
ORIGINAL RESEARCH
published: 24 April 2015

doi: 10.3389/fninf.2015.00012

Frontiers in Neuroinformatics | www.frontiersin.org 1 April 2015 | Volume 9 | Article 12

Edited by:

Andrew P. Davison,

Centre National de la Recherche

Scientifique, France

Reviewed by:

Michael Hanke,

Otto-von-Guericke University,

Germany

Marc De Kamps,

University of Leeds, UK

*Correspondence:

Alan C. Evans,

ACElab, McConnell Brain Imaging

Centre, Montreal Neurological

Institute, McGill University, 3801

University Street, Webster 2B #208,

Montreal, QC H3A 2B4, Canada

alan.evans@mcgill.ca

Received: 23 January 2015

Accepted: 08 April 2015

Published: 24 April 2015

Citation:

Glatard T, Lewis LB, Ferreira da Silva

R, Adalat R, Beck N, Lepage C, Rioux

P, Rousseau M-E, Sherif T, Deelman E,

Khalili-Mahani N and Evans AC (2015)

Reproducibility of neuroimaging

analyses across operating systems.

Front. Neuroinform. 9:12.

doi: 10.3389/fninf.2015.00012

Reproducibility of neuroimaging
analyses across operating systems

Tristan Glatard 1, 2, Lindsay B. Lewis 1, Rafael Ferreira da Silva 3, Reza Adalat 1,

Natacha Beck 1, Claude Lepage 1, Pierre Rioux 1, Marc-Etienne Rousseau 1, Tarek Sherif 1,

Ewa Deelman 3, Najmeh Khalili-Mahani 1 and Alan C. Evans 1*

1McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 2Centre

National de la Recherche Scientifique, University of Lyon, INSERM, CREATIS, Villeurbanne, France, 3 Information Sciences

Institute, University of Southern California, Marina del Rey, CA, USA

Neuroimaging pipelines are known to generate different results depending on the

computing platform where they are compiled and executed. We quantify these

differences for brain tissue classification, fMRI analysis, and cortical thickness (CT)

extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET)

and different versions of GNU/Linux. We also identify some causes of these differences

using library and system call interception. We find that these packages use mathematical

functions based on single-precision floating-point arithmetic whose implementations in

operating systems continue to evolve. While these differences have little or no impact

on simple analysis pipelines such as brain extraction and cortical tissue classification,

their accumulation creates important differences in longer pipelines such as subcortical

tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice

coefficients between subcortical classifications obtained on different operating systems

remain above 0.9, but values as low as 0.59 are observed. Independent component

analyses (ICA) of fMRI data differ between operating systems in one third of the tested

subjects, due to differences in motion correction. With Freesurfer and CIVET, in some

brain regions we find an effect of build or operating system on cortical thickness. A first

step to correct these reproducibility issues would be to use more precise representations

of floating-point numbers in the critical sections of the pipelines. The numerical stability

of pipelines should also be reviewed.

Keywords: reproducibility, operating systems, Freesurfer, CIVET, FSL

1. Introduction

Neuroimaging pipelines are known to generate different results depending on the computing plat-
form where they are compiled and executed (Krefting et al., 2011; Gronenschild et al., 2012). Such
reproducibility issues, also known as computing noise, arise from variations in hardware architec-
tures and software versions. The state-of-the-art solution to deal with these issues is to restrict
studies to a single computing platform (hardware and software), which has several drawbacks:
(i) results may not be reproducible over time, when the computing platform used to produce
them becomes obsolete; (ii) the use of High-Performance Computing (HPC) is limited to homo-
geneous sets of platforms, while available platforms are increasingly versatile; (iii) in some cases,
homogenizing computing platforms is not even feasible, for instance when shared databases are
processed in different institutions. Before such reproducibility issues can be resolved, a first step is
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FIGURE 1 | Source code, compilation, libraries, kernel and hardware.

to properly quantify and explain them in various use-cases, which
is the objective of this paper.

As illustrated on Figure 1, the execution of an application
depends on its source code, on the compilation process, on soft-
ware libraries, on an operating system (OS) kernel, and on a
hardware processor. Libraries may be embedded in the applica-
tion, i.e., statically linked, or loaded from the OS, i.e., dynamically
linked. The reproducibility of results may be influenced by any
variation in these elements, in particular: versions of the source
code, compilation options, versions of the dynamic and static
libraries (in particular when these libraries implement mathe-
matical functions), or architecture of hardware systems. Some
programming languages, for instance MATLAB, Java, Python,
Perl, and other scripting languages, additionally rely on a specific
runtime software, which can further influence the results.

On GNU/Linux, a dominant OS in neuroimaging (Hanke
and Halchenko, 2011) and in HPC1, applications rely on the
GNU C library, glibc2, which includes a mathematical library,
libmath. New versions of glibc are released regularly, and
subsequently adopted by distributions of the GNU/Linux OS,
sometimes several years later. We focus on the differences
generated by different library versions, which we call inter-OS dif-
ferences for dynamically-linked applications, and inter-build dif-
ferences for statically-linked applications. Inter-run differences,
that is, differences between runs of the same application on the
same platformmay also occur, for instance when applications use
pseudo-random numbers (this particular case can be addressed
by forcing the seed number used to initialize the pseudo-random
number generator).

This paper reports on our experiments with three of the main
neuroimaging tools: the FMRIB Software Library (FSL, Jenkinson
et al., 2012), Freesurfer (Fischl, 2012), and CIVET (Ad-Dabbagh
et al., 2006). We quantify the reproducibility of tissue classifica-
tion (cortical and subcortical), resting-state fMRI analysis, and
cortical thickness extraction, using different builds of the tools,
deployed on different versions of GNU/Linux. We also identify
some causes of these differences, using library-call and system-
call interception. The paper closes with a discussion suggesting
directions to address the identified reproducibility issues.

1http://www.top500.org
2http://www.gnu.org/software/libc

TABLE 1 | Operating systems and analysis software.

Cluster A Cluster B

Applications Freesurfer 5.3.0, build 1 Freesurfer 5.3.0, build 1 and 2

FSL 5.0.6, build 1 FSL 5.0.6, build 1 and 2

CIVET 1.1.12-UCSF, build 1 CIVET 1.1.12-UCSF, build 1

Interpreters Python 2.4.3, bash 3.2.25, Python 2.7.5, bash 4.2.47,

Perl 5.8.8, tcsh 6.14.00 Perl 5.18.2, tcsh 6.18.01

glibc version 2.5 2.18

OS CentOS 5.10 Fedora 20

Hardware x86_64 CPUs (Intel Xeon) x86_64 CPUs (Intel Xeon)

2. Materials and Methods

2.1. Operating Systems and Applications
Table 1 summarizes the platforms used in our experiments. We
used twoHPC clusters with Red-Hat-like Linux distributions: (A)
CentOS release 5.10, running glibc 2.5 released in 2006, and
(B) Fedora release 20, running glibc 2.18 released in 2013. We
installed Freesurfer 5.3.0 and FSL 5.0.6 on these clusters using the
64-bit binaries released on their respective websites3,4. We used
the Freesurfer CentOS 4 (1) and CentOS 6 (2) builds5, and the
FSL CentOS 5 (1) and CentOS 6 (2) builds6. We compiled and
installed CIVET version 1.1.12-UCSF on cluster A, and used the
same build on cluster B.

Freesurfer releases mainly consist of statically-linked exe-
cutables and tcsh scripts. Dynamically-linked executables and
Perl scripts are also present, in the mni directory where the
minc tools are installed. The main differences between the Cen-
tOS 4 and CentOS 6 builds are the version of the gcc compiler
potentially used to compile them (gcc 3.x on CentOS 4 vs. gcc
4.y on CentOS 6), and the glibc versions embedded in the exe-
cutables (glibc 2.3 on CentOS 4 vs. 2.12 on CentOS 6). FSL and
CIVET consist of dynamically linked executables which depend

3http://freesurfer.net/fswiki/Download
4http://fsl.fmrib.ox.ac.uk/fsldownloads/fsldownloadmain.html
5md5sum: 084d341cdf98305127aaeee48a6f4e0b and 6642289df823ebc27de52a

f57e9b3989.
6md5sum: 4d3a170d2311fa1c7e3cf6efd13f51a5 and 6cf9e3e58b35948416f833a21f

495bd8.
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on libmath and other libraries. FSL also contains Tcl (pro-
vided with the FSL release), bash and Python scripts, while
CIVET has Perl and bash scripts.

All data movements and task executions on the clusters were
performed with the CBRAIN platform for High-Performance
Computing (Sherif et al., 2014).

2.2. FSL: Tissue Classification
We used 1.5T T1-weighted MR images from 150 sub-
jects of the International Consortium for Brain Mapping
(ICBM, Mazziotta et al., 2001). First, non-brain tissue was
removed from the images with FSL BET (Brain Extraction
Tool, Smith, 2002), using the default parameters and no options.
Next, for cortical and subcortical tissue classification, we used
FSL FAST (FMRIB’s Automated Segmentation Tool, Zhang
et al., 2001) and FSL FIRST (FMRIB’s Linear Image Registration
Tool, Patenaude et al., 2011) with the default parameters and no
options. The experiment was repeated twice in each execution
condition to ensure that no inter-run differences were present.
Differences were first identified from file checksums. When
checksums did not match, classification results were compared
using the Dice similarity index (Dice, 1945) (global measure),
and the sum of binarized differences across subjects (local
measure).

2.3. FSL: Resting-state fMRI
We used 37 resting-state fMRI (RSfMRI) data arbitrarily selected
from an ADNI-GO7 dataset (site 130). All fMRI volumes were
collected on a 3T Achieva Philips Medical Systems scanner with
a gradient echo EPI (TR/TE = 3000/30ms; Flip Angle = 80.0◦;
64.0 × 64.0 inplane isotropic resolution of 3.3125mm and slice
thickness of 3.313mm). Each RSfMRI dataset contained 140 vol-
umes. Structural images were obtained using a manufacturer
T1WMPRAGE sequence.

RSfMRI analysis was carried out using Probabilistic Indepen-
dent Component Analysis (ICA, Beckmann and Smith, 2004)
as implemented in MELODIC (Multivariate Exploratory Lin-
ear Decomposition into Independent Components) Version 3.14.
We executed MELODIC with FSL build 1, with the default
parameters and different initializations of the random seed: (a)
fixed, and (b) variable (time-based), which is the default. We
also varied the dimension of the space of independent compo-
nents: (c) dimension set to 20, and (d) automatic dimension
detection using the Laplace approximation to the Bayesian evi-
dence of the model order (Minka, 2000; Beckmann and Smith,
2004), which is the default. For variable random seeds, we re-
executed MELODIC twice on each cluster to measure the inter-
run variability.

We compared results between clusters A and B by computing
the Dice coefficient between their binarized thresholded com-
ponents, distinguishing the negative and positive parts of the
components. As components may not be ordered consistently
betweenA and B, each component inAwas matched to the max-
imally correlated component in B using FSL’s fslcc. Because
this operation is not symmetric, we included Dice coefficients for

7http://www.adni-info.org

both A–B and B–A. In case d, we also compared the number of
dimensions detected on cluster A vs. cluster B.

Then, we analyzed the inter-OS differences between fMRI
pre-processing steps. Using fslmaths and fslstats, we
computed the mean absolute difference after motion correc-
tion, thresholding, spatial smoothing, intensity normalization,
and temporal filtering. For motion correction, we also deter-
mined the residual rigid transformation T1oT

−1
2 at each time-

point, where T1 and T2 are the transformations obtained on the
different clusters. We measured the norm of the translation vec-
tor and the absolute value of the rotation angle of this residual
transformation.

2.4. Freesurfer and CIVET: Surface Segmentation
and Cortical Thickness Extraction
Cortical thickness maps were generated with Freesurfer and
CIVET from the same ICBM dataset used in Section 2.2. In our
Freesurfer analysis, we performed all stages of cortical recon-
struction using the recon-all pipeline, with qcache option
enabled. In our CIVET analysis, we used the default options
with the following additional specifications: anN3 spline distance
of 200mm, 12◦ of freedom for the linear registration, and the
tlink metric with a smoothing kernel size of 20mm FWHM
(full-width at half maximum) for the cortical thickness.

Cortical thickness maps were computed in each subject’s
native space. For Freesurfer, these thickness maps were then
resampled to Freesurfer’s default fsaverage surface template
as a common space, while cortical thickness maps for CIVET
were resampled to CIVET 1.1.12’s default MNI152 surface tem-
plate. Resampled thickness files from both Freesurfer and CIVET
were imported to the SurfStat MATLAB toolbox (Worsley et al.,
2009) for statistical analyses.

To directly compare the effect of build and OS on cortical
thickness, a difference score between processing conditions (clus-
terA–B or build 1–2) was calculated with SurfStat for the cortical
thickness of every subject at every vertex, and a Generalized Lin-
earModel (GLM)was computed consisting simply of the formula
Y = 1.

2.5. Library and System Call Interception
We recorded calls to libmath performed by dynamically-
linked applications using ltrace8 version 0.7.91, patched to
facilitate output formatting, and configured to trace children pro-
cesses created by fork() andclone().We first completely re-
executed a task on each cluster using ltrace’s summary mode
to list the mathematical functions called by the application. Next,
we configured ltrace to record and print the input and output
values used in these function calls. In order to avoid excessively
large log files, we limited the analysis to a few hours per task,
which covered the first fewmillion calls. We also recorded system
calls made by applications using strace9.

To compare two ltrace traces, we assumed that two exe-
cutions producing identical results perform the same calls to
mathematical functions, in the same order. Traces can then be

8http://ltrace.org
9http://strace.sourceforge.net
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compared line by line. We classified differences between trace
lines in four types. Type-1 differences correspond to functions
called on different arguments that produce identical results. They
are likely to occur in non-injective functions such as floor()
and ceil(). They have little impact on the execution, but
are a sign of other differences. Type-2 differences correspond
to functions called on different arguments that produce differ-
ent results. Type-3 differences correspond to functions called on
identical arguments that produce different results. They are a sign
of implementation differences in the mathematical functions.
Type-3 differences usually trigger cascading type-2 and type-3
differences. Mismatches correspond to trace lines where differ-
ent functions are called. They are a sign that the control flow of
the compared conditions differed, for instance due to different
numbers of iterations in loops.

3. Results

3.1. FSL: Brain Extraction
FSL BET produced identical results for all subjects on clusters A
and B, as well as for builds 1 and 2.

TABLE 2 | Dice coefficients between cortical tissue classifications on

cluster A vs. cluster B (FSL FAST, build 1, n = 150 subjects).

Tissue Average dice Standard deviation

Global 0.99973 0.00013

Gray matter 0.99971 0.00014

White matter 0.99973 0.00013

CSF 0.99977 0.00012

3.2. FSL: Cortical Tissue Classification
FSL FAST cortical tissue classification produced identical results
for builds 1 and 2, but differences between cluster A and clus-
ter B were found in the classifications of all 150 tested subjects.
Table 2 shows the Dice coefficients comparing results obtained
on clusters A and B with FSL FAST, using build 1. Dice coeffi-
cients are very high, indicating very minor differences. Figure 2
shows the sum of binarized differences across segmented sub-
jects. Differences are mostly localized at the interfaces between
tissues.

Library call interception reveals the cause of these differ-
ences. Figure 3 plots a trace of the first 22 million calls to
libmath made by FSL FAST to process a randomly-chosen
subject of the study. Only log() and expf() were called.

FIGURE 3 | Cumulative inter-OS differences in FSL FAST.

FIGURE 2 | Sum of binarized differences between cortical tissue classifications obtained on cluster A and cluster B (FSL FAST, build 1, n = 150

subjects). All binarized differences were resampled to the default MNI152 volume template.
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A B C

D E F

G H I

J K L
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FIGURE 4 | Histograms of Dice coefficients between classifications obtained on cluster A vs. cluster B with FSL FIRST. All bins are of size 0.1.

min, µ, and σ are the minimum, mean and standard deviation Dice coefficient, respectively.
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The first differences appear at 1.5 million calls: they are type-3
differences in function expf() which manipulates single-
precision floating-point representations. Type-1 and type-2 dif-
ferences appear at 19.2 million calls, both in log() and
expf(). No mismatch was found. The following C program
excerpt reproduces the first observed type-3 difference:

float a=1.5405185;
float b=expf(a);
printf("expf(%.30f)=%.30f\n",a,b);

This program prints 30 decimals to display the complete
representation of the floating-point numbers. When this repre-
sentation has less than 30 decimals, printf() pads the dis-
played string with zeros. With glibc 2.5, this program prints:

expf(1.540518522262573242187500000000)
=4.6670093536376953125000

The result produced by expf(), stored in variable b, is encoded
as 24 58 95 40 in hexadecimal (little-endian convention).
On the other hand, with glibc 2.18, the program prints:

expf(1.540518522262573242187500000000)
=4.6670098304748535156250

The result produced by expf(), stored in variable b, is encoded
as 25 58 95 40 in hexadecimal (little-endian convention): 1
bit is flipped compared to the result obtained with glibc 2.5.
These numerical differences, which originate in changing imple-
mentation of expf() between glibc 2.5 and 2.18, are a cause
of the inter-OS differences in FSL FAST.

Structure Color Dice

L. and R. putamen Magenta 0.92 and 0.95
R. pallidum Dark blue 0.93
L. and R. thalamus Green 0.97 and 0.93
L. and R. accumbens area Orange 0.75 and 0.59
L. and R. hippocampus Yellow 0.92 and 0.77

FIGURE 5 | Sample subcortical classifications with FSL FIRST: subject

260, Z = 114.

3.3. FSL: Subcortical Tissue Classification
FSL FIRST subcortical tissue classification produced identical
results for builds 1 and 2, but differences between cluster A and
cluster B were found in the classifications of all 150 tested sub-
jects. Figure 4 plots the histograms of Dice coefficients for the
15 structures segmented with FSL FIRST, using build 1. All his-
tograms have a main mode around 0.99, but overall, only 12.7%
of the classifications are identical on cluster A and cluster B (286
classifications out of 2250). Some Dice coefficients are very low,
down to 0.59, in particular for small structures such as the amyg-
dalae and the accumbens areas. Figure 5 shows a result sample
with Dice coefficients ranging from 0.75 to 0.95.

Figure 6 plots a trace of the first 53 million calls to libmath
made by FSL FIRST to process a randomly-chosen subject. The
trace shows no inter-OS difference until 43 million calls, where
type-3 differences start to appear in function cosf(), soon fol-
lowed by type-1 differences in ceilf() and floorf(), and
type-2 differences in cosf(), sinf(), ceilf(), floorf(),
and logf(). Mismatches appear at 43.9 million calls, indicat-
ing that inter-OS differences have an impact on the control flow
of the program. An inspection of the source code shows that
the bounds of a few loops are determined from floorf()
and ceilf()10, which is a plausible explanation for these
mismatches.

Type-3 differences come exclusively from function cosf()
which manipulates single-precision floating-point representa-
tions. The following C program excerpt reproduces the first one:

float a=0.523598790;
float b=cosf(a);
printf("cosf(%.30f)=%.30f\n",a,b);

With glibc 2.5, this program prints:

cosf(0.523598790168762207031250000000)
=0.8660254478454589843750000

FIGURE 6 | Cumulative inter-OS differences in FSL FIRST.

10See for instance the for loops in method intensity_hist in first.cc,
called from do_work
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The result produced by cosf(), stored in variable b,
is encoded as d8 b3 5d 3f in hexadecimal (little-
endian convention). With glibc 2.18, this program
prints:

cosf(0.523598790168762207031250000000)
=0.8660253882408142089843750

The result produced by cosf(), stored in variable b, is
encoded as d7 b3 5d 3f in hexadecimal (little-endian con-
vention): again, 1 bit is flipped compared to the result obtained
with glibc 2.5. These numerical differences, which origi-
nate in changing implementation of cosf() between glibc
2.5 and 2.18, are a cause of the inter-OS differences in FSL
FIRST.

3.4. FSL: Resting-state fMRI
3.4.1. Variable Random Seeds

In case d (automatic dimension detection), we observed no
inter-run differences in the number of detected dimensions, but
we found inter-OS differences in 2 subjects out of 37 (47 vs. 48
components and 55 vs. 57 components, respectively).

For the remaining 35 subjects, inter-run and inter-OS differ-
ences obtained with variable random seeds are shown in Figure 7
for case d (automatic dimension detection), and in Figure 8 for
case c (dimension fixed to 20). All histograms appear bimodal,
with a first mode at Dice = 0, and a second around Dice =

0.9. The modes at Dice = 0 correspond to situations where
the positive and negative components are inverted, or one of
the two compared components has very few voxels. Inter-run
and inter-OS differences are significant, and they are of similar
magnitude (see modesm reported above the graphs).

A

B

C

FIGURE 7 | Histograms of Dice coefficients between matched ICA components. Variable random seed initialization (case b), automatic dimension

detection (case d). Red histograms, positive components; Blue histograms, negative components; m, mode of the histogram.
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A

B

C

FIGURE 8 | Histograms of Dice coefficients between matched ICA components. Variable random seed initialization (case b), fixed dimension (case c).

Red histograms, positive components; Blue histograms, negative components; m, mode of the histogram.

3.4.2. Fixed Random Seeds

Inter-OS differences in the number of detected dimensions
were found in the same 2 subjects as for variable seeds. For
the remaining 35 subjects, inter-OS differences obtained with
fixed random seeds are shown on Figure 9 for fixed (case c)
and automatically detected dimensions (case d). Inter-OS dif-
ferences are substantial in both cases, with Dice values lower
than 0.9.

We found that inter-OS differences appear if and only if
pre-processed data are different, which occurs in 12 out of
37 subjects. More precisely, inter-OS differences appear if and
only if motion-corrected data are different. Figure 10 plots the
measured inter-OS mean absolute difference after each main pre-
processing step, normalized with the mean absolute difference
after all pre-processing steps. We can see that motion correction

generates only slight differences, less than 20% of the total dif-
ference created by pre-processing. These differences are reduced
by spatial smoothing but largely amplified by intensity normal-
ization. Thresholding and temporal filtering have only a minor
impact on the global error. Differences in motion correction
are quite subtle: residual transformations all have a norm of
translation vector below 10−5 mm, and rotation angle under
0.096◦.

Figure 11 shows a trace of the first 14 million calls to
libmath made by mcflirt to process a randomly-chosen
subject. The first inter-OS difference is a type-3, observed
at 1.6 million calls in function sinf() which manipulates
single-precision floating-point representations. Another type-
3 difference in the same function appears at 11.6 mil-
lion calls, soon followed by type-1 and type-2 differences
in ceilf(), cosf(), logf(), sinf(), and floorf().
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A

B

FIGURE 9 | Histograms of Dice coefficients between matched ICA components on cluster A vs. cluster B (logarithmic scale). Fixed random

seed initialization (case a). Red histograms, positive components; Blue histograms, negative components; m, mode of the histogram.

FIGURE 10 | Mean absolute differences after successive steps of

pre-processing, normalized by the mean absolute difference after all

pre-processing steps (all 37 subjects).

Mismatches appear at 11.7 million calls, indicating that inter-OS
differences have an impact on the control flow of the pro-
gram. The two observed type-3 differences come from function
sinf(). The following C program excerpt reproduces the first
one:

float a=0.042260922;
float b=sinf(a);
printf("sinf(%.30f)=%.30f\n",a,b);

With glibc 2.5, this program prints:

FIGURE 11 | Cumulative inter-OS differences in FSL mcflirt.

sinf(0.042260922491550445556640625000)
=0.042248345911502838134765625000

The result produced by sinf(), stored in variable b, is encoded
as 9a 0c 2d 3d in hexadecimal (little-endian convention).
With glibc 2.18, the program prints:

sinf(0.042260922491550445556640625000)
=0.042248342186212539672851562500

The result produced by sinf(), stored in variable b, is encoded
as 99 0c 2d 3d in hexadecimal (little-endian convention):
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again, 1 bit is flipped compared to the result obtained
with glibc 2.5. These numerical differences, which origi-
nate in changing implementation of sinf() between glibc
2.5 and 2.18, are a cause of the inter-OS differences in
mcflirt.

3.5. Freesurfer and CIVET: Surface Segmentation
and Cortical Thickness Extraction
Four subjects were dropped from the results for the following rea-
sons: Freesurfer analysis failed to reach completion (n = 3), and
missing age information (n= 1).

3.5.1. Freesurfer: Inter-Build Differences

Some localized regions of differences were found for Freesurfer
build 1 vs. 2 on cluster B. Figure 12 shows surface maps of mean
absolute difference, standard deviation of absolute difference, t-
statistics and whole-brain random field theory (RFT) corrections
(peaks and clusters) for n = 146 subjects at significance value of
p < 0.01, comparing the cortical thickness values extracted by
Freesurfer build 1 and build 2 on cluster B. Areas in shades of
blue on the RFT map are significant at the cluster (but not peak)
level. The cortical thickness values extracted with build 1 are sig-
nificantly different than with build 2 in the left inferior frontal
gyrus at an initial cluster threshold of p < 0.01 (family-wise error
(FWE) of p < 0.05).

3.5.2. Freesurfer: Inter-OS Differences

Despite the static linking of Freesurfer’s main executables, we
still found small inter-OS differences. Figure 13 shows surface
maps of mean absolute difference, standard deviation of abso-
lute difference, t-statistics and whole-brain random field theory
(RFT) corrections for n = 146 subjects at a significance value
of p < 0.05, comparing the cortical thickness values extracted
by Freesurfer build 1 on cluster A and cluster B. Note the dif-
ferent scales compared to Figure 12. Although no values on the
RFT map reach significant levels, the t values do reach upwards
of±2. These residual differences, present in 6 subjects, are intro-
duced by statically-linked executables mri_em_register (2
subjects) and mri_surf2surf (4 subjects). Using strace,
we found that these tools open a few libraries from the operat-
ing system, including libmath. Differences in these libraries are
very likely to create the observed inter-OS differences, although
ltrace cannot be used on statically-linked tools to confirm this
hypothesis.

3.5.3. CIVET: Inter-OS Differences

We also found some localized regions of differences for CIVET
cluster A vs. B. Figure 14 shows surface maps of mean absolute
difference, standard deviation of absolute difference, t-statistics
and random field theory (RFT) for n = 146 subjects at a signifi-
cance value of p < 0.05, comparing the cortical thickness values

FIGURE 12 | Surface maps of mean absolute difference, standard-deviation of absolute difference, t-statistics and RFT significance values showing

regions where the cortical thickness extracted with Freesurfer differs for build 1 and build 2 (both executed on cluster B).
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FIGURE 13 | Surface maps of mean absolute difference, standard-deviation of absolute difference, t-statistics and RFT significance values showing

regions where the cortical thickness extracted with Freesurfer differs for cluster A and cluster B (both executed with build 1).

extracted by CIVET on cluster A and B. The cortical thickness
values extracted on cluster A are significantly different than on
cluster B at an initial cluster threshold of p < 0.05 (FWE of p <

0.0005 in the right paracentral lobule and FWE of p < 0.04 in the
left middle temporal region). No significant difference between
clustersA and Bwas found at a stricter initial cluster threshold of
p < 0.01.

4. Discussion

4.1. General Conclusions
The implementation of mathematical functions manipulat-
ing single-precision floating-point numbers in libmath has
evolved during the last years, leading to numerical differences
in computational results. While these differences have little or
no impact on simple analysis pipelines such as brain extrac-
tion and cortical tissue classification, their accumulation creates
important differences in longer pipelines such as the subcorti-
cal tissue classification, RSfMRI analysis, and cortical thickness
extraction.

For cortical tissue classification with FSL, Dice values as low
as 0.59 were found between OSes. In RSfMRI, different numbers
of components were occasionally found in the two OSes, and the
identified components had important differences. Differences in

cortical thickness were found for some brain regions as a function
of build or OS.

Statically building programs improves reproducibility across
OSes, but small differences may still remain when dynamic
libraries are loaded by static executables, as observed with
Freesurfer. When static builds are not an option, software het-
erogeneity might be addressed using virtual machines (VMs) as
tested in CBRAIN (Glatard et al., 2014), or lighter container envi-
ronments such as Docker11. Specific Linux distributions such as
Neurodebian (Halchenko and Hanke, 2012) could be used with
these environments to guarantee a wide reproducibility within
the community. However, such solutions are only workarounds:
differences may still arise between static executables built on dif-
ferent OSes (as seen in our Freesurfer study), or between dynamic
executables executed in different VMs.

Although it would not improve numerical stability, a more
rigorous way to address reproducibility issues would be to use
higher-precision representations of floating-point numbers, and
to avoid using functions operating on single-precision numbers
(e.g., expf(), cosf(), . . . ). Using double precision would
probably address most issues, and the remaining ones could be
tackled with quadruple or even arbitrary precision as discussed in
Bailey et al. (2012). To limit the resulting performance reduction,

11http://www.docker.com
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FIGURE 14 | Surface maps of mean absolute difference, standard-deviation of absolute difference, t-statistics and RFT significance values showing

regions where the cortical thickness extracted with CIVET differs for cluster A and cluster B (both executed with build 1).

precision could be increased only in the code sections creating
reproducibility issues.

Identifying such code sections is not trivial though, in par-
ticular when pipelines result from a long development process.
We showed that library call interception yields accurate informa-
tion about the functions that are responsible for reproducibility
issues in dynamically-linked programs. This technique is, how-
ever, extremely heavy in terms of computational overhead and
size of the generated traces, and therefore could not be used
systematically.

When pipelines produce intermediary result files, a more effi-
cient way to identify suspicious code sections is to compare these
intermediary files using some data-specific distance. For instance,
using the mean absolute difference between intermediary results
produced by FSL pipelines, we were able to quantify the effect
of fMRI pre-processing steps on inter-OS reproducibility and to
narrow-down the investigation to motion correction. We were
also able to identify the tools creating inter-OS differences in
Freesurfer.

To conclude, it is clear to us that developers should care-
fully review the numerical reproducibility and stability of their
pipelines using quantitative tests conducted in different execu-
tion conditions. However, this could not be done systemati-
cally unless a proper platform is available to run such tests and
interpret the results. Such a platform could provide benchmarks,

virtual execution environments, and analysis tools to help devel-
opers identify the cause of observed differences. Frameworks
such as testkraut12 could be useful in this context.

4.2. Limitations
Our results cover some of the main neuroimaging analysis tools
(Freesurfer, FSL and CIVET), executed on RedHat-like Linux
operating systems which are widely used in neurosciences. To
cover a large spectrum of OSes, we used the oldest still-supported
version of CentOS and the latest version of Fedora which antici-
pates on the coming CentOS versions. This encompasses 7 years
of glibc development, from version 2.5 in 2006 to 2.18 in 2013,
and a much longer range of Linux distributions. For instance,
our study gives an idea of reproducibility issues that will arise
when upgrading platforms to the recently-released CentOS 7
distribution, which is based on glibc 2.17.

The range of operating systems tested in this study remains, of
course, limited. We expect that comparing intermediate glibc
versions would only reduce the magnitude of the reported effects.
Other Linux distributions, for instance Debian and Ubuntu, are
very likely to suffer the same reproducibility issues as long as
they are based on glibc. Similar issues are also very likely to

12https://testkraut.readthedocs.org/en/latest/index.html
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occur on non-Linux operating systems, see for instance differ-
ences observed between Mac OS 10.5 and 10.6 by Gronenschild
et al. (2012).

Our study is limited to compiled application programs. Appli-
cations written with interpreted languages such as MATLAB
and Python would most likely behave differently. Compilation
options were also not considered in this study and are likely to
impact the reproducibility of results. For instance, the gcc C
compiler has several options that speed-up floating-point oper-
ations at the cost of numerical correctness. Using such options
to compile programs that are sensitive to small numerical differ-
ences is very likely to compromise inter-OS reproducibility, too.
Some of the differences observed between Freesurfer builds are
likely to originate from the use of different versions of gcc to
compile these builds.

4.3. Related Work
Gronenschild et al. (2012) report the effects of Freesurfer ver-
sion, workstation type, and OS version on anatomical volume
and cortical thickness measurements. Their study was conducted
with different versions of Freesurfer (4.3.1, 4.5.0, and 5.0.0). We
deliberately chose not to compare different versions of the tested
pipelines. Instead, we focused on differences that originate in the
system libraries. The Freesurfer versions used by Gronenschild
et al. (2012) were dynamically linked (version 5.0.0 was linked
statically on Linux, but dynamically on Mac), while the current
one (5.3) is statically linked. Thus, the difference reported by
Gronenschild et al. (2012) between Mac OS 10.5 and Mac OS
10.6, and between HP and Mac, most likely comes from the use
of different system libraries in these platforms. Statically build-
ing executables might be seen as a way to address the issues
shown by Gronenschild et al. (2012); our study shows that it is
only a workaround since different builds unsurprisingly yield dif-
ferent results. We also show that these problems are not specific
to Freesurfer, but generalize to FSL and to some extent CIVET;
it suggests that several other analysis packages are likely to be
impacted. Besides, our choice of operating systems (CentOS 5.10
and Fedora 20) encompasses 7 years of glibc development; this
gives an idea of how results may evolve in the coming upgrades
of HPC clusters to CentOS 7. Finally, we provide an explanation
of the causes for inter-OS reproducibility issues; this suggests that
these issues may be addressed by using more precise representa-
tions of floating-point numbers in some sections of the pipelines.

Krefting et al. (2011) studied the reproducibility of Freesurfer
5.0.0 on Mac OS 10.6, CentOS 4, and SUSE Linux 10.1. They
report that the CentOS 5 and CentOS 4 Freesurfer builds gave
identical results, but that results obtained with the same build

were different across operating systems. This seems in contradic-
tion with our results (we found that different Freesurfer builds
give different results). A possible explanation for these differ-
ences is that the authors used a dynamically-linked version of
Freesurfer 5.0.0, as suggested when they report that different
implementations of dynamically linked libraries may explain
their findings.
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