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We describe the WhiteText project, and its progress towards automatically extracting
statements of neuroanatomical connectivity from text. We review progress to date on
the three main steps of the project: recognition of brain region mentions, standardization
of brain region mentions to neuroanatomical nomenclature, and connectivity statement
extraction. We further describe a new version of our manually curated corpus
that adds 2,111 connectivity statements from 1,828 additional abstracts. Cross-
validation classification within the new corpus replicates results on our original
corpus, recalling 67% of connectivity statements at 51% precision. The resulting
merged corpus provides 5,208 connectivity statements that can be used to seed
species-specific connectivity matrices and to better train automated techniques.
Finally, we present a new web application that allows fast interactive browsing of
the over 70,000 sentences indexed by the system, as a tool for accessing the
data and assisting in further curation. Software and data are freely available at
http://www.chibi.ubc.ca/WhiteText/.
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Introduction

Neuroinformatics research thrives on plentiful amounts of open and computable neuroscience
datasets. This type of data is lacking at the level of brain regions, when compared
to molecular data about genes or proteins. Currently, the bulk of this neuroscience
information is fragmented across the literature. Manual curation can join and formalize
the findings (Bota et al, 2012, 2014). To speed up this process in the domain of
anatomical connectivity, we created the WhiteText project to automatically extract this
information from text. WhiteText was designed to extract mentions of brain regions and
statements describing connections between them. While developing WhiteText we asked
the following questions:

1. How accurately can neuroanatomical connectivity information be automatically extracted from
neuroscience literature?

2. What textual features are useful for automatic extraction?

How much connectivity data is available in neuroscience abstracts?

4. Which species are used for connectivity studies?

et

Frontiers in Neuroinformatics | www.frontiersin.org 1

May 2015 | Volume 9 | Article 13


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2015.00013
http://journal.frontiersin.org/article/10.3389/fninf.2015.00013/abstract
http://journal.frontiersin.org/article/10.3389/fninf.2015.00013/abstract
http://journal.frontiersin.org/article/10.3389/fninf.2015.00013/abstract
http://community.frontiersin.org/people/u/5448
http://community.frontiersin.org/people/u/198396
http://community.frontiersin.org/people/u/197093
http://community.frontiersin.org/people/u/3377
https://creativecommons.org/licenses/by/4.0/
mailto:paul@chibi.ubc.ca
http://dx.doi.org/10.3389/fninf.2015.00013
http://www.chibi.ubc.ca/WhiteText/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive

French et al.

WhiteText: automated text mining for neuroanatomy

By extracting thousands of connectivity statements and
addressing these questions, we were able to evaluate several text
processing techniques and create neuroinformatics resources for
connectivity knowledge.

Connectomics is of great interest to neuroscientists that
seek to understand brain networks using complete connectivity
maps. Global connectivity knowledge is often viewed as
fundamental to understanding how the brain processes
information. Local connectivity informs focused studies
involving smaller numbers of brain regions. Several large-scale
projects are seeking to uncover brain region level connectivity
maps in human, macaque, rat and mouse. Using advanced
magnetic resonance imaging, the Human Connectome Project
will provide brain region level connectivity maps for 1,200
healthy individuals to understand human neuroanatomy and
its variation (Van Essen et al., 2013). Using neural tracers, the
Mouse Connectome Project (Zingg et al., 2014), the Mouse
Brain Architecture Project (brainarchitecture.org) and Allen
Mouse Brain Connectivity Atlas (Oh et al, 2014) provide
connectome scale data obtained from standardized approaches.
The Allen Mouse Brain Connectivity Atlas has produced
the most complete and standardized mouse connectome
which covers 295 disjoint regions (Oh et al, 2014). The
preceding Brain Architecture Management System (BAMS2)
contrasts these experimental efforts by providing curated
reports of rat brain connectivity (Bota et al., 2014, 2015). The
BAMS curators standardize published connectivity results
obtained from independent labs into a single database.
CoCoMac is a similar system that collates connectivity
results from Macaque studies (Stephan, 2013). The WhiteText
project seeks to complement these projects by automatically
extracting connectivity reports from past studies to speed up
manual curation and add context to large-scale connectome
projects.

While there has been significant effort to mine neuroscience
information from text (Ambert and Cohen, 2012), our work
is most inspired by past efforts to extract information about
protein-protein interactions. This task is analogous to extracting
connectivity information: it requires extraction of interaction
relationships between named entities (proteins instead of brain
regions). This close analogy allowed us to leverage work done in
the gene and protein domain. At the BioCreative IIT workshop
challenge, 23 teams competed to extract, resolve and link
protein and gene mentions (Arighi et al, 2011), generating
information on effective approaches. We adapted and extended
the text-mining methods previously used to analyze protein
networks for extraction of connectivity between brain regions
(Tikk et al, 2010). This is an attractive approach because
many of the challenges in analyzing text for information
about proteins are also faced in mining information about
brain regions. These challenges include abbreviations, synonyms,
lexical variation and ambiguity. A key foundation for both
the BioCreative challenges and our work are hand-annotated
corpora to use as training data and gold standards for evaluation.
Here we first review our annotated corpus and the methods
and results for three tasks required for extracting connectivity
relationships between brain region pairs: recognition of brain

region mentions, standardization of brain region mentions
and connectivity statement extraction (Figure 1). We provide
only summary results and methods for these tasks and refer
readers to the corresponding publications for details. Then
we describe a recent evaluation which we used to create a
new corpus; and finally a website we created to view the
results.

Review of Progress

Manually Annotated Corpus

To seed the project we annotated a set of 1,377 abstracts
for brain region mentions and connectivity relations (French
et al.,, 2009). We used abstracts rather than full-text documents
due to accessibility and their higher proportion of summary
statements. This initial corpus allows for training of machine
learning methods and later comparison between automatic
and manually derived annotations. We focused on abstracts
from one journal, the Journal of Comparative Neurology
(JCN), because it is enriched with neuroanatomical studies.
As described below, we considered other journals in later
analyses.

Two trained undergraduate research assistants annotated the
corpus for brain region mentions and connectivity relations
in any species. Annotated brain region spans matched for
90.7% of the mentions in the subset of 231 abstracts annotated
by both curators. In total, 17,585 brain region mentions
were annotated with a subset forming 4,276 connections.
Three high accuracy text mining methods were applied to all
abstracts: species recognition (Gerner et al., 2010), automated
expansion of abbreviations (Schwartz and Hearst, 2003) and
tokenization (McCallum, 2002; Cunningham et al, 2013).
Abbreviations were expanded because they are a common source
of ambiguity and confusion (Gaudan et al., 2005). Further,
we processed text within individual sentences that would not
contain abbreviation expansion information found in previous
sentences. Rat was the most common species of the 209
species studied (aside from species relating to reagents used

The nucleus raphe dorsalis projects to the ventral posterolateral nucleus.
v Region recognition

The nucleus raphe dorsalis projects to the ventral posterolateral nucleus.
v Region standardization

The “Dorsal raphe nucleus” (ID982) projects to the “Ventral posterolateral
nucleus of the thalamus” (ID737).

v Connectivity extraction

The “Dorsal raphe nucleus” (ID982) projects to the “Ventral posterolateral
nucleus of the thalamus” (ID737).

7 Aggregation

Dorsal raphe nucleus (ID982)
hasConnectionTo:
Ventral posterolateral nucleus of the thalamus (ID737)

FIGURE 1 | Visualization of processing steps for an example sentence.
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in tract tracing such as horseradish, wheat and pseudorabies
virus).

Recognition of Brain Region Mentions

The first task of recognizing mentions of brain regions in
free text is known as “named entity recognition”. This step
identifies (“highlights”) spans of text that refer to brain regions
(a “mention”). For this task we employed the MALLET package
for natural language processing (McCallum, 2002) to create a
conditional random field classifier that was able to label brain
region mentions (French et al., 2009). Eight-fold cross-validation
was used in this evaluation and abstracts were not split between
training and testing. In this cross-validation framework each
sentence is used seven times for training and once to test.
Feature selection was performed with 14% of abstracts held-
out. We consistently define precision as the proportion of true
positives to positive predictions and recall as the proportion
of true positives to actual positives. For this task the classifier
recalled 76% of brain region mentions at 81% precision. Precision
increases to 92% and recall reaches 86% when partial matches
are counted. This performance was much higher than naive
dictionary-based methods that attempt to match words to lists
of known brain region names. We observed that regions in
non-mammals (e.g., insects), which were underrepresented in
the corpus, were poorly classified. Thus recall improves when
restricting the abstracts to studies of monkey, cat, rat and mouse
brain but only in comparison to a similar sized set of random
abstracts.

From our analysis, we suspect many incorrectly recognized
brain region mentions are due to conjunctions, previously
unseen words and brain regions of less commonly studied
organisms (e.g., insects and fish). Surrounding words, word base
forms and abbreviation expansion were the most informative
techniques and features used by the classifier. Although textual
features derived from the neuroscience domain did increase
performance (lexicons of brain region names for example), we
found that most of the knowledge needed to extract brain
region mentions can be learned from our large set of annotated
examples.

Standardization

Recognition of brain region mentions only provides a string
that is predicted to refer to a brain region. Standardizing this
string to a formally defined concept representing the brain
region is important to downstream analysis and linking to
other resources. The process of mapping free text to formal
identifiers is also known as normalization or resolution. For
example, this step aims to link the free text “substantia
nigra compact part” or “SNC” found in an abstract to the
NeuroLex concept birnlex_990 which has the preferred name
of “Substantia nigra pars compacta” (Bug et al., 2008). Viewing
birnlex_990 in the NeuroLex website expands the mention
to a definition, information about spatial location and cell
types found in the region (Larson and Martone, 2013). To
maximize our set of brain region names, we targeted five
neuroanatomical lexicons that span several species [NeuroNames
(Bowden et al., 2011), NIFSTD (Imam et al., 2012), the Brede

Database (Nielsen, 2015), BAMS (Bota et al., 2014), and the Allen
Mouse Brain Reference Atlas (Dong, 2008)]. This provided a
set of 11,909 target region names that represent an estimated
1,000 different mammalian brain regions (French and Pavlidis,
2012).

For the standardization task we applied simple lexicon-based
methods that iteratively modified the original mention until a
match was found (French and Pavlidis, 2012). First, a case-
insensitive exact string match was attempted on the mentioned
region. If that failed to match, word order was ignored by using
bag-of-words matching, so that “reticular thalamic nucleus”
would match “thalamic reticular nucleus”. Next, stemming was
applied to reduce words to base forms (e.g., “nucleus raphé
dorsalis” would reduce to “nucleu raph dorsali”). Again, exact
matching of stemmed mentions and bag-of-stems matching
was attempted. These methods were stringent, as they required
all words or stems in a mention to match the name in the
lexicons. To improve coverage we designed twelve modifiers
that edited the mentions, sacrificing some information. This
included removing hemisphere specific qualifiers, bracketed text
and directional prefixes. Application of these modifiers increased
standardization coverage from 47-63%.

By testing the above approaches on the manually annotated
corpus, we estimated that mentions are mapped at 95%
precision and 63% recall (French and Pavlidis, 2012). We
note that precision is based on the lexical information
(brain region names) and not the specific neuroanatomical
location in a given species and atlas. This step is key for
many neuroscience text miners because it provides a method
for linking abstracts to region-specific data outside the text
via formalized brain region names. In addition, patterns of
publication interest can be observed: not surprisingly, some
regions are more popular than others but popularity can wax
and wane over time. Importantly, this work quantified challenges
in the standardization of neuroanatomical nomenclatures.
We observed that many standardized terms never appear
in our input corpus and many mentions used by authors
are not in the terminologies. To address this latter gap,
we deposited 136 brain region names identified from our
analysis into the Neuroscience Lexicon (Larson and Martone,
2013).

Connectivity Statement Extraction

In a given abstract, mentions of brain regions provide
limited information without any context. Our goal was
to extract information about the brain regions, namely
connectivity. To reduce the complexity of this task we targeted
positive statements of connectivity and ignore the direction
(efferent/afferent). Further we limited the manually curated
training and test connections to those within sentences. These
restrictions allow application of existing tools for extracting
protein-protein interactions. The resulting classification task
is to determine if a pair of brain region mentions are
described as connected or not. A negative prediction includes
statements reporting no connectivity between the two regions
but the majority of negative pairings are from sentences
mentioning two brain regions but containing no connectivity
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information. Our corpus had available 22937 total pairs
of brain regions of which 3097 describe connections, with
the balance considered negative examples (French et al,
2012).

By re-using the protein interaction benchmark tools
assembled by Tikk and colleagues, we tested several methods
on our annotated corpus in a cross-validation framework
(Tikk et al., 2010). The best method, the “shallow linguistic
kernel” (Giuliano et al., 2006) recalled 70% of the sentence
level connectivity statements at 50% precision in ten-fold cross-
validation. This method is “shallow” in the sense that it does not
involve parsing complex sentence structure. Sentence length does
increase from the top to bottom ranked predictions, suggesting
a relationship with complexity. However, similar accuracy was
provided by more complex methods that use deeper features
such as word dependencies and semantic features.

Methods

Extended Evaluation and Corpus Creation

Each interaction was independently judged by two of four
undergraduate research assistants and disagreements were
resolved by group review. All four curators annotated a small
training set of 307 connections for initial training and guideline
refinement. Annotator agreement depended on the pair of
curators compared, and ranged between 83% and 97%. To speed
curation, we used spreadsheets that presented the full sentences
and links to the abstracts containing the predicted connections.

Article Classification and Expanded Predictions
of Connectivity

The online MScanner tool was used to find connectivity
abstracts outside of the JCN (Poulter et al., 2008). MScanner
is not domain specific, but instead uses supervised learning
to search PubMed for related articles (Naive Bayes classifier).
Abstracts found to contain connectivity statements in previous
evaluations were used as the input set. We applied MScanner
with and without the word features (journal name and
MeSH terms features were used for both executions). Brain
region mentions were extracted with the previously published
conditional random field that was trained on the entire first set
of manually annotated abstracts. The shallow linguistic kernel
(Giuliano et al., 2006) from the ppi-benchmark framework
was used to predict connectivity relations (Tikk et al,
2010).

WhiteText Web

WhiteText Web was implemented with Google Web Toolkit
2.5.1 and the Apache Jena framework. User input is restricted
to Neurolex brain regions that appear in the corpus. We
note that this restriction is only placed on the one of the two
connected regions, allowing any brain region mention text to
represent the second region displayed (“Connected Region”).
Formalized mapping to synonyms and query expansion to
subregions was extracted from the Neuroscience Information
Framework (NIF) Gross Anatomy ontology. Subregions
were extracted by extracting “proper_part_of” predicates

[Open Biomedical Ontologies (OBO) and relation ontology
(RO)]. The list of 110 phrases that describe connectivity
are that underlined in the output were extracted from
the first manually annotated corpus. Example phrases are
“projects to” and “terminating in” (full list on supplementary
website). LINNAEUS was used to recognize and normalize
species names (Gerner et al.,, 2010). Sentences from abstracts
with more than one species mentioned are duplicated to
prevent omission of connections when sorting the table by
species.

Results

Extended Evaluation and Corpus Creation

Beyond the cross-validation evaluation described above, we have
previously applied our method to 12,557 previously unseen JCN
abstracts (those not in our corpus) and compared a standardized
subset of 2,688 relationships to the data in BAMS (Bota et al,,
2012). We found that 63.5% of these connections were reported
in BAMS. Using the BAMS data as a gold standard, we also found
that precision can be increased at the cost of recall by requiring
connections to occur more than once across the corpus (French
etal., 2012).

To extend these results and obtain more training data, we
have now created a new corpus by extending our previous
evaluation of 2000 positive predictions (French et al., 2012).
Figure 2 outlines the creation of new corpora from the
original corpus. This new corpus is based on running our
framework on the test set of 12,557 JCN abstracts. Most
importantly, to gauge recall we had to identify negative
examples, as our previous effort only manually evaluated
positive predictions. By adding new evaluations of negative
predictions, the new corpus contains 11,825 brain region pairings
extracted from the 12,557 abstracts (12% of possible within
sentence pairings), of which 18% were considered positive
examples. Recall was 45.5% (as previously reported on the

Original Corpus

1,377 abstracts
(French et al., 2009)
—

Crossvalidation

—

BAMS
Comparison | JCN Predictions MScanner
12,557 abstracts predictions

8,264 abstracts

(French et al., 2012)
N

—
JCN Evaluations
1,828 abstracts

Crossvalidation

S

FIGURE 2 | Flow chart depicting the origins and evaluations of the
connectivity corpora. Arrows represent the use of annotated data from one
corpus (source) to test or create a corpus (target). JCN, Journal of
Comparative Neurology; BAMS, Brain Architecture Management System.
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2000 positive predictions, precision is 55.3%). The drop in
accuracy compared to the previous cross-validation test appears
to be partly due to automation of preprocessing steps that
were done manually in the original corpus of 1,377 abstracts.
These automated steps are imperfect and thus a source of
errors upstream of the connection prediction step. Specifically,
we found that many classification errors could be ascribed to
problems with brain region mention extraction (~10-15% of
errors) and abbreviation expansion (<4%). Standardization of
brain region mentions was not performed in this evaluation,
allowing isolation from low recall in the standardization
task. In a cross-validation framework, the shallow linguistic
kernel within this new set of evaluated connections replicates
the accuracy of the first set (recalling 67% of connectivity
statements at 51% precision). In comparison to our first
set, this corpus covers a broader set of abstracts but a
lower number of connections (Table 1). We are making this
corpus available to the community to use in further efforts at
improving connectivity extraction methods or for developing
other text processing tasks that benefit from the annotations
provided.

Article Classification and Expanded Predictions
of Connectivity

In our initial work we focused on the Journal of Comparative
of Neurology due to its enrichment of connectivity reports.
Although it is possible to run our pipeline on the entire
MEDLINE corpus, we suspected this would produce a large
number of false positives from the enormous number of abstracts
that mention brain regions but do not discuss connectivity.
To create a larger connectivity resource from abstracts more
likely to be relevant, we used the MScanner tool (Poulter et al.,
2008). MScanner trains a classifier to identify abstracts with
features similar to an input training set. Features used by
MScanner include journal name, MeSH terms and words in
the abstract and title. We trained MScanner using the abstracts
from our curated corpora, reasoning that the results would
be enriched for abstracts containing connectivity statements
(Figure 2). The features chosen by MScanner as relevant include
the word features “Nucleus”, “Medial”, “Projection” and the
MeSH qualifier “anatomy and histology”. MScanner yielded a
new set of 8,264 abstracts. Applying our pipeline to this set

TABLE 1 | Summary connectivity statistics for curated and predicted corpora.

yielded 36,566 predicted statements of connectivity. Over 92%
of abstracts were predicted to have at least one connectivity
statement. This suggests MScanner provides a good initial
filtering step for our pipeline. Beyond the general purpose
approach of MScanner, Ambert and Cohen demonstrate more
complex article classification tools for extraction of connectivity
studies (Ambert and Cohen, 2012).

WhiteText Web

We created WhiteText Web,! to provide easy access to the
extracted connectivity statements. Given an input brain region,
the tool returns all predicted statements of connectivity involving
that region and its enclosing subregions. The resulting sentences
and connections are highlighted for quick browsing by the user.
As shown in Figure 3, results are provided in a spreadsheet
table format that allows quick sorting by classification score
(approximates prediction confidence), connected regions and
species mentioned in the abstract. Source abstracts are easily
accessible to allow review of full context. Each predicted
connectivity relation presented is displayed with a flag icon,
which allows a user to flag connections that appear incorrect.
This user provided information is logged and will be used in
future evaluations.

Characterization of WhiteText Web Combined
Corpus

The WhiteText Web corpus consists of all the curated and
predicted connectivity statements mentioned above (17,454
abstracts with at least one connection). Over 200 species
were mentioned in these abstracts with rat (24,690 predicted
connections), cat (12,469) and rhesus macaque (3,113) having
the most mentions (top ten shown in Table 2). The JCN
is still the main source for our connectivity information
due to its selection for the original corpora. However, the
use of MScanner has provided abstracts with connectivity
predictions from 304 additional journals with the top ten
given in Table 3. Publication year in the combined corpus
is limited by available abstracts in the MEDLINE database
(8 abstracts found before 1,975) and the dates of our
studies and the MScanner database (no abstracts beyond

Uhttp://www.chibi.ubc.ca/whitetext/app/

Original corpus (French et al., 2009) JCN evaluations JCN predictions (French et al., 2012) MScanner
Abstracts 1377 1828 12557 8264
Source Curation Evaluations Classification Classification
Region annotations Manual Automatic Automatic Automatic
Region pairs 22577 11825 156741 164555
Connections 3097 (16%) 2111 (18%) 28107 (22%) 36566 (22%)
Recall 70% 67% NA NA
Precision 50% 51% NA NA

This table presents summary counts of abstracts and sentence level connectivity counts for abstracts with predicted and curated connections. Region pairs and connection

counts are counted within sentences only. Connections were predicted with a shallow linguistic kernel trained on the Original Corpus for both the JCN Predictions (Journal

of Comparative Neurology) and MScanner sets. Precision and recall values were computed with shallow linguistic kernel in a crossvalidation framework.
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WhiteText

What is this? | About | Cite | Export Table

FIGURE 3 | Screenshot of example results from WhiteText Web. The top
text input field attempts to match typed text to brain regions in NIFSTD while
the user types. The query region column shows the original named brain
regions that were matched to the given input of “Habenula” or it’s children.
Sentence text is directly linked to the source abstract in PubMed. Query and

Brain region: reter Search
Indexing 71306 sentences with 68957 connections between 88088 brain region mentions. Habenula Received 399 rows
Sentence Query Region Connected Re Habenular commissure Score Report
These data reveal that septal to the medial ib) , which are normally ipsilateral, respond to a unilateral deafferentation by e ot Lateral habenular nucleus — i 0
extending contralateral fibers that cross the midline at the habenular commissure and reinnervate the caudal regions of the nucleus. g Medial habenular nucleus )
Using lesion-degeneration techniques at the EM level, it is confirmed that a pathway from prefrontal cortex projects to the lateral habenula, and -
It I .
further that it makes synaptic contacts predominantly with dendrites of neurons in the medial sector of the lateral nucleus. atoral heberdis prefiontal codx t 256 ¥
The connection between the two habenular nuclei is asymmetrical in that only the medial habenula sends projection to the lateral habenula. lateral habenula medial habenula rat 2.54 ¥
. 4 9 3 3 5 ot 3 medial part of the
Reductions were found in the dorsal and median raphe nuclei and the ventral and dorsal tegmental nuclei which receive projecting fibers mainly ventral and dorsal 1
: lateral habenula . rat 251 ¥
from the medial part of the lateral habenula nucleus. s tegmental nuclei
Injections of iRP) to the i nucleus resulted in labeling predominantly confined to the medial habenular and interfascicular
? , medial habenular rat 235 ¥
median raphe nuclei. nucleus
: ¢
Labeled fibers in the stria medullaris project to the lateral habenular nucleus. aw::::::;"mar stria medullaris rat 2.34 ¥
The lateral hypothalamus, preoptic region, and anterior portion of the entopeduncular nucleus projected primarily through the inferior thalamic \ateral habenular posterior portion of
peduncle and stria medullaris, while the posterior portion of the entopeduncular nucleus projected more diffusely through thalamus to enter lateral nucleus the entopeduncular cat 234 ¥
habenular nucleus(LHB) from its ventral aspect. nucleus
rostral 2/3 of the
The results indicate that neurons in the rostral 2/3 of the entopeduncular nucleus project to the lateral habenula. lateral habenula entopeduncular rat 232 ¥
nucleus
However, in ?ebmﬁsh, projections from the left habenula innervate the dorsal and ventral regions of the target nucleus, whereas right habenular fight habenular ventral region ilce 224 ¥
efferents project only to the ventral region.
However, in ;sbmﬁsh. projections from the left habenula innervate the dorsal and ventral regions of the target nucleus, whereas right habenular ight habenular ventral region Southern fiounder 224 §
efferents project only to the ventral region.
However, in Fsbraﬁsh. projections from the left habenula innervate the dorsal and ventral regions of the target nucleus, whereas right habenular fight habenular ventral region zebrafish 224 ¥
efferents project only to the ventral region.
The results suggest that some catecholaminergic neurons in medullary visceral zone(MVZ) could send projections to habenular nucleus(HB) and medullary visceral .
= ; ket : : B . habenular nucleus rat 2.03 ¥
this pathway may be involved to relay nociceptive information from spinal cord to brainstem and on to the forebrain. zone
:u,::':sr descending pathway through the stria medullaris was also noted which terminated in the lateral habenula and the mediodorsal thalamic lateral habenula stria medullaris it 197 §
Thus, the mediodorsal part of medial habenular nucleus(MH) projected to the interpeduncular(IP) C, the medioventral part of medial habenular
) projected to the i ) |, the part of medial habenular ) projected to the it ) A, "
5 3 2 5 mediodorsal part of
and the lateroventral part of medial habenular nucleus(MH) projected to the ) P and the ) O. There were a Al Tt ket interpedunciler(iF) C ot 107 ¥
few labeled cells in the accessory dorsal tegmental nucleus, the nucleus raphe dorsalis (RD), the nucleus centralis superior, the nucleus of the s o =
locus coeruleus, the gray matter of the floor of the fourth ventricle, and the nucleus of diagonal band of Broca, but there were no obvious patterns e
in the projections of these nuclei to the different sub-nuclei of the interpeduncular(IP) complex. v

connected regions are colored, with underlines marking words that suggest
connectivity. Results can be sorted by all columns except the first. A single click
on the gray flag in the “Report” column allows users to mark sentences that
were incorrectly parsed. The “Export Table” link (top left) provides a
tab-separated file containing the returned results.

TABLE 2 | Species with the most associated connections in the combined
corpus.

Species name NCBI species identifier Connections
Rattus norvegicus 10116 24690
Cat 9685 12469
Rhesus monkey 9544 3113
Rat 10118 2368
Rabbit 9986 1497
Human 9606 1258
Macaca fascicularis 9541 1218
Mouse 10090 1107
Chiecken 9031 728
Guinea-pig 10141 611

Connection counts combine predicted and curated connections in the corpus.
NCBI taxonomy identifiers are provided.

mid 2011). Yearly counts of connectivity studies contained
in our combined corpus peaks in 1991 with 707 abstracts
(Figure 4).

Accessibility
Data and software used for the project are freely
available in standardized formats? The new corpus

Zhttp://www.chibi.ubc.ca/WhiteText

TABLE 3 | Top ten most frequent journals in the combined corpus.

Journal name Abstracts
The Journal of comparative neurology 9815
Brain Research 1643
Neuroscience 938
Experimental brain research 627
The Journal of neuroscience 369
Brain research bulletin 365
Neuroscience letters 326
Brain, behavior and evolution 251
Anatomy and embryology 231
The European journal of neuroscience 207

is additionally provided at http://figshare.com/articles/
New_WhiteText_Corpus/1400541. Text mined results for a
specific brain region specific can be exported from WhiteText
Web as a tab separated files. To store annotated text we used
GATE and encoded downstream annotations in AirolaXML
and Resource Description Framework (RDF). Use of RDF
allows simple queries of extracted connectivity statements
with the SPARQL query language. Connectivity matrices are
also provided for convenience. Software and documentation
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FIGURE 4 | Bar plot of yearly counts of abstracts with connectivity
information in the combined corpus.

is available on GitHub.> Further, Bluima, an open source
text mining toolkit for neuroscience has re-used some of our
resources for brain region extraction in the UIMA framework
(Unstructured  Information = Management  Architecture;
Richardet and Telefont, 2013).

Discussion

We created and applied a system for large-scale automatic
extraction of connectivity knowledge. By analyzing over 20,000
abstracts we found the neuroscience literature contains a
wide diversity of terms, species, and brain region names.
Unfortunately, this diversity exceeds that of the existing
formalized neuroanatomical lexicons. We found it difficult to
create a clear set of annotation guidelines due to this diversity that
extends to sentence structure and experiment design. While this
diversity limits the automatic mining of neuroscience literature,
we evaluated several methods that improve automatic extraction.
We found great value in general-purpose and biomedical
text mining tools. We applied these tools with little or no
tuning and report robust and extendable results. This allowed
more time for extensive manual evaluation and review. In
addition to tested methods, our work provides a database of
evaluated connectivity statements that can be used as a starting
point for manual curation and to facilitate neuroscience text
mining.

Our results and evaluations provide the most critical
assessment of text mining for neuroscience to date. We note
the NeuroScholar system which had similar overall goals to our
project (Burns and Cheng, 2006). Burns and Cheng sought to
automatically label more detailed information about connectivity
experiments in full text articles, including methodological details.
In contrast, our work focuses on summary statements in
abstracts to extract brain region mentions and relationships
between them. Building on the WhiteText project resources,
a large-scale application of connectivity extraction has been
performed on all PubMed abstracts and a large set of full

3https://github.com/leonfrench/public/wiki

text articles (Richardet et al., 2015). Richardet and colleagues
used the WhiteText corpus to help develop a scalable system
that combined the shallow linguistic kernel with filer and rule
based methods. By using the Allen Mouse Brain Connectivity
Atlas, precision of the extracted connections was estimated
at 78%. Both studies support the value and feasibility of
automatically extracting connectivity information from natural
language text.

It is possible to search for connectivity literature using
keyword searches of PubMed or Google Scholar. However,
searches for a single brain region will retrieve studies of that
region that do not examine connectivity. Adding keywords
like “projections” will not recall all studies as demonstrated
by our list of over 100 phrases that describe a connection. In
contrast our system is focused on connectivity studies and only
presents users with sentences predicted to contain connectivity
statements. We designed WhiteText Web for neuroscientists
searching connectivity studies that can be used to design or
interpret their experiments. We also designed it to aid curation
by adding an easy way to report incorrect predictions. The
features of WhiteText Web are similar to NIF Integrated
Nervous System Connectivity resource (Larson and Martone,
2013). Our text-mined results are less accurate than the NIF
connectivity resource, which is based on six manually curated
databases. Also, the NIF resource provides the direction of the
connections and reports of no connectivity. However, WhiteText
Web provides a wider search covering more species and sources
and underlines key words that indicate direction (“projects to”
and “terminated in” for example). Further, WhiteText Web
provides original text with highlights for quick viewing and the
ability to provide instant feedback. NIF and BAMS2 provide
increasingly valuable resources for integration and validation as
they continue to grow with the published literature (Bota et al,,
2015).

Recently, two teams reported large-scale tract-tracing studies
in mouse (Oh et al., 2014; Zingg et al., 2014). Our system can
supplement these studies by providing evidence of connectivity
in other species and providing literature context for the
connections. Unlike the large-scale surveys, the connectivity
statements we extract are often from studies that potentially
provide additional context and relationships. For example, future
work could extract behavior and systems that are related to a
connection by examining the abstract or full text that contains
the connection.

Our work has several limitations. First, our analysis was
limited to article titles and abstracts. Application of our methods
to the complete texts of papers should provide more brain
region mentions that can be mined for connections and other
relationships. However, a recent study of neuroscience document
classification demonstrated the difficulty of using full text,
reporting low performance when using information from full
text compared to abstracts for an article classification task
(Ambert et al., 2013). This is presumably because abstracts
tend to be highly concentrated with factual statements about
the study compared to the rest of the article. Like Cohen and
colleagues we believe better tools may be needed to fully exploit
the different content and structure of full text (Cohen et al.,
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2010). Richardet et al. address these questions by extracting
connectivity from over 630,216 full text neuroscience articles
to predict over 250,000 connectivity relations, more than what
was extracted from all PubMed abstracts (Richardet et al., 2015).
They found that specific filtering rules were needed for full
text. However, they report no differences between connections
extracted from full text and abstracts in terms of distance and
precision. Another limitation is that our tools were limited to
analysis of single sentences, so connections that are described
in more than one sentence could not be captured. We estimate
that at least 25% of connections mentioned in an abstract span
multiple sentences, a substantial loss of information for the text
mining approach. Directionality of connections is also lost as
our methods only predict presence of connection. However,
we note that directions are annotated in the first corpus and
WhiteText Web underlines direction-specifying keywords for the
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