compact, machine readable representation
without resorting to text based specifications, thereby improv-
ing the RAPT of models defined in this format. We show how
LEMS can be used as a flexible, low level model description lan-
guage upon which higher level domain specific languages such as
NeuroML version 2.0 can be built. We demonstrate that the cur-
rent version of the LEMS/NeuroML 2 framework is sufficiently
complete and advanced to fully specify a range of synaptic, neu-
ronal and network models. Moreover, we establish that LEMS is
sufficiently generic to enable model specification across domains
as different as computational neuroscience and systems biology
(De Schutter, 2008).

2. RESULTS
2.1. DIMENSIONAL QUANTITIES
Correct handling of the dimensions and units of physical quan-
tities is central to LEMS. An equation such as I = g · (v − E), for
the current I through an ion channel of conductance g, where the
membrane potential is v and the reversal potential for the per-
meant ion is E (Figure 1A, left), is as much a statement about
the dimensions of current, conductance and voltage as it is about
their magnitudes in a particular context. However, when this
equation is converted to computational form with fixed values
for parameters g and E (Figure 1A, right) a simulator will typ-
ically end up operating on pure numbers. At some stage the
dimensions and units must be stripped off. There are broadly
three ways this can be done. First, the simulator could require
the user to do it, just taking dimensionless quantities for g and
E and expecting the user to interpret the resulting number for
I correctly. In this case the simulator would function correctly
with any consistent set of units, but all the work must be done
by the user. Second, the simulator could require the user to add
units to the equation, effectively expressing one instance of the

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 2

http://www.neuroml.org/tool_support.php
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 1 | Definition and use of Units and Dimensions in

ComponentTypes and Components. (A) A simple model of the
current flowing through an ohmic (passive) channel (left), along with a
specific instance of the model (right). (B) Parameters and state
variables are treated as rich dimensional quantities in LEMS. The
necessary dimensions are defined in terms of the seven standard SI
base dimensions. Units are constructed by combining a reference to a
dimension and a scale factor (typically a power of ten). The equations
of the model defined in (A) are specified inside a ComponentType
definition. Each parameter or variable must specify its dimensions by

reference to one of the dimension elements. A particular instance of
a family of models, defined by a Component element supplies values
for the parameters, consisting of a numerical value and a reference to
a unit element (compatible with the specified dimension). The bottom
panel shows how the ComponentType and Component definitions are
combined when a model is executed. Typically, a simulator will convert
parameters values to a preferred set of units, such as the SI system
as shown here, after checking the equations for consistency. In this
example, the potential v is read from the enclosing scope, the current
I is computed and exposed for use by other parts of the model.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

general case such as I [in mA] = g [in Siemens] · (v [in mV] −
E [in mV]). Conceptually I, g, etc. are still bare numbers but there
is some associated metadata carried with them that can be used
to check for unit compatibility in assignments. Third, the simu-
lator can represent I, g, v, and E as dimensional quantities and
handle any transformation into and out of particular unit sys-
tems itself without involving the user at all. The shift from the first
to the third approach represents a migration of knowledge from
the modeler down to the model description language or simula-
tor. LEMS takes the third route in order to conserve knowledge of
the system in a machine readable form and to express models in
a way that is as close as possible to the modeler’s conception of
them. The definition and use of dimensional quantities in LEMS
is illustrated in Figure 1B. Compound dimensions are defined in
terms of the 7 fundamental SI units normally with integer pow-
ers (e.g., Area = Length2). At this stage named dimensions must
be set up for all the quantities occurring in the model. For each
dimension, a set of units are defined specifying the power of ten
required to scale the unit with respect to its SI equivalent. When a
class of models is defined, each quantity just needs a reference
to the appropriate dimension. When an instance of the model
is specified, a modeler sets the values of the free parameters by
giving a numerical value and choosing one of the units com-
patible with the parameter’s dimension. It is worth noting that
this approach is nothing other than standard dimensional analy-
sis which is implicit whenever physical models are mathematically
expressed. The novelty is in making it part of the formal model
specification system rather than requiring modelers to convert
their models to dimensionless quantities or to a standard set of
units before writing them down.

2.2. SEPARATING EQUATIONS FROM PARAMETER VALUES:
COMPONENTS AND COMPONENTTYPES

In the biological literature, parameter values are often embed-
ded in equations. For example, the expression of a particu-
lar ohmic current like the one in Figure 1 may contain an
explicit value for E, the reversal potential of the charge car-
rying ion for the solutions in question. This makes it inflexi-
ble and hard to study the dependencies of models on changes
that would vary those values while preserving the overall struc-
ture. To avoid this problem, LEMS enforces a clean separation
between the form of the model or family of models and the
parameter values that define a particular member of the fam-
ily. Model families are expressed by defining ComponentTypes
which specify the parameters a particular type of model can
contain and the references to other models it requires. A par-
ticular member of the family is then defined by creating a
Component which contains a reference to the corresponding
ComponentType and provides values for the parameters and ref-
erences. In Figure 1B, the equation defining the current is in the
ComponentType, while the parameters that define the instance
of the model correspond to the Component. As well as defin-
ing the parameter types, a ComponentType definition can also
contain specifications for the dynamics of the model, such as dif-
ferential equations governing the time evolution of state variables
and functions defining new quantities in terms of variables and
parameters.

This separation of equations from parameter values typically
results in a three layered structure for a LEMS model. Firstly,
there is a small set of ComponentType definitions containing
parametrized equations but no actual values. Secondly, there will
be one or more Component definitions that sets the structure and
values for a particular instance of a ComponentType. Finally, the
actual model that is run may consist of multiple instances of the
Components defined in the model. For example, the LEMS speci-
fication of a network of integrate and fire neurons could contain
just one specification of the basic spiking neuron ComponentType,
a few definitions of neuron Components that vary in their param-
eters for particular classes of neurons, and a great many actual
neurons. Each cell would have a number of unique state vari-
ables, but would refer back to its Component definition for the
fixed parameter values, and to the single ComponentType defini-
tions for the dynamics. In the example in Figure 1, the first two
layers are illustrated, but the passive channel instance could be
used in multiple places in the rest of the model. These properties
of LEMS enable large-scale models with many units to be defined
compactly, without losing the flexibility to define heterogeneity in
the behavior across units.

2.3. MODEL SPECIFICATION
A model expressed in LEMS takes the form of a tree of elements
in which each element can only contain children of particular
types. The root element, Lems, can contain seven types of child
elements as illustrated in Figure 2A: Target, Include, Dimension,
Unit, Constant, ComponentType, and Component. The Target ele-
ment points to the main Component in the model, i.e., the one
to be simulated. The Include element is for including LEMS def-
initions from other files. A Dimension element associates a name
with powers for each of the seven SI base dimensions as illus-
trated at the top of Figure 1B. A Unit element associates a symbol
with a dimension, a power of ten, and optionally a scale and offset
for non-metric units such as Fahrenheit. The Constant element is
provided for expressing physical constants such as the elementary
electric charge or the gas constant.

As described earlier, a ComponentType specifies the structure
and dynamics of a class of models that share the same under-
lying mathematical description. A particular set of Parameter
values corresponding to a single instance of a model based
on this general type is expressed as a Component. An example
is shown in Figure 1, where the ComponentType (middle, left)
defines the generic passive channel model, and the Component
(middle, right) specifies a particular instance. In addition, a
ComponentType says what types of child elements are allowed
or required in corresponding components. Full details of the
ComponentType definition can be found in the online language
specification2 . The key elements are illustrated in Figure 2A.
They are:

• Parameter: a quantity, defined by name and dimension, that
will need to be set in the corresponding Component definition.

• DerivedParameter: a quantity that is a function of the
Component’s Parameters, which does not change with time.

2http://lems.github.io/LEMS/elements.html

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 4

http://lems.github.io/LEMS/elements.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 2 | Structure of LEMS models. (A) Models in LEMS are specified
using ComponentType definitions with nested Dynamics elements. Any
Parameter or StateVariable declaration must refer to a Dimension element
defined at the top level. A Component element sets parameter values for a
particular instance of a ComponentType. Each Parameter value must refer to
one of the Unit elements defined at the top level. The Dynamics element
supports continuous time systems defined in terms of first order differential
equations, and event driven processing as specified by the various “On. . .”

elements. Multiple Regimes, each with independent TimeDerivative
expressions can be defined, along with the rules to transition between them.
(B) Example of a ComponentType, the passive channel model from Figure 1.
(C) The XML equivalent of the ComponentType (top) and Component (bottom)
for this model. (D) Defining containment in LEMS, using Child (exactly one sub
element of the given type) or Children (zero or multiple copies). (E) Extension in
LEMS. Extending ComponentTypes inherit the structure of the base type.
Example Components in XML are shown in (D,E).

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

• Text: a text string used for labeling and referencing expressions
(e.g., the name of the ion species associated with a channel).

• Exposure: a quantity that is accessible to other elements, such
as the membrane potential of a cell which can be used by its
children.

• Requirement: a quantity that must be accessible in the contain-
ing hierarchy as an Exposure on an ancestor element.

• Children: specifies a type of child element which a Component
is allowed to contain. Zero or more children of this type can be
present in an instantiated Component.

• Child: an individual, named child element. In contrast to
Children, one and only one of this Component must be present.

• ComponentReference: a reference to a Component of a particular
type elsewhere in the model. This allows the same Component
to be used from different places (e.g., a reference to a parame-
terized ion channel within a channel density specification).

• Attachment: operates like the Children element but for dynam-
ically created children. This can be used, for example, for
synapses that are only added to a target cell when there is a
network connection to it.

• EventPort: for sending and receiving discrete events.

The elements described so far cover the structure of a Component
involving parameter values, references to other components and
nested child components. They do not say anything about how
a Component behaves. A key feature of LEMS is to define, in a
declarative format, how hybrid models evolve with time. This
is achieved with the Dynamics element as shown on the right
of Figure 2A. Each StateVariable or DerivedVariable refers to a
Dimension element to give the dimensions of the variable. First
order differential equations for how the StateVariables change
with time are expressed with the TimeDerivative element. The
StateAssignment element coupled with OnStart or OnEvent allow
for discrete changes in StateVariables, on initialization or on the
arrival of an event respectively. The expressions for the values
of the TimeDerivative and DerivedVariables are functions of the
StateVariables and Parameters. The grammar for mathematical
expressions is close to that used in the C programming language
except that boolean relations involving the <and> symbols are
replaced by their Fortran equivalents (.lt., .gt. etc) to avoid XML
encoding problems.

In addition to sets of differential equations, Dynamics ele-
ments also support nested Regime elements and KineticScheme
elements. Regimes allow the dynamics of a ComponentType to
be expressed via a finite state machine. Each regime has its
internal dynamics, and conditions on which transitions between
regimes occur are specified using the OnCondition element. The
KineticScheme supports the specification of systems that can be
in one of a small number of states at any time with probabilistic
transitions between states. In particular, this includes continuous-
time Markov processes as are used for stochastic models of ion
channels.

The Structure element specifies how a Component should be
interpreted when a simulator constructs an executable instance of
a model. By default, each Component in a model gives rise to a sin-
gle instance of its state variables when the model is executed. The
state variables are then governed by the dynamics definition in the

associated ComponentType. Elements in the Structure declaration
can be used to change this behavior, for example to make multiple
instances of the state variables, or to instantiate a different com-
ponent. A typical application for the latter would be a Component
that defines a population of cells. The population Component
might define the number of cells it contains but would refer
to a Component defined elsewhere for the actual cell model
to use.

In addition to the components described above for specifying
the structure, behavior and parameter values of models, LEMS
also supports a Simulation element, which includes descriptions
of the essential quantities for defining how a model should be run
and what should be recorded or plotted. This details the model,
the timestep, simulation time, and the outputs that should be
stored to files or displayed. This is not intended to be a compre-
hensive simulation specification language, but rather it allows a
single LEMS file to contain all the information required to set
up a model, run a standard simulation, and record the results.
This has helped considerably with specifying tests and validat-
ing models across simulators. It also facilitates sharing models.
For example, executable LEMS files containing Simulation ele-
ments are available for each of the models shown in the figures
in this paper. There is an automated mapping from this simpli-
fied format for simulation parameters to the more widely used
Simulation Experiment Description Markup Language (SED-ML,
Waltemath et al., 2011), as outlined in Section 2.10.

2.4. EXPRESSING PHYSICAL CONNECTIONS AND CONTAINMENT
A key concept in many biological models is that one entity is
“part of” another. In LEMS this is expressed by the hierarchical
nesting of elements within Component definitions (Figure 2D).
For example, in a Hodgkin and Huxley type neuronal model, an
ionic conductance can have one or more sets of two-state gates
(Hodgkin and Huxley, 1952). The gates open or close to con-
trol the flow of ions through the conductance, according to the
membrane potential. In the LEMS representation, the gates are
child elements of the channel. Likewise, if a given gate possesses
internal dynamics, then this should be expressed as child elements
of the gate. This child relationship (or containment) implies
that a Component can have access to the properties exposed by
its enclosing elements higher up the hierarchy. Thus, a voltage
dependent gate of a channel associated with a specific cell has
access to the membrane potential of that cell but not of any
other cell in the network. Hierarchical nesting therefore defines
the model structure by setting the allowed relationships between
quantities in models. This property of LEMS contrasts with more
abstract languages such as VHDL (VHSIC Hardware Description
Language, IEEE, 1988) or NineML (Raikov and De Schutter,
2012), which require that components be explicitly connected by
ports. Such descriptions are more flexible with the consequence
that models must include additional scoping rules to restrict them
to physically and biologically plausible configurations. By con-
trast, LEMS incorporates knowledge of biological and physical
relationships into the nested hierarchical structure. This fea-
ture enables concise representation of physically consistent mod-
els and clearly distinguishes them from physically inconsistent
ones.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

2.5. CONCEPTUAL MODEL HIERARCHY
As well as belonging to families, models are often organized into
classes that extend or refine a particular set of attributes. For
example, synapses may broadly be defined as Components that
are placed on a target cell, receive discrete events that can occur
with a specified delay, and affect the target cell in some way. Then
they may be separated into abstract synapses that deliver a dis-
crete impulse, or more biophysically realistic ones that generate
a conductance, or a combination of conductances, on the target
cell. Such relationships can be expressed in LEMS by constructing
an inheritance hierarchy among ComponentTypes (Figure 2E).
A base synapse type can declare that it receives events, listens for a
membrane potential on a parent Component, and produces a cur-
rent. Types that extend this base synapse type can add parameters
and other attributes to express different subtypes of the model.
As well as providing a mechanism for expressing the relationships
between families of models, this also provides many of the same
benefits as inheritance in class hierarchies in object oriented soft-
ware. In particular, a ComponentType may require children of a
particular base type, without needing to distinguish between the
many possible extensions. The flexibility of this approach is illus-
trated in Section 2.8.1 below, which includes a gate on an ion
channel model with forward and reverse transition rates, but is
indifferent to the functional form that is used.

2.6. MODEL ENCODING
LEMS has been developed so that XML documents are used to
encode models. This choice is driven more by convenience and
pragmatism than the desire to develop an XML format per se.
There are many well-developed technologies for working with
XML documents, particularly XPath and XSLT, which prove very
useful for operating on LEMS models. There are also libraries
in most programming languages to facilitate reading and writing
valid XML. However, the main reason for using XML for LEMS
is its ability to encode a hierarchical object model rather than
the more advanced features of XML. Although XML provides
mechanisms for giving elements unique IDs, including files from
other sources, and making references between elements, none of
these features are used because the document-centric semantics of
XML does not match the model-centric scoping rules in LEMS.
Rather, LEMS layers its own semantics on top of the core XML
concepts of elements, attributes and nesting. This means that it
is straightforward to develop alternative encodings for LEMS and
map them to the XML format.

2.7. IMPLEMENTATIONS OF LEMS
LEMS is supported directly by two newly developed, open source
simulation tools: jLEMS written in Java, and PyLEMS (Vella
et al., 2014) written in Python. Each of these supports parsing
LEMS model definitions, checking dimension and unit consis-
tency, and simulating models. The jLEMS implementation sup-
ports a number of approaches for simulating models where the
dynamics are defined in terms of ordinary differential equa-
tions (ODEs). The default is to evaluate expressions by traversing
the parsed Component hierarchy and to update state variables
with a simple forward Euler numerical scheme operating on the
fully expanded component tree. Better performance is achieved

by flattening the Component tree (i.e., removing children and
adding scoped parameters, variables and ODEs for these at the
top level) so that tightly coupled quantities are grouped together
within the same Components and then solved using a 4th order
Runge Kutta scheme. For this to work, it is essential that each
group of tightly coupled variables is handled together. This is
addressed with another attribute on the ComponentType defini-
tions that specifies which ones are suitable for flattening. It is the
responsibility of the ComponentType developer to set this cor-
rectly. For example, if a Component only interacts with other
Components by delayed events then it is a good candidate for
flattening. If it is a child of another Component with continu-
ous access to inherited variables then it cannot be flattened on
its own.

PyLEMS allows parsing of LEMS models and simulation of
their behaviors using a basic forward Euler numerical scheme.
It is slightly less comprehensive than the Java implementation;
in particular the KineticScheme element is not supported. Both
of these packages are intended as reference implementations for
the LEMS language rather than efficient simulators in themselves.
The two libraries form the basis for modules allowing LEMS to
be exported to multiple other formats (see Section 2.10), which
allows for faster simulation of models on dedicated simulation
platforms. PyLEMS and jLEMS can also be used as libraries for
adding native support for LEMS to other applications. For exam-
ple, jLEMS is used as a library in neuroConstruct (Gleeson et al.,
2007).

More details on jLEMS and PyLEMS, including how to obtain
the latest version of the applications, can be found in the Materials
and Methods Section.

2.8. EXAMPLES OF MODELS IMPLEMENTED IN LEMS
The following examples illustrate the current scope of LEMS by
showing how a range of models that are commonly used in com-
putational biology can be expressed in the language. As described
in the Materials and Methods section, source code for all of
these examples is available allowing execution on both jLEMS and
PyLEMS.

2.8.1. Hodgkin and Huxley type ionic conductances
The Hodgkin and Huxley (HH) equations (Hodgkin and Huxley,
1952) have spawned a long lineage of models of active membrane
conductances, all using roughly the same equation structure and
forms of expressions but with occasional deliberate or acciden-
tal changes. The LEMS ComponentType definitions for the family
of HH type models are shown in Figure 3 along with the XML
for the classic HH sodium and potassium channels expressed as
LEMS Components. Note that this type of ion channel model
could potentially be specified in other, more compact sets of
LEMS ComponentTypes. The containment and inheritance used
in this description are influenced by the need for a set of exten-
sible ComponentTypes for use in NeuroML 2, as outlined in
Section 2.9.

We use a probabilistic interpretation of the HH formalism
which reduces to the conventional HH model in the continuous
limit. In this version the m and h gating variables are replaced
by gating particles and the α and β quantities occurring in the

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 3 | Example of a Hodgkin Huxley type ionic conductance

expressed in LEMS. (A) Gray boxes indicate ComponentType definitions
with the connectors expressing containment and extension relationships.
The main ComponentType, ionChannelHH, permits multiple gateHHrates

Components as children. The total conductance through the channel is based
on the product of fractional conductances through these. The gateHHrates
ComponentTypes calculate forward and reverse rates from child Components

(Continued)

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 3 | Continued

which extend baseVoltageDepRate. (B) Component instances that express the
standard HH sodium and potassium conductance models. The hierarchical
relationships defined among the ComponentTypes are implemented as nesting
of the elements in the Component XML with the channel element containing

one or two gate elements and each gate containing named transition rate
elements for the forward and reverse transitions. (C) Behavior of a cell
containing these two conductances (together with a leak conductance) in
response to a current clamp input. Plots show m, h, n gating variable q (top),
membrane potential (middle) and injected current (bottom).

ODEs are replaced by forward and reverse transition probabilities.
It is interesting to note that although the published form is purely
expressed in ODEs, the original HH paper alluded to this scheme
as a possible but, at the time, experimentally unjustified mech-
anistic interpretation of their equations. In this interpretation,
an ionic conductance has one or more gating complexes which
consist of one or more instances of a two state gate. The gate
can be either closed or open, and the transition between the two
states is governed by independent forward and reverse transition
rates which may depend on the membrane potential, v. Although
it is rarely apparent from the way models are published, almost
all models use functional forms for these rates drawn from the
following three expressions: f (x) = ex, g(x) = 1/(1 + e−x), and
h(x) = x/(1 − e−x) where x ≡ (v − vmidpoint)/vscale and the the
actual rate is the value of f , g or h scaled by a constant factor.

These relations are captured in the ComponentType definitions
in Figure 3A. The IonChannelHH element extends the baseIon-
Channel element which requires a membrane potential v and
computes a conductance g. The HH specific element has a set
of children, each of which is a gateHHrates. These contain a
Dynamics element which computes the behavior of a single gating
particle. For this, they require the forward and reverse transition
rates between the closed and open states. These are provided by
named child elements that extend the baseVoltageDepRate. Three
extensions to this type are defined covering the three standard
functional forms. With these ComponentType definitions in place,
the majority of HH style models currently in use can be expressed
just by defining new Component elements. XML for the classic
HH sodium and potassium channel models is shown in Figure 3B
and the behavior of the state variables for these channels when
placed on a cell is shown in Figure 3C. A complete specification
of the model in LEMS including the definition of the dynamical
behavior of the cell and input current is included in the zip file of
the Supplementary Material.

2.8.2. Adaptive exponential integrate and fire neuron model
The adaptive exponential integrate and fire model has two state
variables, one for the membrane potential (v) and the other (w)
for an adaptation current that changes according to the spik-
ing activity of the cell (Brette and Gerstner, 2005). The LEMS
ComponentType definition of this is shown in Figure 4A. It makes
use of two distinct Regimes in the Dynamics: one for normal inte-
grating behavior, and one for the refractory phase. The OnEntry
element in the refractory regime applies the membrane potential
reset and the discrete change in the adaptation current. The exit
condition for this regime is that the refractory period due to the
last spike is complete.

The XML for two instances of this neuron model is shown in
Figure 4B. Since the ComponentType definition does not declare
any Child or Children elements, the XML has no nested elements

and simply contains a set of parameter assignments for each of the
parameters declared in the ComponentType. Traces of the mem-
brane potential from each of these model instances when brief
current pulses are applied are shown in Figure 4C.

2.8.3. Simulation of a synapse with short-term plasticity and
non-linear postsynaptic conductance

Central synapses often exhibit both presynaptic short-term
dynamics and non-linear postsynaptic voltage dependent con-
ductances due to the presence of NMDA-Rs (N-Methyl-D-
aspartate receptors). It is possible to implement these synaptic
mechanisms in the current version of LEMS. This can be achieved
by starting with basePointCurrent, which represents anything
that generates a current, and gradually adding more properties
(Figure 5A). These include: accessing the postsynaptic mem-
brane potential; detecting presynaptic action potentials through
an EventPort; specifying the parameters for a simple double expo-
nential conductance waveform (baseline conductance, reversal
potential and rise and decay times). The ComponentType block-
ingPlasticSynapse defines two child elements corresponding to the
voltage-dependent block and short-term plasticity mechanisms.
Specific types of these elements are illustrated: voltageConcDep-
BlockMechanism for a widely used model of voltage dependent
Mg2+ block in NMDA-R synapses and tsodyksMarkramDep-
FacMechanism, for a model of short term plasticity based on
Tsodyks et al. (1998). However, new ComponentTypes based on
baseBlockMechanism and basePlasticityMechanism can be created
without requiring any update to blockingPlasticSynapse.

Figure 5B shows an example of a synapse model that can
exhibit short term plasticity as well as a non-linear voltage-
current relationship. Figure 5C shows how the presynaptic state
variables and the postsynaptic conductance evolve with time
during a high frequency burst of presynaptic action potentials.
Figure 5D illustrates the voltage dependence of the blocking fac-
tor for different concentrations of Mg2+. Thus, a wide range
of simple and biologically detailed synaptic mechanisms can be
defined in LEMS. Synapses defined in this way can be used in net-
work connections between LEMS Components (Section 2.12) and
potentially incorporate delays and scaling factors (weights).

2.9. USE OF LEMS AS BASIS FOR TYPE DEFINITIONS IN NeuroML 2
A key motivation for developing LEMS was to provide a flexible,
low level model description language that was machine read-
able, thereby overcoming one of the limitations of NeuroML
version 1.x. While NeuroML version 1.x can specify the struc-
ture of XML elements for ion channels, synapses, and cells,
the definitions of their dynamical behavior were only avail-
able in text based descriptions (Supplementary information of
Gleeson et al., 2010). To address this problem, we now use
LEMS ComponentType definitions to express the structure and

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 4 | Example of Adaptive Exponential Integrate and Fire

neuron model expressed in LEMS. (A) The ComponentType definition
of the model defines the Parameters required for the model and the
two Regimes, with their distinct behaviors and the conditions for
transitions between them. The adExIaFCell is an extension of more
generic types, from baseCell indicating it is part of a broad class of
“cells,” baseSpikingCell indicating that it is a cell that emits spiking
events, and baseCellMembPot which specifies an exposed variable v for

the membrane potential with dimension voltage. baseCellMembPotCap
adds that the cell will have a dimensional capacitance C, and exposes
identified current components across the membrane and due to synaptic
input. (B) Examples of Components specifying particular instances of
Adaptive Exponential Integrate and Fire neurons. (C) Traces showing
spiking behavior of the two cells from (B) due to current injected at
50 ms (0.75 nA top, 0.5 nA bottom). Crosses mark points where spiking
event is emitted.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 5 | Example of a complex synapse model expressed in

LEMS. (A) The Dynamics block in blockingPlasticSynapse specifies the
evolution of the synaptic conductance g and how the synaptic current
i depends on it and on the postsynaptic membrane potential v . In
this example, a tsodyksMarkramDepFacMechanism ComponentType
provides a short term plasticity model based on Tsodyks et al.
(1998), and a voltageConcDepBlockMechanism ComponentType provides
a simple model of magnesium block. Note how spike timing
information is relayed from the synapse model to the plasticity

mechanism through a parent-to-child EventConnection declared in the
Structure element in tsodyksMarkramDepFacMechanism. (B) XML code
describing an NMDA receptor mediated synapse with plasticity
(parameter values chosen to illustrate behavior in C,D). (C) Behavior
of the synaptic conductance g and the state variables defining
plasticity, U and R, during synaptic stimulation (crosses show input
events), with the postsynaptic cell clamped to 100 mV to ensure
complete Mg2+ unblock. (D) Changes in blockFactor with varying
membrane potential for different values of Mg2+ concentration.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

dynamical behavior of elements in NeuroML version 2. Indeed,
all of the ComponentType elements illustrated in Figures 3–5 are
actually part of the NeuroML version 2 specification. Figure 6
provides a more complete view of the ComponentType definitions
that make up NeuroML version 2, including types which form the
basis of broad families of models (e.g., baseSynapse and baseCell)
and those that can be instantiated as components, such as izhike-
vichCell, voltageClamp and expTwoSynapse. XML files with the
complete LEMS specifications for the version of NeuroML 2 used
in this paper (version beta3) are included in the Supplementary
Material zip file. A full description of the latest version of the
NeuroML 2 ComponentType definitions is available online at:
http://www.neuroml.org/NeuroML2CoreTypes.

An XML file containing NeuroML 2 will only contain
Component elements based on these standard types and can
be validated against an XML Schema document (Materials and
Methods), in the same way as a NeuroML version 1.x file. An
application that reads NeuroML models can choose either to use
LEMS definitions to define their behavior or simply to recognize
the NeuroML elements and map each element to its own internal
representation. This latter approach loses the extensibility that the
generic LEMS definitions affords, but has the advantage that the
simulator can use hard-coded and optimized implementations of
the standard models.

The Dynamics element currently describes the temporal evolu-
tion of point process models. The structure of cells with extended

FIGURE 6 | Hierarchy of ComponentTypes defining the elements of

NeuroML 2. A NeuroML document consists of a root neuroml element
and subelements of 6 broad classes. All cells extend the baseCell type.
These include one (iafCell) and two (izhikevichCell, adExIaFCell) variable
abstract spiking neuron models, descriptions of the standard PyNN neuron
models (extending basePynnCell) and the cell element (corresponding
roughly to the cell element of NeuroML v1.x), which contains a description
of the morphology and the biophysicalProperties (passive electrical
properties, channel densities, etc.) of the cell. Ion channels can be
described by the standard Hodgkin Huxley (ionChannelHH, Figure 3) or

kinetic scheme (ionChannelKS) based formalisms. Inputs to cells produce a
time varying current, which could depend on the voltage of the
Component on which they are placed. Synapses extend the baseSynapse
type and can have single (expOneSynapse) or double (expTwoSynapse)
exponential conductance waveforms, or have more complex dynamics, as
described in Figure 5. Networks in NeuroML consist of lists of population,
projection and inputList elements. Morphologies (which can be top level
elements or can be children of cell) are described by lists of segment and
segmentGroup elements. The elements shown here represent the state of
NeuroML 2 at the beta3 release.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 12

http://www.neuroml.org/NeuroML2CoreTypes
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

morphologies expressed as lists of segments and segmentGroups
can be specified in NeuroML 2, and there are corresponding
LEMS ComponentTypes which define their hierarchical relation-
ship (Figure 6), but there is not yet a description in LEMS of how
the membrane potential across the cell could be calculated, e.g., by
treating the model as a set of connected compartments. This does
not prevent a full description of multicompartmental cell model
in NeuroML 2 however, and these can still be mapped to simu-
lators which support these models. For example, descriptions of
ion channels and synapses can be mapped to NEURON’s native
format (NMODL, Hines and Carnevale, 2000) using the LEMS
descriptions of those model components (see below) and the
morphological description in segment/segmentGroup elements
mapped directly to NEURON’s internal morphology description
format. Native support in LEMS for models that involve scalar
fields over three dimensional structures is under development
(see Discussion).

The Structure element of LEMS underlies the ability of
NeuroML to specify networks containing populations of cells
connected with projections which pass discrete events through
synapse models (e.g., as shown in Figure 5). Due to the declar-
ative nature of NeuroML, it currently only supports descriptions
of networks as lists of cell locations and explicit connections, or a
small set of network templates for compact network descriptions.
More complex network connectivity patterns, potentially with
heterogeneous connectivity parameters, can be created either
with graphical tools or in a procedural programmatic fashion.
An example of the former is neuroConstruct (Gleeson et al.,
2007), which can generate complex 3D network models and
export them in the explicit list representation of NeuroML 2.
An example of the latter is libNeuroML, a Python based API for
reading and writing NeuroML 2 (Vella et al., 2014). PyNN is a
Python package for simulator independent neural network cre-
ation (Davison et al., 2008). Allowing a model specified in PyNN
to be exported to NeuroML 2, or to use a model element specified
in NeuroML2/LEMS in a PyNN script are scenarios we are actively
pursuing to help link these complementary modeling approaches.
The ability to express the standard cell types in PyNN as LEMS
ComponentTypes (cells extending basePynnCell in Figure 6) is an
important step toward this goal.

2.10. INTERACTION OF LEMS/NeuroML 2 WITH OTHER MODEL
SPECIFICATION LANGUAGES AND SIMULATORS

Multiple software approaches exist for simulating models in com-
putational biology, from using dedicated simulators in fields such
as neuroscience (Brette et al., 2007) and systems biology (Ghosh
et al., 2011), to using general purpose packages such as MATLAB,
and even generating code (Goodman, 2010) to run an optimized
version of the model in low level languages (e.g., C++ or Java).
By providing a structured language for model definition LEMS
greatly facilitates mapping models to and from these formats.
Figure 7 shows some of the options currently available for this.
Most of these mapping options are enabled through a Java pack-
age for generating multiple formats which builds on jLEMS and
an API generated from the NeuroML 2 Schema (Materials and
Methods). All of these Java packages, together with the LEMS def-
initions for NeuroML 2 ComponentTypes, are bundled into the

jNeuroML package3, which facilitates accessing this functionality
through a command line tool, jnml.

Model descriptions from multiple domains can be loaded into
an internal representation based on LEMS, either by using pre-
defined domain specific ComponentType definitions as in the case
of NeuroML, or by mapping existing formats such as SBML to
equivalents in LEMS. Once the models are in LEMS they can be
simulated with one of the LEMS reference implementations. As
mentioned previously, these are not intended to be efficient sim-
ulation platforms, and so the internal representation of the model
can also be mapped to other formats. Current options (Figure 7)
include neuronal simulators NEURON (Carnevale and Hines,
2006) and Brian (Goodman and Brette, 2008); generation of code
in MATLAB or C (using, CVODE Cohen and Hindmarsh, 1996)
for simulating the model; generating of model scripts in Modelica
format4; generating XPP (Ermentrout, 2002) scripts; and convert-
ing the model to SBML for execution in one of the applications
supporting that standard. Initial support for mapping LEMS
models to the neuronal model description formats NineML
(Raikov and De Schutter, 2012) and SpineML (Richmond et al.,
2014) has also recently been added (see Discussion). Note that not
all export formats are supported for all NeuroML 2 Components.
jNeuroML will throw an error when exporting to a format that
does not support a particular model feature, rather than gener-
ating incomplete code. The information on simulation duration,
timestep, variables to plot and save present in the Simulation ele-
ment of the LEMS file can also be exported to SED-ML format
(Waltemath et al., 2011).

2.11. MAPPING TO AND FROM SYSTEMS BIOLOGY LANGUAGES
Models that contain detailed subcellular signaling pathways are
increasingly being used to help understand the complex interac-
tions between ion channels, metabolites and genes within cells
(Chen et al., 2004; Feist et al., 2008) and at synapses (Kotaleski
and Blackwell, 2010). Many of these models are being made
available through resources such as BioModels (Le Novère et al.,
2006) and converted to standardized formats such as SBML. The
SBML import feature of LEMS allows the majority of SBML
files, most of which specify rates of reaction between biochemi-
cal species, to be mapped to an equivalent set of ODEs in LEMS.
Figure 8A shows an example of this using a model of circadian
rhythm generation in the suprachiasmatic nucleus (Locke et al.,
2008) which was retrieved in SBML from the BioModels database
(BIOMD0000000185), imported into LEMS, and executed with
jLEMS (Figure 8B). The LEMS model can also be run directly
by PyLEMS (Figure 8C). Use of the command line utility jnml
facilitates conversion into other formats. The model can be eas-
ily converted for execution using Brian, MATLAB and NEURON
(Figures 8D–F). Other export options available for this model
include CVODE, Modelica and XPP.

Export of LEMS models to SBML is also supported. Due to
the monolithic nature of SBML files, this feature is currently only
suitable for mapping single Components to SBML. However, the
Hierarchical Model Composition package in SBML Level 3 should

3https://github.com/NeuroML/jNeuroML
4https://www.modelica.org

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 13

https://github.com/NeuroML/jNeuroML
https://www.modelica.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 7 | Interaction of LEMS and NeuroML 2 with other model

specification and simulation formats. Models used in computational
neuroscience and systems biology with varying levels of biological detail, and
at multiple physical scales can be represented in LEMS, either through the
use of predefined, domain specific ComponentType definitions (e.g., for
NeuroML) or by importing from other structured modeling formats (e.g.,

SBML). Files in LEMS can then be simulated with the reference
implementations, jLEMS or PyLEMS, or exported to a number of other
formats. jNeuroML is a collection of utilities in Java for handling these
transformations. Export formats include neuronal simulators NEURON and
Brian, MATLAB or C code for simulating the models with solvers in these
languages, Modelica, XPP and SBML.

allow more complex LEMS/NeuroML networks to be mapped to
modular SBML models.

The SBML test suite5 has been used to test the import feature
for SBML. Some of the more advanced features of SBML, such
as algebraic rules, delays in events and piecewise expressions in
functions are not yet supported, but of those SBML test examples
that are supported (813), 78% pass when imported and simulated
in jNeuroML.

2.12. REPRESENTING A SIMPLE NEURONAL NETWORK IN LEMS AND
NeuroML 2

To test the ability of LEMS to express networks of complex
neurons, we converted a well known network model containing
conductance based neurons to NeuroML 2 and used jNeuroML
to simulate this. The pyloric network of the crustacean stomato-
gastric ganglion has been extensively studied as a small network
which can exhibit stereotypical rhythmic firing behavior under
different sets of neuron and network parameters (Prinz et al.,
2004; Marder and Taylor, 2011). Figure 9A shows the simpli-
fied form of the network we have converted to NeuroML 2. The
three cell models are taken from Prinz et al. (2004), and each
includes varying levels of the following currents: a fast Na+ cur-
rent; delayed rectifier and transient K+ currents; slow and T-type

5http://sbml.org/Software/SBML_Test_Suite

Ca2+ currents; a hyperpolarization-activated inward current; and
a [Ca2+] dependent K+ channel, IKCa. The Ca2+ currents and
buffering determine the dynamics of the intracellular Ca2+ con-
centration, which, in turn, controls the gating of IKCa. The rever-
sal potential for Ca2+ is calculated using the Nernst equation
(an implementation of the Goldman-Hodgkin-Katz equation for
ionic currents is also included in NeuroML 2). The synaptic con-
nectivity is simplified from the original model, using event based
chemical synapses as opposed to the graded synapses used in
Prinz et al. (2004). A full specification of the channels, cells and
network is included in the Supplementary Material zip file.

Figure 9B shows the network model when executed in jNeu-
roML. The numerical core of this simulator has no inbuilt
knowledge of conductances or ion concentrations, and all of the
knowledge of the how to handle these diverse, dimensional vari-
ables comes from the LEMS definitions of the cells, channels, etc.
The LEMS model description can be translated to NEURON’s
internal format (hoc and NMODL) via the jnml utility; and thus
can be simulated as any other NEURON model (Figure 9C). All
of the dimensional quantities from the LEMS model are converted
to a set of consistent units in NEURON (based on mV and ms).
The NMODL files contain information on the units for all of the
variables that NEURON should use (e.g., conductance and cur-
rent density) and these have been validated for unit consistency
in the generated scripts with the modlunit utility in NEURON.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 14

http://sbml.org/Software/SBML_Test_Suite
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 8 | Importing SBML into LEMS and exporting to multiple

simulation formats. (A) A model of a circadian clock from Locke et al.
(2008). Two cells from the suprachiasmatic nucleus contain mRNA for
producing a clock protein, which in turn activates a transcriptional inhibitor.
A neuropeptide is produced in both cells, the mean level of which affects
transcription in each cell, contributing to synchrony in protein synthesis
between the cells. (B) The model was converted into LEMS format using the
jNeuroML utility jnml and the option -sbml-import, specifying the simulation
duration and time step to use for numerical integration. The resultant LEMS
file was executed using jnml without arguments. The values of all species

concentrations and variable parameters are plotted and saved by default in
the generated LEMS, but only 4 values are shown here for clarity. (C) The
LEMS model simulated using PyLEMS, which produced similar results. (D)

The LEMS model converted to Brian using the jnml option -brian.
A screenshot is shown of the plot produced when the generated Python
script is executed. (E) The LEMS model converted to Matlab using the jnml
option -matlab and the resultant plot shown. (F) The model converted to
NEURON using option -neuron, and a screenshot is shown of the plot
produced after the generated NMODL files are compiled and the simulation
script is run. Plots (C–F) use the same colors for traces as (B).

Even though the results for both jNeuroML and NEURON
simulations agree qualitatively, membrane potential traces
(Figures 9B,C) deviate slightly from each other. Such discrep-
ancies are due to distinct numerical integration schemes used
by the simulators, and could be reduced by choosing smaller
integration step sizes. Nevertheless, given that some neural sys-
tems can be critically sensitive to small perturbations (London
et al., 2010), some degree of divergence between numerically
calculated trajectories might be expected, given long enough
timeseries.

3. DISCUSSION
Here we describe LEMS, a flexible model specification language
that provides structured, compact and machine readable descrip-
tions of complex models in neuroscience and beyond. By utilizing
the 7 base physical dimensions as primitives and forming tree-
like nested hierarchical structures, LEMS can specify models in
a manner that reflects their underlying physio-chemical prop-
erties and structure and provides a framework for automated
handling of units. These features, together with the separation
of mathematical relationships describing classes of models from

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 15

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 9 | A network of conductance based cell models specified in

NeuroML 2 and simulated using jNeuroML and NEURON. (A) Model
of the pyloric pacemaker network created in NeuroML 2 based on Prinz
et al. (2004). This contains a lumped model of the coupled anterior
burster and pyloric dilator neurons (AB/PD), a single neuron representing
the lateral pyloric neurons (LP) and a single pyloric neuron model (PY).

These are connected by inhibitory fast glutamatergic connections (thin
lines) and slow cholinergic connections (thick lines). (B) The membrane
potential for each of the 3 modeled neurons when simulated with
jNeuroML. The colors of the traces match those used for the neurons in
(A). (C) Model converted to NEURON using jNeuroML and executed
using this simulator.

the parameters that define a particular model instantiation, pro-
vide a flexible framework for building compact, low redundancy
(low entropy) model representations. We demonstrate the current
functionality of LEMS using Java and Python based implementa-
tions of the language and show how it underlies the definition
of model components in NeuroML version 2, a standardized for-
mat for computational neuroscience, by implementing a variety
of different models at the channel, synaptic, neuronal and net-
work levels. Moreover, we also demonstrate that LEMS has a
wider application than neuroscience by using it to specify mod-
els in systems biology, thereby providing a bridge between these
two traditionally separate fields (De Schutter, 2008).

3.1. LEMS—A NEW APPROACH TO MODEL SPECIFICATION IN
NEUROSCIENCE

Computational modeling of biological systems typically begins
with a physical conception of the entities to be modeled. This is
converted into a mathematical representation involving differen-
tial equations or stochastic processes that are then solved numer-
ically on a computer as a computational system. Many models in
computational neuroscience have traditionally been constructed
and simulated using specialized simulators. In this way, the files
specifying the model instance, the description of the underlying
model types and the implementation of the numerics to solve the
model can be quite simulator specific (Figure 10A). The fact that
a common set of core model types were used for detailed com-
partmental modeling by multiple simulators allowed simulator

independent specification of model descriptions as well as text
based model definitions with NeuroML v1.8.1 (Figure 10B). This
scenario still required manual conversion of the model definitions
to simulation engine specific formats however, and it was diffi-
cult to add new model classes to the framework. These significant
limitations spurred the development of LEMS, where a guiding
principle in the design has been to migrate knowledge of the
modeled system from domain-specific simulators and text based
definitions to the model specification language (Figure 10C).

Fully flexible generic computational approaches (e.g., general
purpose programming languages such as C), are not well suited
for standardizing complex biological models with domain spe-
cific concepts. The challenge in developing LEMS was to keep the
flexibility of such generic programming approaches while intro-
ducing structure within the model specification. This is achieved
in LEMS through a bottom up, nested hierarchical structure that
is rooted in the base physical dimensions. By having dimensional
quantities as the basic primitives of the language, LEMS also elim-
inates a common frustration in developing models by enabling
automated equation validation and unit consistency checking,
thereby removing the requirement on the modeler to do these by
hand. An equally important feature of LEMS is the separation of
model component types from the parameters and their instantia-
tion. This enables the basic properties of a type of models, such as
neurons, to be defined only once, multiple variants of this type to
be defined and each of these to be used as many times as necessary.
This approach enables compact representations of populations of

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

FIGURE 10 | Segregation of knowledge throughout different modeling

approaches. (A) The complete description (physiological and mathematical)
of a simulated model in a simulator like NEURON is generally spread across
three locations: the simulation scripts which describe the particular instance
of the model (green box, hoc and mod files in the case of NEURON); the
description of the concepts underlying the elements used to specify the
model, e.g., the membrane and cable equations (yellow box, the NEURON
book and online resources); and the code which constitutes the numerical
core of the simulator (blue box). (B) NeuroML 1 provided a format (green box)
to encode the information on model instances as well as resources to
describe the model concept behaviors (yellow box), though the latter were
still supplied in non-machine readable, text based documentation. Model

descriptions could still only be mapped to simulators which had internal
implementations of the key neuroscientific concepts being simulated (blue
box). (C) NeuroML 2 extends the knowledge modalities that can be
expressed in machine readable formats, providing a language for describing
model instances (green box) while allowing a description of the structure and
behavior of key modeling concepts to be specified in LEMS (yellow box). This
allows mapping not only to neuroscience specific applications, but also more
generic hybrid dynamical system solvers such as jLEMS, or generation of
standalone code (blue box). Note that in each case the steps needed to solve
equations numerically, such as grid generation and time discretization, are
entirely contained within the blue box. The NeuroML descriptions are
completely independent of any details of the numerics.

model components, while also providing the flexibility to enable
heterogeneity in models to be implemented.

The need to develop and define new model types has long been
acknowledged by neuronal simulator developers. NEURON’s
NMODL format (Hines and Carnevale, 2000) and Brian’s sim-
ple text based model specification (Goodman and Brette, 2008)
cover many of the use cases of developing novel models in a

specific simulation environment. The latter even facilitates code
generation (Stimberg et al., 2014). Using LEMS to define new
model types has the advantage that it is an integral part of a
wider framework for model specification, interoperability and
exchange, incorporating NeuroML version 2 and tools for read-
ing, writing, simulating and automatically converting the models
to multiple simulator formats. The conversion functionality used

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

in this framework is facilitated in large part by the extension
mechanisms for individual simulators described above.

Another neuroscience focussed model description language
called NineML (Raikov et al., 2011) has been developed in parallel
with LEMS and NeuroML 2. NineML has been created by the Task
Force on Multiscale Modeling, organized by the International
Neuroinformatics Coordinating Facility (INCF). While the over-
all goals for developing LEMS and NineML are largely similar
(and many of the authors of this paper contributed to that
Task Force) there are some key differences in the scope and
design of the languages. Both languages separate model definition
from Component instantiation: the NineML “Abstraction Layer”
for model specification corresponds roughly to ComponentType
definition in LEMS, and its “User Layer” contains cell and net-
work creation as present in LEMS Components and NeuroML 2.
However, a key difference between these two languages is that
NineML does not currently support hierarchical structures or
extension among ComponentTypes and so tends to favor flat-
ter and less structured model representations. Moreover, unlike
LEMS, which has physical dimensions as primitives, dimen-
sion/unit handling is not currently fully supported in NineML.
LEMS also prioritizes succinct representation of the model defini-
tions (e.g., Figures 3B, 4B) whereas NineML is not intended to be
human readable. SpineML (Richmond et al., 2014) is a language
based on NineML and shares most of these constraints. Another
distinction between these approaches is that NeuroML 2 has
been designed with a similar overall structure as NeuroML v1.x,
to facilitate upgrading of import/export support in applications
and mapping of existing model components to the new format.
While proliferation of standardized languages can be detrimen-
tal, exploring multiple different ways to solve complex problems
is beneficial, as long as it results in a more robust end product.
To this end we have started to develop features for exporting and
importing NineML and SpineML to and from LEMS (through
jNeuroML), thereby maximizing the opportunities for sharing
and reuse of models specified in these largely complementary
languages.

3.2. LEMS AND SYSTEMS BIOLOGY
In systems biology there are several initiatives for providing
declarative specification of biological models and simulations,
which have underpinned the rapid expansion of this field over the
last decade (Ghosh et al., 2011). These include CellML, SBML,
and SED-ML (Waltemath et al., 2011), which have distinct core
objectives and domains of application. Although LEMS was ini-
tially inspired by the need for flexible model development in
neuroscience it can define a wide range of physio-chemical mod-
els, including many in systems biology. The core concepts that
distinguish LEMS from the existing model specification systems
in systems biology are the use of physical relationships to guide
model structure and the ability to express models in compact, low
entropy, nested hierarchical forms. LEMS also enforces a strict
separation between equations, which belong in the dynamics def-
inition of a ComponentType, and parameter values for a specific
model which belong in a Component. As a generic language for
describing hybrid dynamical systems (Goebel et al., 2009), LEMS
can therefore be used for developing compact representations of

models in systems biology and possibly further afield. Conversion
of a circadian rhythm model that includes a gene regulatory net-
work from SBML to LEMS enabled us to run the simulation on
both neuroscience specific and generic simulators (Figure 8). We
have also been able to pass a significant portion of the SBML Test
Suite. These encouraging preliminary results with SBML show
that LEMS can act as a bridge between computational neuro-
science and systems biology. This raises the exciting prospect of
exchanging models and model components across these sepa-
rate domains and an acceleration in the development of more
sophisticated multi-scale neuronal models.

3.3. ENTROPY OF MODEL SPECIFICATIONS AND EXECUTABLE CODE
A key objective in developing LEMS, was to produce compact, low
redundancy standardized representations of the models, hence
the choice of the name. However, when models are converted
into executable code, most of the structure is removed: dimen-
sional quantities are divided by units to provide dimensionless
numbers and mechanistic concepts are converted into a collec-
tion of state variables and equations. Ultimately, the numerical
code implements state update rules, which correspond to the
high entropy end of the spectrum. While it is possible to auto-
mate the process of turning a low-entropy representation into a
high entropy executable code as used by different simulators, in
general it is much more difficult to produce a low entropy rep-
resentation from a higher entropy one. This will make it difficult
for simulators with high entropy model representations to write
LEMS directly, because information relating to classes of object
are not contained in the simulator representation. However, this
can be overcome by adding back this knowledge through manual
curation. In the longer term, this problem should be alleviated,
as more models are written in LEMS/NeuroML and simulators
increasingly support the creation and modification of models in
low entropy forms.

3.4. LEMS BASED CODE GENERATION
A somewhat unexpected outcome of migrating knowledge of the
model structure, dimensions and dynamics to LEMS, is the abil-
ity to execute models directly and relatively efficiently through
the two LEMS interpreters, jLEMS and PyLEMS. We had antic-
ipated that these interpreters would be primarily of interest for
model testing, validation, providing reference data, and oper-
ating on the LEMS data model for mapping models to other
systems. For running realistic scale simulations we had assumed
we would need to export models to other tools. However, prelim-
inary work on model flattening and code generation suggests that
they may provide a relatively efficient solution for at least some
classes of models. To explore further the idea of “simulator-free”
model execution via automatic code generation, we implemented
template-based exporters, which can generate de novo C and
MATLAB code (Figure 7). The models can then be simulated
independently from the LEMS interpreters, directly as binary
code (in the C case) or from within MATLAB. By delegating
low-level numerical computations to standard/built-in libraries
in these systems, we obtained very robust and accurate results.
The prospect of automated code generation blurs the distinction
between code generation and simulators (Figure 10C).

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 18

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

Simulation of more complex models—such as those involv-
ing synaptically connected networks of neurons—is not currently
possible with our simulator independent automated code gener-
ation approach, as the infrastructure for passing spiking events
between cells needs to be build from scratch in most neuroscience
agnostic target formats. However, we were able to automatically
generate code from a LEMS-based network model for NEURON,
a domain specific simulator that does support the concept of mes-
sage passing networks. Although preliminary, this type of code
generation directly from the LEMS specification radically alters
the potential relationship between model specification and simu-
lation platforms. The possibility of automatically generating code
tailored to specific hardware from LEMS could be particularly
useful given the growing diversity of hardware for running large
models, including GPUs (Brette and Goodman, 2012), FPGAs
(Cheung et al., 2012) and novel large parallel systems such as
SpiNNaker (Sharp et al., 2012) thereby providing an efficient way
to exploit a range of novel hardware that could lower the cost
and increase the speed of large scale simulations in computational
biology.

3.5. CURRENT LIMITATIONS AND FUTURE DIRECTIONS
The illustrative examples we have presented show that the cur-
rent stable release of LEMS and NeuroML 2 provide a flexible
and extensive framework for describing models of brain func-
tion. Indeed, the LEMS/NeuroML 2 framework has already been
used to define the cellular and synaptic properties of a pub-
lished model of the cerebellar input layer network (Billings et al.,
2014). However, several aspects of the framework are still in active
development.

While multicompartmental cells can be defined using seg-
ments based on LEMS ComponentTypes, and 3D spatial location
can be defined in cartesian coordinates, the language is currently
lacking a more sophisticated definition of space. However, a pro-
posal for a new set of geometric primitives is at an advanced
stage of development, and this will enable LEMS to represent
three dimensional volumes and the reduction of certain classes
of PDEs over those volumes to one dimensional PDEs over their
axial skeletons. Our initial focus will be on an in-built diffu-
sion operator, that can be used to express both the membrane
potential equations and biochemical processes such as calcium
diffusion. We expect that this will open up a range of neuroscien-
tifically relevant models without calling for intractable solutions
to generic 3D PDEs. Besides the conventional cable equation, this
will cover models involving internal reaction-diffusion systems
and will include the possibility of expressing external conditions
as required, for example, to model extracellular field potentials.

Current limitations to the scope of LEMS that will be more
straightforward to address are the representation of noise, imple-
mentation of gap junctions and ways to refer to external files for
driving inputs or setting initial conditions. Although LEMS pro-
vides a random() function, more complex noise models would
presently have to be implemented with custom ComponentTypes,
which is inefficient. A better solution to this problem would be
to utilize a core set of optimized algorithms for generating noise
signals with specific properties. A preliminary implementation of
electrical synapses has recently been developed (which will also

facilitate specification of graded chemical synapses) and will be
released in the next version of NeuroML 2. Lastly, there are a
number of existing ways for representing data defined in external
files that could be used for LEMS (including proposed exten-
sions to the SED-ML specification), and this limitation should be
relatively straightforward to resolve.

3.6. REPRODUCIBILITY, ACCESSIBILITY, PORTABILITY, AND
TRANSPARENCY OF MODELS IN COMPUTATIONAL
NEUROSCIENCE

Computational models are increasingly being used to understand
brain function. However, the value of data driven and biophys-
ically detailed modeling as a scientific tool has been diminished
by the fact that many published models cannot be easily repro-
duced or critically evaluated by most neuroscientists. Increasing
the Reproducibility, Accessibility, Portability and Transparency
(RAPT) of models is therefore an essential prerequisite for them
to be more widely adopted by the community as valuable sci-
entific tools. Standardized model descriptions that are machine
readable hold the key to this.

By including all of the knowledge required to specify a
model, LEMS/NeuroML 2 provides a powerful tool for increas-
ing RAPT. Simulations described in research papers can be
specified in LEMS/NeuroML 2 file and reproduced using a com-
pliant simulator or interpreter, subject to numerical approxima-
tions and truncation errors. The contents of models specified in
LEMS/NeuroML2 can also be parsed and converted into other
languages, increasing portability and reuse, or into a more human
friendly form. This feature of LEMS/NeuroML 2 is being used by
the Open Source Brain initiative6, a repository of neuroscience
models in standardized format, and in the OpenWorm project7.
These initiatives show that defining models in LEMS/NeuroML
2 can make their properties accessible and transparent to all
interested parties, irrespective of their ability to read code.

Critical evaluation of biologically detailed computational
models and feedback from both computational and experimen-
tal neuroscientists will be invaluable in improving the biolog-
ical validity and robustness of models over time. This will be
increasingly important as advances in the connectomics field
(Helmstaedter et al., 2013) and data produced by large scale brain
initiatives (Kandel et al., 2013) lead to the possibility of ever more
detailed in silico reconstructions of neuronal circuits. By increas-
ing the RAPT of models, LEMS/NeuroML 2 provides a route to
improve the scientific value of detailed computational models in
neuroscience and beyond.

4. MATERIALS AND METHODS
The LEMS language was developed in parallel to the initial ref-
erence implementation jLEMS (source code at https://github.

com/LEMS/jLEMS), and the serialization of LEMS in XML fol-
lowed closely the internal classes used in jLEMS for specifying
the model. Documentation of all of the elements in LEMS can
be found here: http://lems.github.io/LEMS/elements.html. This
is automatically generated from documentation in the jLEMS

6http://www.opensourcebrain.org
7http://www.openworm.org

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 19

https://github.com/LEMS/jLEMS
https://github.com/LEMS/jLEMS
http://lems.github.io/LEMS/elements.html
http://www.opensourcebrain.org
http://www.openworm.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

source code. An XML Schema has been developed which can be
used to check that an XML file is valid LEMS (the latest version of
this can be found on https://github.com/LEMS/LEMS). All of the
NeuroML 2 ComponentType definition files (see below) are valid
against this. However, both jLEMS and PyLEMS allow more flexi-
bility in LEMS files; LEMS elements can be in any order in a file as
long as the overall containment rules of the language (Figure 2A)
are followed.

The main repository for development of NeuroML 2 is https://
github.com/NeuroML/NeuroML2 and there are regular releases
of stable verisons of the specification. The version described in
this document is the NeuroML 2 beta3 release. XML Schemas
for each release are available in the above mentioned reposi-
tory, and can be used to validate standalone NeuroML files. This
Schema can be used to develop NeuroML support without use of
the LEMS ComponentType definitions. The files containing these
ComponentType definitions (e.g., Cells.xml, Synapses.xml) can be
found in the NeuroML2CoreTypes folder of this repository.

While jLEMS can be used to simulate any valid LEMS model,
we have developed a number of other neuroscience specific Java
packages to build on this (all of these are available in https://
github.com/NeuroML): a full application programming inter-
face (API) in Java for NeuroML 2 (org.neuroml.model); options
for exporting LEMS/NeuroML 2 to other formats (e.g., those
in Figure 7, org.neuroml.export); options for importing other
formats to LEMS (org.neuroml.import); and a single package
(jNeuroML) which can be used to bundle all of these into a
single Java jar file, along with a utility jnml for accessing all
this functionality via the command line (e.g., Figure 8). These
Java packages are built using Maven (http://maven.apache.org),
which facilitates the management of dependencies between dif-
ferent packages. The NeuroML 2 ComponentType definitions are
included with jNeuroML, allowing execution of NeuroML files
with jnml (information about the simulation needs to be in a
LEMS file which contains a Simulation element and imports the
NeuroML files). A Python API for reading, writing and validat-
ing NeuroML 2 has also been developed (https://github.com/
NeuralEnsemble/libNeuroML, Vella et al., 2014).

PyLEMS is a pure Python implementation of the LEMS lan-
guage, and this can be obtained from: https://github.com/LEMS/
pylems. This is a standalone package which can both parse and
simulate existing LEMS models and provides an API in Python for
reading, modifying and writing LEMS files (Vella et al., 2014). It
can also simulate NeuroML 2 models by including the NeuroML
2 ComponentType definitions. PyLEMS is also on the Python
Package Index, allowing it to be installed using the setuptools
command easy_install.

Supplementary Material 1 consists of a zip file containing the
NeuroML 2 ComponentType definition files together with all of
the LEMS/NeuroML 2 examples presented here (in Figures 2–5,
8, 9) along with versions of jLEMS and PyLEMS which can be
used to reproduce the figures. These materials are also available at
https://github.com/NeuroML/NML2_LEMS_Examples.

ACKNOWLEDGMENTS
Robert C. Cannon, Padraig Gleeson, and R. Angus Silver were
supported by the Wellcome Trust (086699/101445). R. Angus
Silver is in receipt of a Wellcome Trust Principal Research

Fellowship (095667) and an ERC Advanced Grant (294667).
Sharon Crook and Gautham Ganapathy were supported by
the National Institute of Biomedical Imaging (R01EB014640)
and the National Institute of Mental Health (R01MH081905).
Boris Marin is supported by the Brazilian agency CAPES (2257-
13/0). Eugenio Piasini is supported by the EU Marie Curie
Initial Training Network CEREBNET (FP7-ITN-PEOPLE-2008;
238686). We are grateful to members of the INCF Taskforce
on Multiscale Modeling for numerous stimulating discussions,
particularly Andrew Davison, Erik De Schutter, Mike Hull, Eilif
Muller, and Ivan Raikov. Mike Hasselmo and Randal Koene pro-
vided extensive input to earlier projects that helped motivate the
current work. We thank Mike Vella, Matteo Cantarelli and the
members of the OpenWorm community for valuable contribu-
tions, and Aditya Gilra for assistance in translating the Pyloric
Pacemaker network model to NeuroML.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fninf.2014.
00079/abstract

REFERENCES
Bezaire, M. J., and Soltesz, I. (2013). Quantitative assessment of CA1 local circuits:

knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23,
751–785. doi: 10.1002/hipo.22141

Billings, G., Piasini, E., Lőrincz, A., Nusser, Z., and Silver, R. A. (2014). Network
structure within the cerebellar input layer enables lossless sparse encoding.
Neuron 83, 960–974. doi: 10.1016/j.neuron.2014.07.020

Bower, J., and Beeman, D. (1997). The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural SImulation System. New York, NY: Springer.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neu-
ral networks on GPU. Netw. Comput. Neural Syst. 23, 167–182. doi:
10.3109/0954898X.2012.730170

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
et al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., and Tyson, J. J.
(2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell
15, 3841–3862. doi: 10.1091/mbc.E03-11-0794

Cheung, K., Schultz, S., and Luk, W. (2012). “A large-scale spiking neural net-
work accelerator for FPGA systems,” in Artificial Neural Networks and Machine
Learning ICANN 2012, Vol. 7552 of Lecture Notes in Computer Science, eds A. E.
Villa, W. Duch, P. Erdi, F. Masulli, and G. Palm (Berlin; Heidelberg: Springer),
113–120.

Cohen, S. D., and Hindmarsh, A. C. (1996). CVODE, a stiff/nonstiff ODE solver in
C. Comput. Phys. 10, 138–143. doi: 10.1063/1.4822377

Davison, A. P., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

De Schutter, E. (2008). Why are computational neuroscience and systems biol-
ogy so separate? PLoS Comput. Biol. 4:e1000078. doi: 10.1371/journal.pcbi.
1000078

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems:
A Guide To XPPAUT for Researchers and Students. Philadelphia, PA: Society for
Industrial and Applied Mathematics. doi: 10.1137/1.9780898718195

Farinella, M., Ruedt, D. T., Gleeson, P., Lanore, F., and Silver, R. A. (2014).
Glutamate-bound NMDARs arising from in vivo-like network activity extend
spatio-temporal integration in a L5 cortical pyramidal cell model. PLoS Comput.
Biol. 10:e1003590. doi: 10.1371/journal.pcbi.1003590

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 20

https://github.com/LEMS/LEMS
https://github.com/NeuroML/NeuroML2
https://github.com/NeuroML/NeuroML2
https://github.com/NeuroML
https://github.com/NeuroML
http://maven.apache.org
https://github.com/NeuralEnsemble/libNeuroML
https://github.com/NeuralEnsemble/libNeuroML
https://github.com/LEMS/pylems
https://github.com/LEMS/pylems
https://github.com/NeuroML/NML2_LEMS_Examples
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00079/abstract
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cannon et al. Model specification using LEMS and NeuroML 2

Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., and Palsson, B. Ø.
(2008). Reconstruction of biochemical networks in microorganisms. Nat. Rev.
Microbiol. 7, 129–143. doi: 10.1038/nrmicro1949

Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K.-Y., and Kitano, H. (2011). Software
for systems biology: from tools to integrated platforms. Nat. Rev. Genet. 12,
821–832. doi: 10.1038/nrg3096

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: a language for describing data driven models of neu-
rons and networks with a high degree of biological detail. PLoS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron 54, 219–235. doi:
10.1016/j.neuron.2007.03.025

Goebel, R., Sanfelice, R., and Teel, A. (2009). Hybrid dynamical systems. Cont. Syst.
IEEE 29, 28–93. doi: 10.1109/MCS.2008.931718

Goodman, D. (2010). Code generation: a strategy for neural network simulators.
Neuroinformatics 8, 183–196. doi: 10.1007/s12021-010-9082-x

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., and Denk,
W. (2013). Connectomic reconstruction of the inner plexiform layer in the
mouse retina. Nature 500, 168–174. doi: 10.1038/nature12346

Herz, A. V. M., Gollisch, T., Machens, C. K., and Jaeger, D. (2006). Modeling single-
neuron dynamics and computations: a balance of detail and abstraction. Science
314, 80–85. doi: 10.1126/science.1127240

Hines, M. L., and Carnevale, N. T. (2000). Expanding NEURON’s reper-
toire of mechanisms with NMODL. Neural Comput. 12, 995–1007. doi:
10.1162/089976600300015475

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M. (2004).
ModelDB: a database to support computational neuroscience. J. Comput.
Neurosci. 17, 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al.
(2003). The Systems Biology Markup Language (SBML): a medium for rep-
resentation and exchange of biochemical network models. Bioinformatics 19,
524–531. doi: 10.1093/bioinformatics/btg015

IEEE. (1988). IEEE Standard VHDL Language Reference Manual. IEEE Standard
1076-1987.

Kandel, E. R., Markram, H., Matthews, P. M., Yuste, R., and Koch, C. (2013).
Neuroscience thinks big (and collaboratively). Nat. Rev. Neurosci. 14, 659–664.
doi: 10.1038/nrn3578

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival,
B., et al. (2012). A whole-cell computational model predicts phenotype from
genotype. Cell 150, 389–401. doi: 10.1016/j.cell.2012.05.044

Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662–1664. doi:
10.1126/science.1069492

Kotaleski, J. H., and Blackwell, K. T. (2010). Modelling the molecular mechanisms
of synaptic plasticity using systems biology approaches. Nat. Rev. Neurosci. 11,
239–251. doi: 10.1038/nrn2807

Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H.,
et al. (2006). BioModels database: a free, centralized database of curated, pub-
lished, quantitative kinetic models of biochemical and cellular systems. Nucleic
Acids Res. 34(Database issue), D689–D691. doi: 10.1093/nar/gkj092

Lloyd, C. M., Halstead, M. D., and Nielsen, P. F. (2004). CellML: its
future, present and past. Prog. Biophys. Mol. Biol. 85, 433–450. doi:
10.1016/j.pbiomolbio.2004.01.004

Lloyd, C. M., Lawson, J. R., Hunter, P. J., and Nielsen, P. F. (2008). The cellML model
repository. Bioinformatics, 24, 2122–2123. doi: 10.1093/bioinformatics/btn390

Locke, J., Westermark, P., Kramer, A., and Herzel, H. (2008). Global parameter
search reveals design principles of the mammalian circadian clock. BMC Syst.
Biol. 2:22. doi: 10.1186/1752-0509-2-22

London, M., Roth, A., Beeren, L., Hausser, M., and Latham, P. E. (2010). Sensitivity
to perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature 466, 123–127. doi: 10.1038/nature09086

Marder, E., and Taylor, A. L. (2011). Multiple models to capture the variabil-
ity in biological neurons and networks. Nat. Neurosci. 14, 133–138. doi:
10.1038/nn.2735

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Pyramidal neuron as two-layer
neural network. Neuron 37, 989–999. doi: 10.1016/S0896-6273(03)00149-1

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity from
disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/nn1352

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al.
(2011). NineML: the network interchange for neuroscience modeling language.
BMC Neurosci. 12(Suppl. 1):P330. doi: 10.1186/1471-2202-12-S1-P330

Raikov, I., and De Schutter, E. (2012). The layer-oriented approach to declara-
tive languages for biological modeling. PLoS Comput. Biol. 8:e1002521. doi:
10.1371/journal.pcbi.1002521

Richmond, P., Cope, A., Gurney, K., and Allerton, D. J. (2014). From model speci-
fication to simulation of biologically constrained networks of spiking neurons.
Neuroinformatics 12, 302–323. doi: 10.1007/s12021-013-9208-z

Rothman, J. S., Cathala, L., Steuber, V., and Silver, R. A. (2009). Synaptic
depression enables neuronal gain control. Nature 457, 1015–1018. doi:
10.1038/nature07604

Segev, I., and London, M. (2000). Untangling dendrites with quantitative models.
Science 290, 744–750. doi: 10.1126/science.290.5492.744

Sharp, T., Galluppi, F., Rast, A., and Furber, S. (2012). Power-efficient simulation of
detailed cortical microcircuits on SpiNNaker. J. Neurosci. Methods 210, 110–118.
doi: 10.1016/j.jneumeth.2012.03.001

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-
oriented specification of neural models for simulations. Front. Neuroinform. 8:6.
doi: 10.3389/fninf.2014.00006

Thomson, A. M., and Lamy, C. (2007). Functional maps of neocortical local
circuitry. Front. Neurosci. 1:1. doi: 10.3389/neuro.01.1.1.002.2007

Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E.,
Roopun, A., et al. (2005). Single-column thalamocortical network model
exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J.
Neurophysiol. 93, 2194–2232. doi: 10.1152/jn.00983.2004

Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dynamic
synapses. Neural Comput. 10, 821–835. doi: 10.1162/089976698300017502

Vella, M., Cannon, R. C., Crook, S., Davison, A. P., Ganapathy, G., Robinson, H. P.,
et al. (2014). libNeuroML and PyLEMS: using Python to combine imperative
and declarative modelling approaches in computational neuroscience. Front.
Neuroinform. 8:38. doi: 10.3389/fninf.2014.00038

Vervaeke, K., Lőrincz, A., Gleeson, P., Farinella, M., Nusser, Z., and Silver,
R. A. (2010). Rapid desynchronization of an electrically coupled interneu-
ron network with sparse excitatory synaptic input. Neuron 67, 435–451. doi:
10.1016/j.neuron.2010.06.028

Vervaeke, K., Lőrincz, A., Nusser, Z., and Silver, R. A. (2012). Gap junctions com-
pensate for sublinear dendritic integration in an inhibitory network. Science
335, 1624–1628. doi: 10.1126/science.1215101

Vogels, T. P., and Abbott, L. F. (2005). Signal propagation and logic gating in
networks of integrate-and-fire neurons. J. Neurosci. 25, 10786–10795. doi:
10.1523/JNEUROSCI.3508-05.2005

Waltemath, D., Adams, R., Bergmann, F., Hucka, M., Kolpakov, F., Miller, A., et al.
(2011). Reproducible computational biology experiments with SED-ML - the
simulation experiment description markup language. BMC Syst. Biol. 5:198.
doi: 10.1186/1752-0509-5-198

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 13 June 2014; accepted: 01 September 2014; published online: 25 September
2014.
Citation: Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E and Silver
RA (2014) LEMS: a language for expressing complex biological models in concise and
hierarchical form and its use in underpinning NeuroML 2. Front. Neuroinform. 8:79.
doi: 10.3389/fninf.2014.00079
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Cannon, Gleeson, Crook, Ganapathy, Marin, Piasini and Silver.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 79 | 21

http://dx.doi.org/10.3389/fninf.2014.00079
http://dx.doi.org/10.3389/fninf.2014.00079
http://dx.doi.org/10.3389/fninf.2014.00079
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2
	Introduction
	Results
	Dimensional Quantities
	Separating Equations from Parameter Values: Components and Componenttypes
	Model Specification
	Expressing Physical Connections and Containment
	Conceptual Model Hierarchy
	Model Encoding
	Implementations of LEMS
	Examples of Models Implemented in LEMS
	Hodgkin and Huxley type ionic conductances
	Adaptive exponential integrate and fire neuron model
	Simulation of a synapse with short-term plasticity and non-linear postsynaptic conductance

	Use of LEMS as Basis for Type Definitions in NeuroMl 2
	Interaction of LEMS/NeuroML 2 with Other Model Specification Languages and Simulators
	Mapping to and from Systems Biology Languages
	Representing a Simple Neuronal Network in LEMS and NeuroML 2

	Discussion
	LEMS—a New Approach to Model Specification in Neuroscience
	LEMS and Systems Biology
	Entropy of Model Specifications and Executable Code
	LEMS Based Code Generation
	Current Limitations and Future Directions
	Reproducibility, Accessibility, Portability, and Transparency of Models in Computational Neuroscience

	Materials and Methods
	Acknowledgments
	Supplementary Material
	References

