
METHODS
published: 29 September 2015
doi: 10.3389/fninf.2015.00023

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2015 | Volume 9 | Article 23

Edited by:

Marc-Oliver Gewaltig,

Ecole Polytechnique Federale de

Lausanne, Switzerland

Reviewed by:

Alexander K. Kozlov,

Royal Institute of Technology, Sweden

Padraig Gleeson,

University College London, UK

Robert C. Cannon,

Textensor Limited, UK

*Correspondence:

Jack L. Gallant,

University of California, Berkeley, 3210

Tolman Hall #1650, Berkeley, CA

94720, USA

gallant@berkeley.edu

Received: 08 May 2015

Accepted: 07 September 2015

Published: 29 September 2015

Citation:

Gao JS, Huth AG, Lescroart MD and

Gallant JL (2015) Pycortex: an

interactive surface visualizer for fMRI.

Front. Neuroinform. 9:23.

doi: 10.3389/fninf.2015.00023

Pycortex: an interactive surface
visualizer for fMRI
James S. Gao 1, Alexander G. Huth 2, Mark D. Lescroart 2 and Jack L. Gallant 1, 2, 3*

1 Vision Science Program, University of California, Berkeley, Berkeley, CA, USA, 2Helen Wills Neuroscience Institute, University

of California, Berkeley, Berkeley, CA, USA, 3Department of Psychology, University of California, Berkeley, Berkeley, CA, USA

Surface visualizations of fMRI provide a comprehensive view of cortical activity. However,

surface visualizations are difficult to generate and most common visualization techniques

rely on unnecessary interpolation which limits the fidelity of the resulting maps.

Furthermore, it is difficult to understand the relationship between flattened cortical

surfaces and the underlying 3D anatomy using tools available currently. To address

these problems we have developed pycortex, a Python toolbox for interactive surface

mapping and visualization. Pycortex exploits the power of modern graphics cards to

sample volumetric data on a per-pixel basis, allowing dense and accurate mapping of

the voxel grid across the surface. Anatomical and functional information can be projected

onto the cortical surface. The surface can be inflated and flattened interactively, aiding

interpretation of the correspondence between the anatomical surface and the flattened

cortical sheet. The output of pycortex can be viewed using WebGL, a technology

compatible with modern web browsers. This allows complex fMRI surface maps to be

distributed broadly online without requiring installation of complex software.

Keywords: fMRI, visualization, python, WebGL, data sharing

1. Introduction

Functional magnetic resonance imaging (fMRI) experiments produce rich data revealing the
patterns of hemodynamic activity throughout the brain (Huettel et al., 2009). However, tools for
visualization of fMRI data remain relatively primitive. Volumetric views that show single slices or
maximum intensity projections (Figure 1) reveal only a small portion of the available data. More
sophisticated tools use 3D reconstructions of the cortical surface to create inflated or flattened
cortical surfaces (Cox, 1996; Goebel, 1997; Dale et al., 1999; Van Essen et al., 2001). However, most
of these tools produce static views of the data so it is often difficult to interpret the relationship
between cortical anatomy and inflated and flattened surfaces. Furthermore, current packages use
standard computer graphics libraries that are not optimized for accurate visualization of volume
projections. They tend to under-sample the underlying volumetric data and do not produce optimal
visualizations. Finally, no current visualization packages provide a convenient platform for creating
interactive online visualizations for a broad audience.

We addressed the shortcomings of 3D visualization tools by developing pycortex, an interactive
software package for viewing fMRI data that is optimized for displaying data on the cortical surface.
Pycortex streamlines the process of surface visualization and produces interactive displays that
switch smoothly between folded, inflated, and flattened views of the cortical surface. Pycortex
implements a pixel-wise mapping algorithm for projecting volumetric data onto the cortex. This
method samples the underlying functional data densely and produces accurate, visually appealing

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2015.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2015.00023&domain=pdf&date_stamp=2015-09-29
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:gallant@berkeley.edu
http://dx.doi.org/10.3389/fninf.2015.00023
http://journal.frontiersin.org/article/10.3389/fninf.2015.00023/abstract
http://loop.frontiersin.org/people/234404/overview
http://loop.frontiersin.org/people/192926/overview
http://loop.frontiersin.org/people/134482/overview
http://loop.frontiersin.org/people/13476/overview

Gao et al. The interactive pycortex surface visualization package

FIGURE 1 | Typical fMRI visualization methods. Three typical methods for visualizing fMRI data are used here to visualize a single data set (Huth et al., 2012). (A)

A single axial slice from an anatomical image is shown overlain with functional data exceeding statistical threshold. It is difficult to recognize anatomical features in this

view and much of the functional data is hidden. (B) A maximum intensity projection (i.e., a glass brain view) is shown along with all functional data that exceeds a

statistical threshold. This view shows more of the functional data than can be seen in the single slice but the anatomical location of these signals is obscured. (C) An

inflated cortical surface is shown with curvature highlighted in grayscale, and overlain with functional data exceeding statistical threshold. The anatomical location of

the functional data is clearer than in the other views, but multiple views are required to see all of the data. None of these standard visualizations show all of the data in

a succinct and interpretable way.

renderings of the fMRI data. Finally, pycortex uses WebGL
to display the results of the analysis. These WebGL-based
visualizations can be created and viewed on the fly, or they can be
saved as a web page that can be viewed by anyone with a modern
web browser. These standalone visualizations can easily be shared
with colleagues, included as links in published articles, or shared
online with a broad audience.

To see a demonstration of what can be achieved with
pycortex, please visit http://www.gallantlab.org/pycortex/
retinotopy_demo. This demo shows the results of a retinotopic
mapping fMRI experiment that was performed on one subject.
Retinotopic mapping is one of the workhorse tools in fMRI
experiments of human vision, and it is used to identify the
cortical extent and distribution of many human visual areas
(Sereno et al., 1995; Engel et al., 1997; Sereno, 1998). In this
online demo, the retinotopic mapping stimulus that the subject
saw appears on the right, and measured blood oxygenation
level-dependent (BOLD) responses measured across the cortical
sheet are shown at left.

The rest of this paper is divided into three sections. The first
section describes the advantages of cortical surface-based analysis
and visualization over other methods. The second explains the
innovative aspects of pycortex as a tool for surface visualization.
Finally, the third section describes a typical pycortex workflow
and presents examples of the major features in pycortex.

Readers are encouraged to download the package (https://
github.com/gallantlab/pycortex/) to follow along. Additional in-
depth examples and explanations are included in the pycortex
documentation (http://gallantlab.org/pycortex/docs/).

2. Background

fMRI generates rich volumetric data which can be difficult to
visualize. Imaging data are often presented as 3D projections
onto 2D planes. However, contiguous functional domains in
volume visualizations may appear as unconnected patches.
Surface visualization provides an intuitive way to simultaneously
view all cortical activity recorded in an fMRI dataset (Van
Essen et al., 2001). The organization of the mammalian cortex
ensures that discrete functional domains can be visualized as
contiguous patches on the cortical surface (Felleman and Van
Essen, 1991; Kaas, 2012). However, the folding of the cortex
obscures information deep in sulci, so functional information
is difficult to visualize on the raw surface. To permit better
visualization, surface visualizations commonly unfold the sulci
and gyri while maintaining anatomical contiguity.

Many fMRI data analysis packages include a surface
visualization module, and these all make use of a standard three-
step pipeline: (1) a triangular mesh representation of the cortical
surface is extracted from an anatomical scan; (2) functional and

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2015 | Volume 9 | Article 23

http://www.gallantlab.org/pycortex/retinotopy_demo
http://www.gallantlab.org/pycortex/retinotopy_demo
https://github.com/gallantlab/pycortex/
https://github.com/gallantlab/pycortex/
http://gallantlab.org/pycortex/docs/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

anatomical data are coregistered; (3) functional data (or the
results of some analysis of the functional data) are projected
onto the cortical surface mesh representation. In the following
sub-sections, we detail how each of these steps is accomplished.

2.1. Cortical Surface Mesh Generation
The cortical surface is usually modeled as a triangular mesh in
3D. The mesh is created by first segmenting the brain at the
tissue boundaries in a volumetric anatomical scan, then applying
a mesh generation algorithm such as marching cubes (Dale et al.,
1999). Once the triangularmesh has been created, 3D geometrical
operations are performed to inflate and flatten the cortical surface
(Fischl et al., 2001). Flattened views of the cortical surface show
data across the entire cortex without the need for multiple views
in 3D. In order to create a flattened cortical surface representation
from the three-dimensional cortical sheet without introducing
excessive spatial distortion, relaxation cuts must be introduced
into the cortical surface model. This operation is typically
performed manually. To avoid splitting regions of interest on the
flattened surface it is best to use functional localizer information
when determining the location of relaxation cuts.

2.2. Coregistration
Functional MRI data are typically collected using an imaging
sequence that is optimized for functional rather than anatomical
tissue contrast (Nishimura, 2010). Thus, the functional data and
the anatomical data that produced the surface must be spatially
aligned before projecting the functional data onto the cortical
surface model. This process is called coregistration (Jenkinson
and Smith, 2001) and results in a transformation matrix that
maps between the 3D coordinates of voxels in the functional
data and the 3D coordinates of voxels in the anatomical
data. Coregistration is typically performed automatically by
global optimization of an affine transform from the functional
image to the anatomical image used to generate the surface
(Jenkinson et al., 2002). Since the contrast between anatomical
and functional images are different, these frequently generate
poor alignments.

In contrast, recent coregistration algorithms optimize surface
intersections with the functional data. By maximizing the
gradients across the surface, these algorithms can achieve
accurate coregistration with no manual intervention. This
technique—called boundary based registration (BBR) (Greve
and Fischl, 2009)—performs extremely well for data collected
using a whole-head slice prescription. However, BBR can
still fail unexpectedly. Imaging artifacts related to echo-planar
imaging such as distortions and dropout negatively affect the
performance of BBR, and it rarely works well with partial-
head slice prescriptions. This is why the accuracy of automatic
coregistration should always be verified visually by overlaying the
transformed functional image on the anatomical data.

In most fMRI analysis pipelines, the functional-anatomical
transformation estimated by the coregistration procedure
is used to re-slice functional data into the same space
and resolution as the anatomical scan. Re-slicing allows
interpretation of functional results with respect to volumetric
anatomical landmarks and provides a straightforward means

of transforming data into standardized anatomical spaces (e.g.,
MNI or Talairach space) (Friston et al., 1995). Re-sliced data can
also be projected onto the inflated or flattened cortical surface.
However, as we will describe in more detail below, re-slicing
data into volumetric anatomical space is not strictly necessary
for projection of the data onto the cortical surface. Only the
functional-anatomical transformation is necessary.

2.3. Projection of Functional Data
Visualization of the functional data on the cortical surface
is usually accomplished using a 3D graphics pipeline that
implements simple vertex-based projection. Vertex-based
projection (Woo et al., 1999) can be split into three steps
(Figure 2). First, each vertex in the cortical surface mesh is
mapped into the functional volume. Second, the volumetric
functional data are sampled at the vertex locations. If functional
data have been re-sliced to anatomical space then this is trivial.
However, by using the functional-anatomical transformation
information this mapping can be applied directly from the
functional data (in its native space) onto the cortex without
re-slicing. Finally the color of each pixel on the display is
determined by a 3D renderer, usually by linear interpolation
between the values of the nearest vertices. This three-step
method is not optimal because it requires two separate sampling
steps: once from volume space to vertex space, and then again
from vertex space to display (pixel) space. If the data are
re-sliced to anatomical space then this adds a third sampling
step. Each sampling step leads to aliasing and loss of resolution.
Furthermore, mesh smoothing and other surface manipulations
may cause uneven vertex spacing, and therefore uneven spatial
resolution across the cortical surface. This effect is especially
apparent with high resolution data (for example, < 2mm3 voxel
data collected using 7T fMRI).

One possible way to address this problem is to subdivide the
mesh surface to increase the number of vertices, and thus the
number of sampling locations. This is the solution is adopted
by BrainVoyager QX (Goebel, 1997). However, increasing the
number of vertices greatly increases the computational load, and
can only be applied to small portions of the cortex at one time.

3. Innovations in Pycortex

Pycortex improves the process of fMRI visualization in a number
of ways. First, pycortex integrates a number of tools to generate
high quality cortical surface reconstructions. Pycortex uses these
surfaces to sample functional data using a novel projection
algorithm that results in much higher resolution visualizations.
Finally, we draw on the power of modern graphics cards to
provide a highly interactive, accurate, and portable visualization
platform that works from within any modern web browser.

3.1. Surface Generation and Coregistration
Software packages such as Caret (Van Essen et al., 2001),
Freesurfer (Dale et al., 1999), SUMA (Cox, 1996), and
BrainVoyager QX (Goebel, 1997) are typically used to generate
a high quality mesh representation of the cortex. Since these
surface segmentation and mesh manipulation algorithms are

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2015 | Volume 9 | Article 23

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

already well developed, they are not reimplemented in pycortex.
Instead, pycortex uses surface information output from these
packages to create three-dimensional visualizations that can
be easily manipulated and viewed. Pycortex is most closely
integrated with Freesurfer, a free, open-source software package
that is already used by a large community [including the
Human Connectome Project (Glasser et al., 2013)]. However,
pycortex can import most of the 3D formats that are used by
standard MRI segmentation packages (see documentation for
details).

Since the advent of BBR, automatic coregistration algorithms
usually produce high quality alignment for whole-brain studies
without manual intervention. However, when partial-head slice
prescriptions are used then it is best to perform manual
coregistration, and it is always wise to visually check any
coregistration solution. Pycortex provides an alignment tool that
plots the surface mesh overlaid on the functional data. This
allows users to view the alignment in orthogonal slice planes (to
simulate traditional piecewise linear transformations), or using a
global 3D view. The surfacemay be translated, rotated, and scaled
interactively relative to the functional volume. The user can use
these tools to visually match the surface with the underlying
functional volume.

Some of the available tools for coregistration and
segmentation are difficult to use. For example, the Freesurfer
interface for marking relaxation cuts for surface flattening can be
cumbersome; the 3D interface uses button controls for rotation
and manipulation rather than a much more natural click and
drag interface. Therefore, pycortex integrates several different
tools to simplify the process of segmentation and coregistration.
Pycortex replaces the default Freesurfer tool with Blender, an
open source mesh editing program that is relatively easy to use.
Pycortex also integrates with the BBR implementation provided
by FSL to provide automatic coregistration that is compatible
with surfaces generated by Freesurfer. The simple command
pipeline provided by pycortex makes the entire process of

surface generation and visualization smooth and relatively
straightforward.

3.2. Pixel-based Mapping
As discussed above, vertex-based mapping can be a lossy process
that involves unnecessary interpolation. Pycortex implements
a simpler, more accurate sampling scheme called pixel-based
mapping (Figure 3). This scheme replaces the three separate
projection steps with a two-step process that only samples the
data once. This pixel-based algorithm directly maps the pixel
coordinates on the display into the functional volume, thereby
eliminating the intermediate vertex space representation. Pixel-
based mapping therefore produces much higher fidelity images
of the underlying data than those produced by the typical
vertex-based method (Figure 4A vs. Figure 4B). Compared to

FIGURE 3 | Retinotopic data for example subject. Pixel-based mapping in

pycortex renders voxels true-to-form. Here, a retinotopic map as in Hansen

et al. (2007) is plotted using webgl. Note that the slanted slice prescription

and the isotropic voxel size is easily visible due to pixel-based mapping and

nearest-neighbor sampling. The inset shows how a single voxel intersects the

surface.

FIGURE 2 | Standard vertex-based mapping. Standard OpenGL rendering implements an algorithm that can be used for vertex-based mapping. First, a fragment

of the surface (gray) embedded in the voxel data (3D grid) is used to sample the data. Sampling occurs at only the vertices of the triangle (red, green, blue cubes). The

surface triangle is projected to the screen on a regular 2D grid through a standard frustum projection (Woo et al., 1999). Only the data sampled by the vertices are

carried over to the screen. Finally, the automatic graphics pipeline rasterizes the triangle by interpolating the colors across a barycentric coordinate space.

Vertex-based mapping is generic, but does not adequately sample volumetric data.

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2015 | Volume 9 | Article 23

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

FIGURE 4 | Typical fMRI data projections. On the left, simulated 2D volumes are projected onto a 1D screen. The large colored blocks represent voxel data and

the small rectangles represent screen pixels. Three different mapping methods are illustrated along with their effect on the surface. (A) Standard vertex-based

mapping uses vertices in the surface mesh to sample the underlying functional data. The vertices (red x’s) sample the functional data using a nearest-neighbor

algorithm and the values are automatically interpolated by the rasterizer. Although the surface passes through the orange voxel at bottom right, there are no orange

pixels on the screen because there is no enclosed vertex. (B) Pixel-based mapping projects screen pixels into the volume to sample the underlying data. Orange

pixels now appear on the screen since the surface passes through that voxel. (C) Thickness mapping samples data along the entire line between the white matter and

the pial surface, thereby reflecting activity throughout the thickness of the cortical mantle. (D) The difference in sampling density between pixel-based and

vertex-based mapping is shown for a 1mm slice through the cortical volume as it is mapped onto a flat map. Vertex samples are shown as red x’s and pixel samples

are shown as blue dots. The increased density improves the accuracy of functional data display, particularly with high-resolution functional data.

vertex-based methods, pixel-based mapping samples the cortex
much more densely (Figure 4D). However, it is computationally
costly since the functional volume must be resampled for every
viewpoint in 3D. If the view is rotated even a degree, every pixel
must be mapped anew into volume space. However, pycortex
renders visualizations smoothly and in real time when used with
modern graphics cards and shader pipelines.

Once pixel locations are mapped into volume space, they
must sample the underlying data to derive their color. Different
sampling methods trade off between speed and accuracy and
generate visually distinct images. Pycortex includes several
different sampling methods which allow very fine-grained
control over this trade-off. The simplest method is nearest-
neighbor sampling in which the mapped pixel is assigned the
value from the nearest voxel. Nearest-neighbor sampling is
fast and easy to compute and simple to interpret. However,
nearest-neighbor sampling renders hard edges between adjacent

voxels, so it can create a false impression of sharpness in
the data. Trilinear sampling interpolates between the eight
closest voxels to compute each sample. Trilinear interpolation
uses a triangular filter that reduces aliasing compared to
nearest-neighbor sampling. However, this suppresses high spatial
frequency information and may produce results that are too
smooth. Sinc filtering results in samples with the lowest
reconstruction error (Oppenheim and Willsky, 1996). Sinc
filtering can be approximated with a lanczos filter that optimally
preserves the spatial frequencies present in the functional data.
However, this truncated filter is slow to apply so this sampling
scheme cannot be used for real-time rendering. Other sampling
schemes can also be implemented in pycortex through an
extensible interface.

Although pixel-based mapping shares some superficial
similarities with ray tracing, its operation is simpler and faster
than a full ray tracing pipeline. In ray trace rendering, simulated

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2015 | Volume 9 | Article 23

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

rays are projected from a virtual camera through screen pixels. If
the ray intersects with a mesh within the scene, the pixel takes on
the color of the underlying geometry given the lighting model in
use. Pixel-based mapping also computes the color on a per pixel
basis, however it is strictly a fragment shading procedure (Woo
et al., 1999). Geometric operations are performed by frustum
projection, rather than ray intersection.

With other visualization packages such as Caret, only a single
position between the pial and white matter surface (typically
halfway between) is sampled to generate the visualization.
However, human cortex varies in thickness from 1.5 to 3 mm
(Fischl and Dale, 2000); thus sampling only a single position
may ignore voxels which are closer to the white matter or pial
surface. Pycortex uses a special sampling scheme called thickness
sampling to take multiple samples between pial and white
matter surfaces, which captures activity distributed through
the thickness of the cortex. In thickness sampling, each pixel
is mapped to a line in volume space that stretches between
the pial and white matter surfaces. Several samples are taken
along this line and the samples are averaged to derive the
final pixel value (see Figure 4C). Alternatively, a single plane
within the cortical mantle can be selected so that the data can
be viewed anywhere between the pial and the white matter
surfaces. Thickness sampling is a costly process to run on
a CPU, but it is fast and efficient when implemented using
custom shaders and a modern graphics card. To further improve
responsiveness with thickness sampling, samples along a random
set of positions through the cortical sheet can be averaged. This
dithering trades off accuracy in favor of interactivity, but still
accurately represents information through the thickness of the
cortex.

3.3. WebGL and Data Sharing
Graphics card acceleration allows highly complex datasets to
be rendered in real time on standard computers. Typical 3D
data visualization software relies on programming interfaces like
OpenGL to access this powerful hardware. However, software
which relies on OpenGL typically requires extensive installation
procedures to visualize even simple datasets. WebGL is a new
technology which melds the OpenGL programming interface
with Javascript, a language used to program websites. This allows
powerful data visualizations to be programmed directly inside
a web browser. Bringing graphics card acceleration to web
pages provides the opportunity to create portable, interactive
visualizations of fMRI data.

Pycortex takes full advantage of the power of WebGL by
implementing custom shaders on the graphics card. Modern
graphics cards include programmable shaders that allow custom
code to be uploaded to the card, thus enabling highly parallel
rendering operations. By using custom shaders, pycortex can
use accelerated rendering algorithms that would otherwise be
too slow to be practical. When data is visualized in the WebGL
view, only volumetric data and surface structure is passed into
the web browser; all other functionality is accomplished by
shader programs. Custom shaders included in pycortex enable
the surface to be drawn quickly, even when pixel-based mapping
and a user-selectable sampling method are used.

Because web browsers are ubiquitous on modern personal
computers, no special installation is required to view pycortex
visualizations. The use of a web browser as the front end for
pycortex also allows an unprecedented level of interactivity. For
example, the anatomical surface can be flattened interactively
simply by dragging a slider. This interactive design helps the user
to develop a clear sense of the correspondence between flattened
and folded surfaces. Pycortex can also display temporally varying
time-series data on the cortical surface in real time. This
allows simultaneous visualization of the experimental paradigm
and the functional data in real time (for an example of
such a visualization, see http://www.gallantlab.org/brainviewer/
retinotopy_demo).

It is simple to post pycortex visualizations to a web page for
public viewing. These static visualizations are generated using
a simple command that generates a single web page with most
resources embedded directly. The surface structure, data, and
the webpage can then be posted to any public facing web site.
For example, the online Neurovault data repository (http://
neurovault.org) now makes use of pycortex, and any fMRI
data uploaded to Neurovault can be visualized automatically in
pycortex. These visualizations are visible at a static web address
that can be referenced in papers and shared with anyone with a
web browser.

4. Pycortex Functionality

Pycortex is free, open-source software written in python and
javascript. Pycortex adds to the growing body of python tools for
neuroscience (Millman and Brett, 2007; Halchenko and Hanke,
2012; Pedregosa et al., 2012). Additional third-party software
used by pycortex to provide optional and core functionality is
outlined in Table 1. Installation instructions for pycortex and
associated software can be found at http://pycortex.org.

In pycortex user interaction is handled through the python
command line. Here, we present the typical workflow for
pycortex, proceeding from anatomical and functional images
to a web-based 3D visualization. In the simplest possible case,
only three commands are required to generate a fully interactive
surface visualization in pycortex:

>>> c o r t e x . segment . i n i t _ s u b j e c t (" S1 " ,
" T1_ana tomica l . n i i . gz ")

>>> c o r t e x . a l i g n . au t oma t i c (" S1 " ,

TABLE 1 | The following software is used in pycortex for either core or

added functionality.

Software Function

Python Required to run pycortex

ImageMagick Flatmap ROI rendering

Freesurfer Surface segmentation and generation

Blender Surface manipulation for flattening

Inkscape ROI definition and manipulation

Please consult the pycortex documentation for additional information about the installation

process.

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2015 | Volume 9 | Article 23

http://www.gallantlab.org/brainviewer/retinotopy_demo
http://www.gallantlab.org/brainviewer/retinotopy_demo
http://neurovault.org
http://neurovault.org
http://pycortex.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

" t rans form_name " , " f u n c t i o n a l . n i i . gz ")
>>> c o r t e x . webshow ((da ta , " S1 " ,

" t rans form_name "))

These commands illustrate three important python modules for
cortical segmentation and visualization. The segment module
initializes the cortical segmentation using an anatomical image.
The align module provides both automatic and manual
coregistration tools for coregistering the surface and functional
images. The webgl module is used to generate interactive web
visualizations. Two other modules are also documented here
to highlight additional pycortex functionality; the overlay
module can be used to define surface overlays and regions of
interest (ROIs), and the quickflatmodule is used to generate
figure-quality images.

Pycortex makes use of a large amount of internal data such
as subject surfaces, alignments and other metadata. All data

required for pycortex is kept in a database that is implemented
as a simple directory on the user’s hard drive. In most cases
pycortex uses this database seamlessly without requiring any
interaction from the user. (For more information about the
database and all supported file formats, consult the pycortex
documentation.) A summary of the data flow in pycortex can be
found in Figure 5.

4.1. The segment Module
Pycortex integrates with Freesurfer to generate surfaces from
anatomical images. For optimal results from Freesurfer,
anatomical MRI images should be collected using the scanning
protocols defined in the Freesurfer documentation 1. Freesurfer
is optimized to work with a specific multi-echo T1 scan sequence,

1https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&

do=get&target=FreeSurfer_Suggested_Morphometry_Protocols.pdf

FIGURE 5 | Pycortex module diagram. Pycortex provides an integrated visualization toolkit for fMRI. Several pycortex modules are used to transform the

user-provided anatomical and function data into an interactive visualization. The segment module integrates with Freesurfer to generate the surface. The align

module uses the functional data and the surfaces to generate a transform. The quickflat and webgl modules generate static 2D flatmaps and interactive 3D

visualizations, respectively. The overlays module is used to generate vertex-based ROIs and extract surface-defined volume ROIs.

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2015 | Volume 9 | Article 23

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get&target=FreeSurfer_Suggested_Morphometry_Protocols.pdf
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get&target=FreeSurfer_Suggested_Morphometry_Protocols.pdf
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

and we have found that this sequence maximizes surface quality
and minimizes the need for manual editing of the surface after
automatic segmentation. Once the requisite anatomical images
have been collected, only two lines of code are necessary to
initiate surface segmentation in pycortex:

>>> from c o r t e x import segment
>>> segment . i n i t _ s u b j e c t (" S1 " ,

" T1_ana tomica l . n i i . gz ")

This command uses Freesurfer to generate the surface files
automatically and stores the surface in the pycortex database with
the subject identifier "S1". (All further pycortex processing steps
will refer to this surface by the subject identifier assigned at this
stage of processing). Segmentation is a slow process that can take
up to 12 h for one subject on a Intel Core i7 2700k, but it can be
run unattended.

Freesurfer generally performs very well on normal brains, but
minor topological errors may occur in areas of low contrast,
such as at the cerebellar boundary and around the optic nerve.
Segmentations may also be compromised around lesions that
may be present in diseases such as stroke or aneurysm. It is
therefore wise to check all surfaces before further processing
using one of the following commands:

>>> segment . fix_wm (" S1 ")
>>> segment . f i x _ p i a (" S1 ")

These commands open an interface that permits segmentation
edits to be applied directly to the white matter or pial surfaces.
One window is from Freesurfer’s segmentation editor tool;
white matter voxels can be added or removed in this interface
to alter the final surface. A 3D view also opens in another
window to view the surface that resulted from the current
segmentation. Minor segmentation errors typically manifest as
spikes or lumpy areas on the surface. Having both interfaces
open simultaneously allows location information to be shared,
facilitating manual editing to improve surface extraction. (For
more information about how to make these edits, consult the
Freesurfer documentation, or follow the segmentation tutorial
in the pycortex documentation.) Saving and exiting from all
windows will automatically run Freesurfer once more to apply
changes and generate new surfaces.

Once the surfaces are deemed satisfactory, relaxation cuts can
be introduced to facilitate creation of cortical flatmaps. This is
accomplished with one command:

>>> segment . c u t _ s u r f a c e (" S1 " , " l h ")

This command automatically exports the surface and opens it in
Blender. Vertex selection and face deletion tools can be used to
remove the medial wall. Vertices can be marked in conjunction
with functional data to facilitate relaxation cutting. For example,
retinotopic mapping data can be projected onto the brain to
facilitate cutting along the calcarine sulcus to separate visual
hemifields.Marked cuts are processed automatically for use in the
flattening procedure. (In-depth instructions on performing this
step can be found in the documentation for pycortex.) When the
changes are saved, pycortex automatically flattens the surface and

makes the new flat surface available for visualization. Functional
data can immediately be plotted on this flatmap.

If segmentation is performed outside of the segment
module, it is still possible to use these surfaces in pycortex. For
example, if the user has existing surfaces generated by CARET,
copying the surface files directly into the pycortex database
allows them to be used in any pycortex visualization. (For more
information about how to use external surfaces, please consult
the pycortex documentation.)

4.2. The align Module
To project functional data onto anatomical surfaces accurately
the functional data must first be coregistered with the anatomical
surface. Pycortex supports automatic coregistration using the
BBR tool within FSL (see Background). Pycortex also provides
a fully manual alignment tool. Three arguments are required to
launch the automatic coregistration tool: the subject identifier,
the name of the transform, and a functional reference image. For
example,

>>> from c o r t e x import a l i g n
>>> a l i g n . au t oma t i c (" S1 " , " t e s t _ a l i g nm en t " ,

" r e f e r e n c e _ e p i . n i i . gz ")

This will automatically coregister the function image with the
surface, and store the transform into the pycortex database. After
an automatic coregistration, the transform can (and should)
be checked with the manual alignment tool to ensure accurate
coregistration:

>>> a l i g n . manual (" S1 " , " t e s t _ a l i g nm en t ")

This manual alignment tool has three panels that show the
current surface slice intersection with the reference image, and a
fourth panel that shows the full 3D rendering with slice positions.
Showing the data this way facilitates accurate alignment of the
gray matter with the functional data. A sidebar contains options
to adjust the contrast and brightness, along with some additional
settings. The surface can be moved using key commands listed in
the sidebar. Hotkeys and buttons in the graphical interface allow
the anatomical volume to be translated, rotated and scaled in
order to align it optimally with the functional data. The alignment
can be saved using a button or by exiting the interface.

Transforms in pycortex are stored in the pycortex database
in the form of an affine transform matrix that operates in
magnet isocenter right anterior superior (RAS) space (as defined
by NIFTI headers). The matrix transforms surface coordinates,
which are typically stored with respect to the anatomical space,
into the functional space. This format is compatible with
AFNI’s transform format. Utility functions are included to allow
conversion between AFNI/pycortex format and the FSL format.

4.3. The quickflat and webgl Modules
Pycortex provides two visualization tools to plot functional
data on surfaces. quickflat visualizations use matplotlib to
generate figure-quality 2D flatmaps and webgl uses a web
browser for interactive visualizations. Both tools use pixel-based
mapping to project functional data onto the cortical surfaces
accurately.

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2015 | Volume 9 | Article 23

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

quickflat was used to generate the figures in Figure 6; to
load the same visualization,

>>> import c o r t e x
>>> d a t a s e t = c o r t e x . l o ad

(" S 1 _ r e t i n o t o p y . hdf ")
>>> c o r t e x . quickshow (d a t a s e t . a n g l e)

This sequence of commands loads the example dataset (http://
gallantlab.org/pycortex/S1_retinotopy.hdf) and then plots the
flatmap in a matplotlib window. (For more information about
additional display options including options to select the
sampling function, please consult the pycortex documentation.)

To generate these flatmaps quickly, the quickflat module
precomputes a mapping from volumetric samples to figure
pixels. These mappings are represented as sparse matrices so
visualizations can be generated from new data quickly by taking
the dot product of the matrix with the unraveled volume.
To generate these sparse matrix mappings, a grid of pixel
locations are generated that span the extent of the flatmap
surfaces. A Delaunay triangulation is then generated for the flat
surfaces and the simplex membership is found for each pixel.
Next, the barycentric coordinate on the simplex is generated
from the triangulation transform for every pixel. The original
surface coordinate is then computed by substituting the mid-
cortical vertex (or averaged across multiple depths for thickness
sampling) for the flatmap vertex in the Delaunay triangulation,
and weighting the vertices with the barycentric coordinate.

Finally, a sampler argument determines which function is used
to sample the 3D coordinate.

The webgl visualization can be launched using syntax similar
to that used for the quickflat visualization:

>>> import c o r t e x
>>> d a t a s e t = c o r t e x . l o ad (" r e t i n o t o p y . hdf ")
>>> c o r t e x . webshow (d a t a s e t)

This starts a web server in python and opens a browser window to
display the visualization. After a brief loading period, the cortical
surface is shown with the retinotopy demo data projected on the
surface. The rendered 3D view is a fully dynamic visualization
that allows real time rotation, panning, and scaling.

The data display can be modified interactively in numerous
ways. The dynamic view has two sliding windows that contain
display options. The large slider at the bottom linearly
interpolates the shape of the cortical mesh between the original
(folded) anatomical, inflated, and flattened surfaces. This allows
the unfolding process to be visualized continuously, and it
clarifies the correspondence between 3D anatomical features
and the cortical flatmap. The sliding window located at the top
contains options that change how the data is displayed. Different
colormaps can be selected and the colormap ranges can be altered
dynamically. 2D colormaps are also supported, allowing two
datasets to be contrasted simultaneously. Multiple datasets can be
loaded and compared directly by simply toggling between them.
Sliders are provided to change the transparency of the dropout,
overlay, data, and curvature layers.

FIGURE 6 | High quality flatmaps generated by pycortex. Cortical flatmaps can be quickly generated in pycortex using the quickflat module. Matplotlib is

used to view figure-quality flatmaps in a standard size. Options are available to include a colorbar, ROI outlines, ROI labels, and curvature information. This figure

shows retinotopic organization of visual cortex for one subject as in Hansen et al. (2007)

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2015 | Volume 9 | Article 23

http://gallantlab.org/pycortex/S1_retinotopy.hdf
http://gallantlab.org/pycortex/S1_retinotopy.hdf
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

As explained earlier, pycortex uses custom shaders that
implement pixel-based mapping. During 3D graphics rendering,
the color of each pixel is determined by some predefined code
at the fragment shading step. Under a traditional fixed-function
pipeline, fragment shading is performed by a rasterizer that
implements vertex-basedmapping (Woo et al., 1999). In contrast,
the fragment shader in pycortex projects each pixel into the
functional space in 3D, and then samples the underlying volume
data by reading from a texture. Nearest-neighbor or trilinear
sampling is automatically performed by OpenGL when the data
is read from the texture. This generates a fully interactive and
accurate real-time visualization.

The webgl module contains code that parses and generates
the HTML and javascript code required to display surface data
in a web browser. It provides two possible use cases: a dynamic
view that can be controlled by a back end python web server,
and a static view that generates static HTML files for upload into
an existing web server. The OpenCTM library (Geelnard, 2009)
is used to compress the surface mesh into a form that can be
utilized by the web browser. If a dynamic view is requested, the
webgl module sets up a local web server with all the required
surface and data files accessible to the web browser. If a static
view is requested, all HTML and javascript code is embedded into
a single HTML document and saved to a set of files. Data (in
the form of compressed mosaic images) and surface structures
are stored separately. These standalone visualizations can then
be copied to a web server to be shared with colleagues, included

as links in published articles, or shared online with a broad
audience.

Pycortex also includes a javascript plugin architecture that
allows new interactive visualizations to be developed easily. For
example, the static viewer released with Huth et al. (2012) http://
gallantlab.org/brainviewer/huthetal2012/ contains a plugin that
allows the user to visualize how 1765 distinct semantic
features are mapped across the cortical surface (Figure 7).
Clicking a point on the brain picks the closest voxel and the
viewer displays the semantic category tuning for the associated
voxel.

Finally, pycortex provides a bi-directional communication
framework between python and javascript, so that actions in
javascript can be scripted and manipulated in python. This
powerful interaction dynamic allows exploratory data analysis in
a way never before possible for fMRI.

4.4. The overlays Module
One common requirement of fMRI studies is to visualize regions
of interest (ROIs). ROIs are typically defined in volume space,
using a statistical threshold applied to a functional localizer
contrast (Poldrack, 2007). Because these thresholded regions are
not anatomically constrained their intersection with the cortical
surface is not guaranteed to be contiguous or smooth. Another
common requirement is to visualize retinotopic ROI defined by
identifying hemifield inversions on a cortical flat map (Hansen
et al., 2007). The overlays module provides a means to

FIGURE 7 | Static view for web presentation. Pycortex uses WebGL to generate a static view that can be hosted on a web site. The static view allows users to

share data with colleagues, collaborators, and the public. No additional software needs to be installed. This figure, published with Huth et al. (2012), shows a typical

static view. A static plugin written in javascript on the right interacts with the 3D view, allowing dynamic interaction between the plugin and the view.

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2015 | Volume 9 | Article 23

http://gallantlab.org/brainviewer/huthetal2012/
http://gallantlab.org/brainviewer/huthetal2012/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

define overlays, such as ROI borders and other surface markers,
directly on the cortical surface. These ROIs are automatically
rendered by pycortex as paths or regions on the rendered
surfaces.

To add an ROI, the user must provide contrast data and a
named transform:

>>> import c o r t e x
>>> c o r t e x . add_ ro i ((c o n t r a s t _ d a t a , " S1 " ,

" f u l l h e a d ") , name = ‘ROI name ’ , no $)

This automatically starts Inkscape, an open source vector editing
program. A flatmap as generated by quickflat is shown with
multiple layers corresponding to different overlays. If a closed
path is drawn into the ROI layer, pycortex regards it as a complete
ROI. A simple utility function can then extract the volumetric
mask of this ROI:

>>> mask = c o r t e x . ge t_ ro i_mask , no $ (" S1 " ,
" f u l l h e a d " , "V1 ")

>>> mask [‘ V1 ’] . shape
(3 1 , 100 , 100)

This returns a volume that indicates the number of ROI vertices
within each voxel. The volume can be converted into a binary
mask by finding all nonzero voxels. This simple thresholding
is equivalent to a nearest-neighbor sampling. Pycortex also
provides other projection options that may include additional
voxels. (For more information, please consult the pycortex
documentation.)

Pycortex stores overlays as 2D vector paths in the standard
SVG image format that is easily parsed by many libraries. This
allows flexible handling of surface overlays either in pycortex
(via Inkscape) or in other programs outside of pycortex. Each
functional contrast added with cortex.add_roi is stored as
an image layer in the SVG file. Thus, the file retains a permanent
record of the contrasts used to define each ROI.

5. Future Development

The pycortex WebGL view provides an unprecedented method
for exploration of cortical MRI data. The interactive interface
allows results to be manipulated in innovative ways that facilitate
comprehension, and the ability to generate static views greatly
simplifies data sharing and publication. However, the current
WebGL viewer contains a limited set of plugins for interactive
data visualization. We plan to develop a large set of interactive
plotting tools that will facilitate dynamic data analysis in a web
browser. We are also working on extensions to pycortex that
allow ECoG and EEG data to be visualized on the cortical surface.
Unfortunately because WebGL is a very new standard, support
is still unreliable. Therefore, we are also exploring options to
stabilize the software on additional platforms (including mobile
platforms) and to improve accessibility.

Author Contributions

JSG designed the software; JSG, AH, and ML contributed code;
JSG, AH, ML, and JLG wrote the paper.

Funding

This work was supported by the National Eye Institute
(EY019684 and EY022454), NIH NEI F32EY021710 to ML,
and from the Center for Science of Information (CSoI), an
NSF Science and Technology Center (IIS-1208203), under grant
agreement CCF-0939370.

Acknowledgments

Pycortex draws on and makes use of code from a large set of
open source libraries, without which it would not exist. Please
see the README file included with the software for a full list of
acknowledgements. Thanks to members of the Gallant lab who
helped beta test and develop this software, including N. Bilenko,
T. Cukur, and A. Nunez.

References

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional

magnetic resonance neuroimages.Comput. Biomed. Res. Int. J. 29, 162–173. doi:

10.1006/cbmr.1996.0014

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis.

I. Segmentation and surface reconstruction. Neuroimage 9, 179–194. doi:

10.1006/nimg.1998.0395

Engel, S. A., Glover, G. H., and Wandell, B. A. (1997). Retinotopic organization in

human visual cortex and the spatial precision of functional MRI. Cereb. Cortex

7, 181–192. doi: 10.1093/cercor/7.2.181

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in

the primate cerebral cortex. Cereb. Cortex 1, 1–47. doi: 10.1093/cercor/1.1.1

Fischl, B., and Dale, A. M. (2000). Measuring the thickness of the human cerebral

cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97,

11050–11055. doi: 10.1073/pnas.200033797

Fischl, B., Liu, A., and Dale, A. M. (2001). Automated manifold surgery:

constructing geometrically accurate and topologically correct models of

the human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80. doi:

10.1109/42.906426

Friston, K., Ashburner, J., Frith, C., Poline, J., Heather, J., and Frackowiak, R.

(1995). Spatial registration and normalization of images. Hum. Brain Mapp. 3,

165–189. doi: 10.1002/hbm.460030303

Geelnard, M. (2009). OpenCTM the Open Compressed Triangle Mesh File Format.

Available online at: http://openctm.sourceforge.net/

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl,

B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines

for the Human Connectome Project. Neuroimage 80, 105–124. doi:

10.1016/j.neuroimage.2013.04.127

Goebel, R. (1997). BrainVoyager 2.0: from 2D to 3D fMRI analysis and

visualization. Neuroimage 5, S635.

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image

alignment using boundary-based registration. Neuroimage 48, 63–72. doi:

10.1016/j.neuroimage.2009.06.060

Halchenko, Y. O., and Hanke, M. (2012). Open is not enough. Let’s take the next

step: an integrated, community-driven computing platform for neuroscience.

Front. Neuroinform. 6:22. doi: 10.3389/fninf.2012.00022

Hansen, K. A., Kay, K. N., and Gallant, J. L. (2007). Topographic organization

in and near human visual area V4. J. Neurosci. 27, 11896–11911. doi:

10.1523/JNEUROSCI.2991-07.2007

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2015 | Volume 9 | Article 23

http://openctm.sourceforge.net/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gao et al. The interactive pycortex surface visualization package

Huettel, S. A., Song, A. W., and McCarthy, G. (2009). Functional

Magnetic Resonance Imaging. Sunderland, MA: Sinauer

Associates.

Huth, A. G., Nishimoto, S., Vu, A. T., and Gallant, J. L. (2012). A continuous

semantic space describes the representation of thousands of object and

action categories across the human brain. Neuron 76, 1210–1224. doi:

10.1016/j.neuron.2012.10.014

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and

motion correction of brain images. Neuroimage 17, 825–841. doi:

10.1006/nimg.2002.1132

Jenkinson,M., and Smith, S. (2001). A global optimisationmethod for robust affine

registration of brain images.Med. Image Analy. 5, 143–156. doi: 10.1016/S1361-

8415(01)00036-6

Kaas, J. H. (2012). Evolution of columns, modules, and domains in the neocortex

of primates. Proc. Natl. Acad. Sci. U.S.A. 109(Suppl 1), 10655–10660. doi:

10.1073/pnas.1201892109

Millman, K. J., and Brett, M. (2007). Analysis of functional magnetic resonance

imaging in python. Comput. Sci. Eng. 9, 52–55.

Nishimura, D. G. (2010). Principles of Magnetic Resonance Imaging. Raleigh, NC:

Stanford University.

Oppenheim, A., and Willsky, A. (1996). Signals and Systems, (2nd Edn).

Upper Saddle River, NJ: Prentice Hall.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2012). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,

2825–2830.

Poldrack, R. A. (2007). Region of interest analysis for fMRI. Soc. Cogn. Affect.

Neurosci. 2, 67–70. doi: 10.1093/scan/nsm006

Sereno, M. I. (1998). Brain mapping in animals and humans. Curr. Opin.

Neurobiol. 8, 188–194. doi: 10.1016/S0959-4388(98)80139-6

Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W.,

Brady, T. J., et al. (1995). Borders of multiple visual areas in humans

revealed by functional magnetic resonance imaging. Science 268, 889–893. doi:

10.1126/science.7754376

Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., and

Anderson, C. H. (2001). An integrated software suite for surface-based

analyses of cerebral cortex. J. Am. Med. Inform. Associat. 8, 443–459. doi:

10.1136/jamia.2001.0080443

Woo, M., Neider, J., Davis, T., and Shreiner, D. (1999). OpenGL Programming

Guide: The Official Guide to Learning OpenGL. Reading, MA: Addison-Wesley

Longman Publishing Co., Inc.,

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Gao, Huth, Lescroart and Gallant. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2015 | Volume 9 | Article 23

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Pycortex: an interactive surface visualizer for fMRI
	1. Introduction
	2. Background
	2.1. Cortical Surface Mesh Generation
	2.2. Coregistration
	2.3. Projection of Functional Data

	3. Innovations in Pycortex
	3.1. Surface Generation and Coregistration
	3.2. Pixel-based Mapping
	3.3. WebGL and Data Sharing

	4. Pycortex Functionality
	4.1. The segment Module
	4.2. The align Module
	4.3. The quickflat and webgl Modules
	4.4. The overlays Module

	5. Future Development
	Author Contributions
	Funding
	Acknowledgments
	References

