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BrainX3 is a large-scale simulation of human brain activity with real-time interaction,
rendered in 3D in a virtual reality environment, which combines computational power
with human intuition for the exploration and analysis of complex dynamical networks. We
ground this simulation on structural connectivity obtained from diffusion spectrum imaging
data and model it on neuronal population dynamics. Users can interact with BrainX3 in
real-time by perturbing brain regions with transient stimulations to observe reverberating
network activity, simulate lesion dynamics or implement network analysis functions from
a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive
platform for exploration and analysis of dynamical activity patterns in brain networks,
both at rest or in a task-related state, for discovery of signaling pathways associated
to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results
demonstrate these functionalities and shed insight on the dynamics of the resting-state
attractor. Specifically, we found that a noisy network seems to favor a low firing attractor
state. We also found that the dynamics of a noisy network is less resilient to lesions.
Our simulations on TMS perturbations show that even though TMS inhibits most of the
network, it also sparsely excites a few regions. This is presumably due to anti-correlations
in the dynamics and suggests that even a lesioned network can show sparsely distributed
increased activity compared to healthy resting-state, over specific brain areas.

Keywords: connectomics, virtual reality, neural dynamics, large-scale brain networks, big data, virtual

neurosurgery

1. INTRODUCTION
How should one visualize and simulate the large amounts of data
being generated nowadays in neurobiology, in ways that could
inform our understanding of the structure and function of the
brain? Would that also link to clinical applications? Over the
years, the cumulative spate of studies in structural and functional
neuroimaging, electrophysiology, genetic imaging and axonal-
tracing studies have generated enormous amounts of data (found
in online repositories such as http://www.neuroscienceblueprint.
nih.gov/connectome/ and http://www.brain-map.org to name a
few), which, on one hand have led to many insights on the intri-
cate patterns of signaling and connectivity, as well as the existence
of multi-scale processes in the brain; on the other hand, it has
exposed the need for an integrative framework for modeling
and simulating whole-brain dynamics and function. To address
this need, neuroscientists started using ideas from network engi-
neering, thinking of the brain as a complex dynamical network
of neurons, thus giving rise to the field of brain connectomics
(Hagmann, 2005; Sporns et al., 2005). Akin to the genome, which
is a map of the genetic sequence of an organism, the connectome
is a map of the neuronal circuitry of an organism emphasizing the
nodes and their connections where nodes can represent volumes
of neuronal tissue to single neurons. Of course, merely a map

of this network is not sufficient to predict or understand func-
tion. Being a dynamic network, signaling processes in the brain
operate across a range of spatial and temporal scales. Therefore, a
mechanistic understanding of these processes is essential to gain
insight into cognitive function. At the same time, the complexity
of the connectome means that these signaling circuits cannot be
understood in isolation or even in a serial manner, but necessarily
have to be seen in the functional context of the whole network.
This calls for a large-scale network level analysis and simulation
of whole-brain activity and an associated immersive visualiza-
tion and interaction system. This is the challenge BrainX3 aims
to tackle.

BrainX3 is a large-scale simulation of the human cerebral con-
nectome, which uses both anatomical structure and biophysical
dynamics in order to reconstruct activity and predict function.
Structural connectivity of the network is obtained from human
Diffusion Spectrum Imaging (DSI) data (Hagmann et al., 2008).
Each node of the connectivity matrix corresponds to a popula-
tion of neurons. For simulating dynamics, BrainX3 offers the user
a choice of dynamical models that can be implemented, namely,
population dynamics based on a linear-threshold transfer func-
tion, or a non-linear sigmoidal transfer function with decay, or
dynamical mean-field models (Wong and Wang, 2006; Deco et al.,
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2013). The last of these models are the most interesting as they
come closest to biology; they compute aggregate neural activity
taking into account synaptic dynamics and stochasticity.

Until the advent of the connectome (Hagmann, 2005; Sporns
et al., 2005), the traditional method of choice for investigat-
ing non-invasive human resting-state dynamics has heavily relied
on back-inference of neural mechanisms from BOLD signals.
Despite the many successes of this approach, a few drawbacks
remain; for instance, it does not provide precise temporal infor-
mation on the flow of activity through the network, and being
a signal based on haemodynamic responses, it is at best only a
proxy for neural activity. However, the birth of the field of con-
nectomics has helped turn this around. Combining structural
connectivity data with detailed neuronal dynamics made it pos-
sible to instead predict functional activity (Honey et al., 2009).
These predictions have been validated for both spiking neuron as
well as dynamical mean-field models, when compared to empir-
ical BOLD data (Deco et al., 2013). In this work we implement
mean-field dynamics in BrainX3 using Hagmann et al.’s DSI net-
work to reconstruct neurodynamic activity for the entire cortex
within a 3D virtual environment, for the purpose of investigat-
ing temporal patterns of whole-brain neural activity when the
brain is in the resting-state. The resting-state refers to the state
of spontaneous neural activity recorded in the absence of any
specific tasks being instructed to the subject. In computational
models, this corresponds to no specific (or localized) external
input currents being injected into the network above the overall
baseline current. The activity in this spontaneous state is far from
random. Hence, understanding the biophysical dynamics of the
resting-state constitutes an important challenge.

The technology of BrainX3 is layered on four modular compo-
nents: an input module, a data processing module, a visualization
and interaction module, and a simulation and analysis module.
The integration of these modules generates the full user expe-
rience. Simulations run in the eXperience Induction Machine
(XIM), an enclosed virtual/mixed reality chamber, which enables
user-immersion and exploration of virtually rendered scenarios
(refer to Figure 1) (Bernardet et al., 2010; Betella et al., 2014c).
Based on DSI data, a 3D model of the connectome network is
reconstructed within the XIM, providing users with an inside-
out perspective of the brain connectome and allowing them to
navigate through pathways in the network. Additionally, the XIM
supports a custom-built large-scale neural simulator, iqr, which
communicates bi-directionally with the virtual brain network
and imposes dynamics on it (Bernardet and Verschure, 2010).
Furthermore, BrainX3 is based on a natural user interaction
paradigm, such that using natural gestures, i.e., hand gestures,
body posture, etc., users can navigate the virtual space, select and
bookmark brain areas, perform surgeries, stimulate any region of
the network to investigate the dynamics of the neuronal activity
reverberating through associated areas. Finally, for data analysis,
BrainX3 communicates bi-directionally, using standard protocols
such as UDP or YARP (Metta et al., 2006), with external network
analysis tools, including the Brain Connectivity Toolbox (BCT)
(Rubinov and Sporns, 2010) running on a MATLAB client.

What is BrainX3 capable of? It provides the possibility
of analyzing and interacting in real-time with the simulated

FIGURE 1 | Computer rendering of BrainX3 within the eXperience

Induction Machine (XIM). The 3D connectome network and its simulated
dynamics are projected on the frontal screen. The screen on the right displays
regional information of selected brain areas from a curated database, while
the left screen shows 2D axial slices of the brain and indicates regions of
activity. The user can navigate and interact with the model with predefined
hand gestures.

activity. Compared to functional correlations, dynamical anal-
ysis of causal activity serves as a powerful tool to unravel
mechanisms of large-scale neural circuits. Indeed, coupling
structural connectivity data with detailed enough population
dynamics should be sufficient in predicting functional corre-
lations and large-scale activity patterns. As examples, we use
BrainX3 to demonstrate the dynamics of the brain in the
resting-state as well as under perturbations due to evoked stim-
uli. We investigate how neural activity reorganizes following
simulated lesions. Additionally, using graph theoretic measures
from the BCT we can also determine shortest paths between
nodes.

At this point, it is also worth drawing attention to the growing
eco-system of ‘big brain projects’ and other neuroinformat-
ics tools which complement BrainX3. Among these are the
Connectome Workbench of the Human Connectome Project
(http://www.humanconnectome.org/connectome/connectome-
workbench.html) (Marcus et al., 2013), the Brain Explorer 2 of
the Allen Institute for Brain Science (http://www.brain-map.

org), the Glass Brain Project (http://neuroscapelab.com/projects/
glass-brain/) (Mullen et al., 2013), the VisNEST tool (Nowke
et al., 2013) and The Virtual Brain (Jirsa et al., 2010; Sanz-Leon
et al., 2013). While many of them are 3D visualization tools, some
of them also include dynamics and interaction. In that sense,
The Virtual Brain comes closest to the objectives of BrainX3, but
for example, it does not include real-time interaction. Unlike
the aforementioned, BrainX3 runs in a completely immersive
virtual reality chamber, facilitating real-time interaction with the
simulation using natural gestures. For the benefit of the neu-
roinformatics community, a portable laptop version, including
interaction (but without user immersion), is currently under
development. Besides, visualization, interaction and simulation,
BrainX3 has been developed with a vision toward a “smart explo-
ration space for big data” as part of the European Union CEEDS
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(Collective Experience of Empathic Data Systems) project (http://
ceeds-project.eu and http://www.brainx3.com).

2. MATERIALS AND METHODS
2.1. HARDWARE AND SYSTEM ARCHITECTURE
The virtual reality environment supporting BrainX3 is the eXpe-
rience Induction Machine (XIM) (Bernardet et al., 2010; Betella
et al., 2014c; Omedas et al., 2014). The XIM is a 25 m2 human
accessible space (schema in Figure 1) equipped with 360◦ sur-
round screens, an interactive luminous floor with pressure
sensors, a marker-free tracking system, a KinectTM, micro-
phones, a sonification system and wearable sensors, that sup-
port human-machine interaction in the exploration of complex
datasets. The computational platform running BrainX3 in the
XIM includes four latest generation machines that communi-
cate bi-directionally using the YARP protocol within a high
speed LAN connection: 2 PCs dedicated to graphical render-
ing (INTEL CORE i7 2600K 3,4GHZ/8mb/LGA1155, two DDR3s
4GB 1333Mhz KINGSTON, AMD FirePro V7900 Professional
with AMD Eyefinity technology) with a total of eight display port
outputs, each of which is connected to an HD projector (Epson
PowerLite Pro G5450WUNL), thus creating a 360◦ projection
display that surrounds the user; 1 server dedicated to sensors
recording and real-time interaction (HP proliant DL160 G6, Xeon
E5506, 2.13 GHz) that is connected to the XIM sensors and effec-
tors, including a Microsoft Kinect2™, the sonification system and
the interactive floor; 1 server dedicated to simulation and com-
putation (HP proliant DL160 G6, Xeon E5506 at 2.13 GHz) that

runs the neural network simulator iqr (http://iqr.sourceforge.
net) and MATLAB.

Within the XIM virtual reality environment, BrainX3 func-
tions as a data visualization and simulation tool. The processing
architecture of BrainX3 is schematically illustrated in Figure 2.
The input module (layer) has two components: the network
data and the network atlas. The network data is the connectome
dataset, while the network atlas contains the coordinates of each
element of the network. Both of these are stored in GraphML
(XML) format. The data parser generates a data structure and
specifies the components of the graph. The graphical allocator
reads the meta data associated to each one of the elements that
compose the network and associates them to the 3D coordinate
system, included in the network atlas. In BrainX3, we adopt the
standard anatomical coordinates of the Talairach atlas (Talairach
and Tournoux, 1988), however other coordinate systems can just
as easily be applied. The geometry provider plots the results as a
3D representation of the data by combining the instances gener-
ated by the parser with the coordinates specified within the atlas.
The components responsible for data processing follow a Model-
View-Controller (MVC) design pattern. Both data processing and
real-time rendering have been developed and implemented using
Unity 3D (http://unity3d.com/). The advantage of such a mod-
ular structure is that it provides BrainX3 with the adaptability
for visualization and simulation of other data types besides neu-
ral data, which can be stored as a network or organized in a
hierarchical structure, such as gene regulatory networks, social
networks, etc.

FIGURE 2 | The BrainX3 architecture. The architecture of BrainX3 is
designed on four layers: the input module, the data processing module, the
visualization/interaction module and the simulation/analysis module. Each

layer is further characterized by dedicated sub-modules (represented by the
colored boxes). The arrows indicate interaction between different modules
and sub-modules.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 02 | 3

http://ceeds-project.eu
http://ceeds-project.eu
http://www.brainx3.com
http://iqr.sourceforge.net
http://iqr.sourceforge.net
http://unity3d.com/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Arsiwalla et al. BrainX3

2.2. VISUALIZATION AND SIMULATION
Visualization and reconstruction of the connectome within
BrainX3 is based on DSI data of white matter fiber structural con-
nectivity averaged from five healthy right-handed male human
subjects (Hagmann et al., 2008). The dataset contains 998 vox-
els (nodes) belonging to 33 cortical areas per hemisphere (refer
Table 1), for a total of 66 areas. The 998 Regions of Interest
(ROIs) have an average size of 1.5 cm2 and each ROI is associ-
ated with {x, y, z} coordinates as per the Talairach coordinates of
ROIs (Talairach and Tournoux, 1988). Since tractography does
not determine the directionality of the fibers, the connectivity
matrix (approximately 17000 bi-directional connections) is sym-
metric at the ROI level. Connection strengths within the network
refer to normalized number of white matter fiber tracts between
ROIs.

To introduce dynamics into the visualization, the large-
scale multi-level neural networks simulator, iqr (http://iqr.

sourceforge.net/), is bi-directionally interfaced to Unity. iqr
allows the user to design complex neuronal models through
a graphical interface and to visualize, analyze and modify the
model’s parameters in real-time (Bernardet and Verschure, 2010).
The architecture of iqr is modular, providing the possibility to
define custom neurons and synapses. iqr can simulate large neu-
ronal systems up to 500k neurons and connections and can be
directly interfaced to external sensors and effectors. In order to
enable real-time user interaction with the reconstructed data, user
input from Unity is sent to iqr (Arsiwalla et al., 2013). The neu-
ronal simulator computes the processes and broadcasts the output
of the simulation back to the Unity engine in the XIM. The sim-
ulation runs with iqr receiving commands through Unity at
any time during the simulation. Upon receiving input from iqr,
Unity updates the visualized population activity on each node. In
its current form, BrainX3 can accommodate networks of up to
4000 nodes (albeit with a slower simulation time).

Table 1 | 33 brain regions on each hemisphere (ID), abbreviated name (Abbr.), anatomical name (Brain region) and ROI node numbers for each

region on right (R) and (L) hemispheres.

ID Abbr. Brain region Nodes (R) Nodes (L)

1 BSTS Bank of the superior temporal sulcus 463–469 961–965

2 CAC Caudal anterior cingulate cortex 191–194 692–695

3 CMF Caudal middle frontal cortex 126–138 628–640

4 CUN Cuneus 335–344 835–842

5 ENT Entorhinal cortex 419–420 918–920

6 FP Frontal pole 26–27 527–528

7 FUS Fusiform gyrus 391–412 890–911

8 IP Inferior parietal cortex 284–311 787–811

9 IT Inferior temporal cortex 424–442 925–941

10 ISTC Isthmus of the cingulate cortex 202–209 703–710

11 LOCC Lateral occipital cortex 355–373 852–873

12 LOF Lateral orbitofrontal cortex 1–19 501–520

13 LING Lingual gyrus 374–390 874–889

14 MOF Medial orbitofrontal cortex 28–39 529–540

15 MT Middle temporal cortex 443–462 942–960

16 PARC Paracentral lobule 175–186 677–687

17 PARH Parahippocampal cortex 413–418 912–917

18 POPE Pars opercularis 48–57 548–558

19 PORB Pars orbitalis 20–25 521–526

20 PTRI Pars triangularis 40–47 541–547

21 PCAL Pericalcarine cortex 345–354 843–851

22 PSTC Postcentral gyrus 210–240 711–740

23 PC Posterior cingulate cortex 195–201 696–702

24 PREC Precentral gyrus 139–174 641–676

25 PCUN Precuneus 312–334 812–834

26 RAC Rostral anterior cingulate cortex 187–190 688–691

27 RMF Rostral middle frontal cortex 58–79 559–577

28 SF Superior frontal cortex 80–125 578–627

29 SP Superior parietal cortex 257–283 760–786

30 ST Superior temporal cortex 470–497 966–994

31 SMAR Supramarginal gyrus 241–256 741–759

32 TP Temporal pole 421–423 921–924

33 TT Transverse temporal cortex 498–500 995–998
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2.3. DYNAMICAL MODELS IN BRAINX3

As the connectivity data currently being used by BrainX3 is
derived from neuroimaging sources, it is more appropriate to
model network dynamics by means of neuronal population mod-
els. At present, BrainX3 allows to run simulations with either of
the three models: (i) the linear-threshold model, (ii) non-linear
(sigmoidal) model and (iii) dynamical mean-field model. The
linear-threshold model simply sums up all the input signals to
a population module from various dendrites (within a fixed time
window) and fires an output signal to neighboring modules only
if the summed inputs cross a designated threshold. Additionally
each neuronal population module is stochastic, having Gaussian
noise. This was demonstrated in earlier work (Arsiwalla et al.,
2013). The non-linear model is similar to above except that the
linear-threshold filter is replaced by a sigmoidal filter with decay.
This was used in Betella et al. (2014b).

The dynamical mean-field model is a mathematical reduction
of a spiking attractor network consisting of integrate and fire neu-
rons with excitatory and inhibitory synapses (Wong and Wang,
2006; Deco et al., 2013). Global brain dynamics of the network of
interconnected local networks is described by the following set of
differential equations derived in Deco et al. (2013):

Table 2 | List of parameters of the dynamical mean-field model

implemented in BrainX3 from Deco et al. (2013).

Parameter Description Value Unit

measure

N Number of nodes 998

w Local recurrent excitation 0.9

a Input-output function 270 n/C

b Input-output function 108 Hz

d Input-output function 0.154 s

γ Kinetic parameter 0.641 s

τS Kinetic parameter 100 ms

JN Synaptic coupling 0.2609 nA

I0 Overall external input 0.3 nA

σ Noise amplitude 0.01, 0.05, 0.07, 0.1

dSi

dt
= −Si

τs
+ (1 − Si)γ H(xi) + σ vi(t) (1)

H(xi) = axi − b

1 − exp( − d(axi − b))
(2)

xi = wJN Si − GJN

∑

j

CijSj + I0 (3)

where H(xi) and Si respectively correspond to the population
rate and the average synaptic gating variable at each local node
i, w is the local recurrent excitation, G is a global scaling param-
eter, Cij is the matrix of structural connectivity expressing the
neuroanatomical connections between areas i and j, vi is uncor-
related Gaussian noise. All parameters values, with the exception
of σ , which was systematically varied in the present simulation
study, are as in Deco et al. (2013) and have been summarized in
Table 2.

Among the three types of models described above, mean-field
models are the most interesting as they come closest to biol-
ogy. They compute aggregate neural activity taking into account
synaptic dynamics and stochasticity. Hence, in this paper, our
simulations will be based on the dynamical mean-field model.
However, compared to Deco et al. (2013), where the dynamics was
parametrized on 66 regions, in this work we scale the dynamics to
998 ROIs.

2.4. REAL-TIME INTERACTION FRAMEWORK
BrainX3 allows users to interact in real-time with the simula-
tion (the simulation itself is not real-time, each millisecond of
simulation takes between 20 and 50 ms, being slower during inter-
action). This is a form of on-line interaction, as opposed to a
pre-programed off-line mode of interaction. It provides users the
possibility to perturb the simulated activity (by injecting cur-
rents using predefined hand gestures) mid-way through the run.
Gesture recognition and signaling within the XIM is supported
via the Social Signal Interpretation (SSI) framework (Wagner
et al., 2013) and is based on the Microsoft KinectTM v2 tech-
nology. The KinectTM detects body joints and two main hand
actions: the closed hand and pointing with a finger. All high

FIGURE 3 | Interaction within BrainX3. User immersion and interaction within BrainX3.
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FIGURE 4 | Simulation of resting-state activity vs. noise showing

that increased noise suppresses network activity. Snapshot of
resting-state neural activity at a single time-point (after the
dynamics stabilizes around the attractor) for different levels of noise
amplitude within BrainX3. From top to bottom, noise amplitudes:
(A) 0.01, (B) 0.05, (C) 0.07, and (D) 0.1. Each row shows

screenshots from the posterior, superior and lateral perspectives.
The color bar on the right represents neuronal activity in Hz
(warmer colors represent higher activation of the nodes). The full
simulation can be seen on videos 01 and 02 of the following
link: https://www.youtube.com/playlist?list=PL-BcYpSz98wqVA
KuI-ymqDII-6nXK_8uq.

FIGURE 5 | Analysis of resting-state activity vs. noise. 2D plots of
resting-state neural activity for the same four simulation runs shown in Figure 4.
Subplots (A–D) respectively refer to noise amplitudes 0.01, 0.05, 0.07, and 0.1.
Each subplot shows three graphics: 2D distribution of nodes with activity

indicated by colors from the color bar (warmer colors refer to higher activation),
mean firing rate for all 998 nodes over the last 2 s of simulation and time-series
signals extracted for three seed ROIs rCAC (node 193, shown in black), rISTC
(node 205, shown in green) and lPCUN (node 830, shown in magenta).
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level mapping and interpretation of gestures is performed by
SSI. In order to rotate the network sideways, the user simply has
to clench her/his fist and make a sideways arm movement. For
zooming into the network, the user moves directly toward the
screen and the visualization becomes immersive placing the user
“inside” the 3D reconstruction (refer to Figure 3). For stimulat-
ing or inhibiting brain areas, the user simply has to control the
cursor with a hand movement, select a node or region in the
network with a grabbing gesture, then drag and drop the cursor
on the icon in the graphical user interface, associated to stim-
ulation or inhibition. This respectively corresponds to injecting
external excitatory or inhibitory currents into the dynamics. The
strength of the stimulation current is pre-defined in the iqr
configuration file (but can be arbitrarily chosen). Stimulations
can be performed on one or more brain areas simultaneously.
BrainX3 then reconstructs reverberating neural activity propa-
gating through the connectome. Furthermore, in order to equip
the user with tools for analysis of the outcome of the simulation,
BrainX3 is also interfaced with the MATLAB Brain Connectivity
Toolbox, which enables several graph-theoretic operations to be
performed on the reconstructed network such as finding the
shortest path between any two nodes or detecting community
structure in the data (Rubinov and Sporns, 2010). BrainX3 also
includes customized interaction functionalities that allow the user
to bookmark areas of interest, to tag and visually highlight cho-
sen pathways, to filter network complexity and to model lesions

by disabling nodes in order to obtain altered activity associated to
the lesion.

3. RESULTS
We now put to test the functional capabilities of BrainX3 to
gain valuable insights on the large-scale dynamics of the human
connectome. We start by simulating the global dynamics of the
resting-state. Then we lesion the structural network and study
aberrant cortical activity for both focal lesions as in stroke
patients as well as for diffuse lesions as in multiple sclerosis
patients. Next, we study the effect of external perturbations
such as trans-cranial magnetic stimulations on the network and
its resulting evoked activity. Finally, we demonstrate an exer-
cise in tracing pathways within the cortex in order to extract
functional circuits as well as to analyze them. Videos explic-
itly demonstrating these results in BrainX3 have been uploaded
on the following link: https://www.youtube.com/playlist?list=PL-
BcYpSz98wqVAKuI-ymqDII-6nXK_8uq.

3.1. DYNAMICS OF THE RESTING-STATE
Figures 4, 5 show results from 10 s of simulation of resting-state
dynamics. An important observation made in Deco et al. (2013)
was that the resting-state network operates at the edge of a bifur-
cation. This fixes the global coupling parameter of the model.
Analogously, for the scaled model we implement here, the value
of the global coupling G is determined to be 2.3 using the same

FIGURE 6 | Simulation of lesioned (focal) brain activity vs. noise.

Snapshot of neural activity at a single time-point in BrainX3 following a
focal lesion in areas rCUN, rLOCC, and rPCUN. From top to bottom,
noise amplitudes: (A) 0.01, (B) 0.05, (C) 0.07, and (D) 0.1. Each row
shows screenshots from the posterior, superior and lateral perspectives.

The color bar on the right represents neuronal activity in Hz (warmer
colors represent higher activation of the nodes and lesioned nodes are
shown in black). The full simulation can be seen on videos 03 and 04 of
the following link: https://www.youtube.com/playlist?list=PL-BcYpSz98wq
VAKuI-ymqDII-6nXK_8uq.
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observation. Besides that, all other mean-field model parameters
(except the noise amplitude σ ) are held at exactly the same values
as in Deco et al. (2013). The numerics run in time steps of 0.1 ms
but we sample data every 1 ms giving 10K points for a run of 10 s.
Figure 4 shows screenshots from the front display of BrainX3 at
the end of four runs of the simulation. Each run was chosen with
a different value of noise amplitude, shown in rows A, B, C and D
with σ 0.01, 0.05, 0.07, and 0.1 respectively. The four snapshots
in each row (from left to right) correspond to the posterior, supe-
rior and lateral views respectively. Since BrainX3 is interfaced to
MATLAB via YARP/UDP, in addition to the 3D reconstruction,
we also obtained time-series data that can be analyzed using any
statistical tool. This is shown in Figure 5. This analysis was per-
formed off-line using MATLAB. Each of the four subplots A, B,
C, and D refer to the same four noise levels. Further, each subplot
includes three graphics: a 2D distribution of ROIs with colored
nodes indicating activity level at the end of the simulation, a plot
showing the mean firing rate of every ROI over the last 2 s and a
plot showing the full time-series signal of three randomly chosen
nodes. The mean firing activity represents the stable fixed point of
the dynamics and in fact the attractor of the resting-state network.
The seed ROIs corresponding to the three time-series signals refer
to nodes 193, 205, and 830 located in regions rCAC (black), rISTC
(green) and lPCUN (magenta) respectively. Table 1 shows the
mapping of ROI identities to anatomical region names.

An interesting insight that we gain upon comparing the results
of these simulations is the way noise affects the network attractors

themselves. This is summarized in the histogram on the left-
hand side of Figure 11, showing the total mean firing rate of the
resting-state network integrated over all ROIs. Each column of the
histogram refers to a given noise amplitude. What is interesting is
that rather than jumping into a hyperactive or chaotic state, upon
increasing intrinsic noise, the dynamics of the network seems to
quiet down. For σ 0.07, mean activity for each node is around
40 Hz and for σ 0.1, it almost goes to zero. Remarkably, this hap-
pens without the use of any ROI to ROI inhibitory connections.
Noise seems to reverse the stability of the previously unstable low
firing attractor state.

3.2. DYNAMICS OF STROKE AND MULTIPLE SCLEROSIS
Having looked at the healthy resting-state network above, we now
show how lesions can be simulated in BrainX3. We consider two
lesion types, (i) focal lesions, which occur in the case of stroke
patients, and (ii) diffuse lesions, which typically occur in patients
with multiple sclerosis. Figures 6, 7 shows results for the former
lesion type with the same four levels of noise as above. Figures 8,
9 shows results with diffuse lesions. The focal lesion is constructed
on the right hemisphere by severing all white matter fibers con-
nections from all nodes in regions rCUN, rLOCC, and rPCUN.
These are a total of 52 disconnected ROIs, amounting to 6.64% of
the total connections. The diffuse lesions are constructed by ran-
domly disconnecting individual ROIs distributed throughout the
network. To compare with the focal case, we chose 50 scattered
ROIs, which amount to 4.91% of the total connections.

FIGURE 7 | Analysis of lesioned (focal) brain activity vs. noise. 2D plots
for neural activity following a focal lesion in areas rCUN, rLOCC and rPCUN
for the same four simulation runs shown in Figure 6. Subplots (A–D)

respectively refer to noise amplitudes 0.01, 0.05, 0.07, and 0.1. Each subplot
shows three graphics: 2D distribution of nodes with activity indicated by

colors from the color bar (warmer colors refer to higher activation and
lesioned nodes are shown in black), mean firing rate for all nodes over the
last 2 s of simulation and time-series signals extracted for the three seed
ROIs rCAC (node 193, shown in black), rISTC (node 205, shown in green) and
lPCUN (node 830, shown in magenta).
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In Figure 10, we compare differences between healthy resting-
state activity (Figure 4) and the lesioned activity (Figure 6). The
four plots on the left side of Figure 10 show the difference in mean
firing rate between the healthy and focally lesioned networks (on
the y-axis) in the attractor state at every ROI (on the x-axis),
for the four noise amplitudes (in increasing order from top to
bottom). From this we see that for the lowest noise amplitude
(0.01), the lesion mostly affects activity in its anatomical vicinity.
However, by the time we reach noise amplitude 0.07, the span
of the network affected by the lesion has dramatically increased.
Furthermore, the histogram shown in the center of Figure 11
integrates the differences in mean firing over all ROIs to give the
total difference in mean firing between the healthy and focally
lesioned network for each noise amplitude. The columns of the
histogram are on the positive side of the x-axis (except for noise
amplitude 0.1, when the activity in both networks is just noise).
By the time the noise amplitude rises to 0.07, the lesioned net-
work dramatically differs from the healthy network in total firing.
These observations suggest that noisy networks are less resilient
to focal lesions.

On the other hand, a comparison of mean activity between the
focally lesioned (Figure 6) and diffuse lesioned (Figure 8) net-
works is shown in the four plots on the right side of Figure 10.
The y-axis denotes the difference in mean firing rate between the
diffuse and focally lesioned networks in the attractor state. The
x-axis runs over all 998 ROIs. Though the number of disabled
nodes in both cases is almost the same, we find activity levels in
case of diffuse lesions to be markedly higher than in the case of a

focal lesion (of course, both conditions have diminished activity
compared to the healthy network). The same thing can be seen
from the histogram on the right-hand side of Figure 11, showing
the total difference in mean firing between the diffuse and focal
lesion activity for each noise amplitude, integrated over all ROIs.
Again, the columns are on the positive side of the x-axis. Thus, the
connectome network shows more resilience to diffuse rather than
focal lesions with the same number of nodes. This is presumably
due to the wiring architecture of the brain that allows for alternate
passages in order to protect against random abrasions.

3.3. CAUSAL EFFERENTS OF TMS PERTURBATIONS
Non-invasive physiological perturbations of specific brain areas
using transcranial magnetic stimulations (TMS) have successfully
been used for probing neural circuits and their functions. They
can be operated either to excite or completely inhibit a given brain
area both in the presence or absence of a task. What we want
to computationally reconstruct in BrainX3 are the causal effer-
ents of the evoked activity due to this stimulation. In Figure 12
we show results for an inhibitory stimulation applied to all the
nodes in areas rCUN, rLOCC and rPCUN (the same regions on
which we earlier simulated a focal lesion and with network noise
amplitude of 0.01). TMS is applied during the first 5 s of the sim-
ulation and the network returns to resting-state once stimulation
is discontinued. The bottom right plot in Figure 12 shows how
this affects the time-series of the same three seed nodes we used
(rCAC (black), rISTC (green) and lPCUN (magenta)), which are
connected to but not part of the perturbed regions. The change

FIGURE 8 | Simulation of lesioned (diffuse) brain activity vs. noise.

Snapshot of neural activity at a single time-point in BrainX3 following a diffuse
lesion. The lesion was simulated by disconnecting 50 randomly selected
nodes. From top to bottom, noise amplitudes: (A) 0.01, (B) 0.05, (C) 0.07, and

(D) 0.1. Each row shows screenshots from the posterior, superior and lateral
perspectives. The color bar on the right represents neuronal activity in Hz
(warmer colors represent higher activation of the nodes and lesioned nodes
are shown in black).
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FIGURE 9 | Analysis of lesioned (diffuse) brain activity vs. noise. 2D plots
for neural activity following a diffuse lesion for the same four simulation runs
shown in Figure 8. Again, subplots (A–D) respectively refer to noise
amplitudes 0.01, 0.05, 0.07, and 0.1. Each subplot shows three graphics: 2D
distribution of nodes with activity indicated by colors from the color bar

(warmer colors refer to higher activation and lesioned nodes are shown in
black), mean firing rate for all nodes over the last 2 s of simulation and
time-series signals extracted for the three seed ROIs rCAC (node 193, shown
in black), rISTC (node 205, shown in green) and lPCUN (node 830, shown in
magenta).

in the firing rate is of the order of 10–20 Hz and upon removing
the stimulation, we find that the network returns to resting-state
activity in about 40 ± 10 ms. The left diagram in Figure 12 shows
all 998 nodes, with the stimulated nodes in gray and the colors
in all other nodes denoting the difference in the average firing
rate (averaged over 2 s) for each node after and before the per-
turbation. The averaging is done to take in account variations
due to noise. The plot on the top right of Figure 12 shows the
exact differences (in red) in average firing rate, after minus before,
for each of the 998 nodes (the stimulated areas are shaded in
gray), with the black, green and magenta markers referring to
the seed nodes. Hence, above the zero difference, we see effer-
ent areas of the network that are inhibited during TMS, whereas,
below the zero line refers to efferents that are actually excited
during TMS.

Clearly, the results show that areas anatomically closer to the
perturbed regions are most affected, but they also show spe-
cific long range connections in the frontal, temporal and limbic
lobes that are affected by stimulating areas rCUN, rLOCC, and
rPCUN (in the occipital and parietal lobes). Figure 12 shows
ROIs in regions rPARC, rCAC, rISTC, rPC, rSP, rIP, and rLING
are strongly inhibited. Since the stimulated areas here are exactly
the same that we lesioned for simulating stroke dynamics, the
map of efferents we find after TMS are also part of the affected
pathways following the lesion. As described in the next subsection
and Figure 13, in BrainX3 we can extract these efferents explicitly
in a 3D reconstruction.

Though most of the TMS efferents are inhibited during the
stimulation phase, interestingly, a small number of them are also
excited, showing an average firing rate higher than the non-
perturbed (resting-state) value. These occur sparsely in regions
rLOF, rRMF, rCMF, lLOF, lPOPE, and lFUS. A possible explana-
tion for the occurrence of these excitations is that these ROIs were
the ones that were anti-correlated to the stimulated nodes, when
the network was in the resting-state.

3.4. PATHFINDING IN THE BRAIN
Besides simulation, another utility in BrainX3 is that it can
be customized for real-time analysis and circuit extraction.
This can be done either by analyzing output signals of neu-
ral activity from the simulation or by implementing graph-
theoretic algorithms on the network. Here, we provide a exam-
ple of bookmarking pathways efferent to the focal lesion dis-
cussed above. Bookmarking in BrainX3 can simply be done
using natural gestures. In Figure 13 we trace the connectivity
span (within the healthy dataset) of all the three areas that
we had lesioned earlier. All edges emanating from the previ-
ously lesioned ROIs are bookmarked in thick black giving a
clear spatial impression of the extent of the lesion on the net-
work. Though the lesion lies only in the occipital and pari-
etal lobes, its effects are felt as far as the frontal, temporal
and limbic lobes. Extracting circuits this way is intuitive and
user controllable, compared to automated processes based on
correlation data.
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FIGURE 10 | Firing rate differences � FR between healthy and lesioned

brains. The left-hand side shows the difference in mean firing rate between
the healthy and focally lesioned networks (plotted on the y-axis) in the
attractor state at each ROI (plotted on the x-axis), for the four noise

amplitudes (in increasing order, starting at 0.01 on top to 0.1 at the bottom).
The gray columns in the figures indicate the lesioned areas rCUN, rLOCC,
and rPCUN. The right-hand side shows the same difference but for the
diffuse vs. the focally lesioned network.

4. DISCUSSION
As techniques of quantitative analysis and measurement devices
in neuroscience make improvements, it is becoming more evi-
dent that the role of large-scale dynamics and whole-brain
measures cannot be ignored. Functional correlations by them-
selves are insufficient for inference of mechanisms and principles
underlying brain function. Large-scale temporal activity maps
across structurally connected brain areas are more informative

of whole-brain circuit mechanisms. Being able to predict these
maps by implementing realistic biophysical dynamics brings us
a small step closer to identifying the neural correlates of cog-
nitive functions. BrainX3 is a small step in this direction. It
opens the possibility of analyzing neural activity propagation
due to causal dynamics. Being immersive, it gives a much bet-
ter intuitive anatomical perspective of the brain, than a 2D atlas
would.
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FIGURE 11 | Comparison of total mean firing rates between healthy and

lesioned brains. The histogram on the left shows the total mean firing rate
of the healthy resting-state network (Total RSFR ), integrated over all ROIs, for
each value of noise amplitude. The histogram at the center shows the total

difference in mean firing between the healthy and focally lesioned networks
(Total RSFR - Total FLFR ) for each noise amplitude, integrated over all ROIs
and the histogram on the right shows the same difference but for the diffuse
vs. the focally lesioned networks (Total DLFR - Total FLFR ).

FIGURE 12 | Results from TMS perturbations applied upon regions

rCUN, rLOCC, and rPCUN. The left figure shows a 2D distribution of
nodes with colors indicating difference in mean firing after and before
inhibition. The gray nodes indicate regions where TMS is applied. The
top right plot quantifies these differences (here the perturbed areas are
indicated by the gray columns), while the bottom right plot extracts the

firing rate over time for seed nodes 193 (rCAC), 205 (rISTC) and 830
(lPCUN). ROIs in regions rPARC, rCAC, rISTC, rPC, rSP, rIP, and rLING
were found to be strongly inhibited as a result of the TMS perturbation
in rCUN, rLOCC, and rPCUN. The full simulation can be seen on video
05 of the following link: https://www.youtube.com/playlist?list=PL-
BcYpSz98wqVAKuI-ymqDII-6nXK8uq.

BrainX3, as we have shown in this paper, is a platform for data
visualization, simulation, analysis and interaction, which com-
bines computational power with human intuition in representing
and interacting with large complex data. For the human connec-
tome network above, we have shown an anatomically-spaced 3D
simulation of whole-brain neural activity, based on the dynam-
ical mean-field model, which was earlier tested in Deco et al.
(2013) for resting-state dynamics. The results shown included the
resting-state network, lesioned brains as well as externally stim-
ulated networks. Our simulations above shed some insight on
the spatial distribution of activity in the attractor state, how it
maintains a level of resilience to damage, effects of noise and
physiological perturbations. Specifically, we found that a noisy

network seems to favor a low firing attractor. This is simply a con-
sequence of the detailed biophysics of our model. Interestingly,
both, computational and empirical studies in the literature have
claimed that an increase in neural noise (in the form of random
background activity) is associated with aging brains, which show
a lower signal-to-noise ratio and less distinctive cortical repre-
sentations leading to reduced information processing (Li et al.,
2001; Li and Sikström, 2002; Hong and Rebec, 2012). In partic-
ular, fMRI data in D’Esposito et al. (1999), Huettel et al. (2001)
show fewer activated voxels and an increase in noise in older par-
ticipants, compared to younger ones. Our observation about the
effect of noise on neural firing corroborates with the literature
and as future research we plan to model neural dynamics in aging
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FIGURE 13 | Pathfinding in the brain. Extracting efferents of selected
regions in BrainX3, shown in the top figure. The selected regions are the
rCUN, rLOCC, and rPCUN. All paths emerging from these regions are traced
in thick black. Screenshots refer to the posterior (top left) and superior view

(top right). The bottom figure shows a reference atlas with labels of brain
regions in the posterior (bottom left) and superior (bottom right) sides of the
network. The colors in the atlas refer to major lobes: frontal (blue), temporal
(green), occipital (red), parietal (orange) and cingulate cortex (purple).

brains. We also found that a noisy network is less resilient to
focal lesions. Between diffuse and focal lesions, the connectome
network shows more resilience to the former, suggesting that
the brain’s wiring architecture is such that it provides alternate
pathways for propagation of activity in order to protect against
non-localized damage. Our results on TMS perturbations, gener-
ate temporal sequence of causal activations, which in the example
of stimulating regions in the occipital and parietal lobes, map to
efferent areas that presumably constitute a functional pathway.
Interestingly, we also noticed that even though TMS inhibits most
of the network, it also sparsely excites a few regions. Presumably,
these are the regions anti-correlated to the perturbed ROIs. This
suggests that even a lesioned network can show increased activ-
ity over sparsely distributed brain areas, compared to healthy
brain networks. Knowledge of these active areas can be clini-
cally useful for assessing levels of consciousness in patients with
severe brain injury. These observations demonstrate the role of
BrainX3 as a hypothesis generator. As is often the case with com-
plex data, one might not always have a specific hypothesis to start
with. Instead, discovering meaningful patterns and associations
in big data might be a necessary incubation step for formulating
well-defined hypotheses.

BrainX3 is not only a generator of simulated data of dynamical
processes in complex networks, but it also provides a natural user

interaction paradigm (including user immersion and gesture-
based inputs) for the visualization and exploration of complex
network datasets. In previous work, we have validated BrainX3

vs. standard desktop-based visualization and simulation tools
and found that our system is better at structural understand-
ing of the data based on the performance of subjects on a
memory task (Betella et al., 2013, 2014a,b). As future applica-
tions of our technology, we foresee online user-interaction with
simulations as a step toward virtual brain surgery, enabling a
surgeon to try out several surgical procedures and assessing risk
factors on models based on the patient’s data before actually
performing the surgery. However, to be useful for any form
of precision surgery, besides improving usability and integra-
tion with other input/output devices relevant for surgery, the
size of the simulation will have to be significantly scaled to
much finer resolutions matching those of surgical standards and
even more detailed biophysical models will have to be used
(including plasticity and pharmacological inputs). This would
mean working with networks having millions of nodes and
proportionately many more connections (such as from preci-
sion microscopy), which would require optimizing BrainX3 with
parallel computing. This is the next step in the development
BrainX3, scaling and optimizing the simulation for very large
networks.
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