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The contribution of this paper is to describe how we can program neurocimaging
workflow using Make, a software development tool designed for describing how to build
executables from source files. A makefile (or a file of instructions for Make) consists of
a set of rules that create or update target files if they have not been modified since
their dependencies were last modified. These rules are processed to create a directed
acyclic dependency graph that allows multiple entry points from which to execute the
workflow. We show that using Make we can achieve many of the features of more
sophisticated neuroimaging pipeline systems, including reproducibility, parallelization,
fault tolerance, and quality assurance reports. We suggest that Make permits a large
step toward these features with only a modest increase in programming demands
over shell scripts. This approach reduces the technical skill and time required to write,
debug, and maintain neuroimaging workflows in a dynamic environment, where pipelines
are often modified to accommodate new best practices or to study the effect of
alternative preprocessing steps, and where the underlying packages change frequently.
This paper has a comprehensive accompanying manual with lab practicals and examples
(see Supplemental Materials) and all data, scripts, and makefiles necessary to run the
practicals and examples are available in the “makepipelines” project at NITRC.

Keywords: neuroimaging pipelines, workflow, quality assurance, reproducibility

INTRODUCTION

A major problem in neuroimaging is generating and executing complicated sequences of processing
steps (workflows, or pipelines). Scientific rigor demands that these workflows be reproducible (in
the sense of being able to replicate published results using the same data and analytic methods,
Peng, 2009, 2011). The reality of neuroimaging requires they be parallelizable, fault-tolerant,
and easily modified. Although, the scale with which raw data sets can grow is typically limited
by the scanner capacity and the financial costs of studies, improvements to scanner acquisition
and to data processing algorithms require increasingly more storage, memory, and processing
power. To complete in a reasonable timeframe, many analyses require parallelization, demanding
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more computing and memory resources than are typically
available on a standalone workstation, so pipelines must be
able to exploit a shared memory multiprocessor or a cluster. A
general purpose solution to this problem is not feasible at this
point, because standards for data analyses in this relatively young
field are constantly being challenged or improved by an active
methods community. Like others, our perspective is that we
should constantly evaluate novel methods and incorporate useful
additions into our pipelines. This often requires combining tools
from multiple software packages and tailored scripts. Practically,
this task is challenging because existing software packages were
developed largely in isolation from each other, which have their
own file structures, formats, and naming conventions.

This is the motivation for developing customizable
neuroimaging workflow systems (e.g., Nipype, Gorgolewski
et al., 2011, and LONI Pipeline, Rex et al, 2003) that allow
scientists to incorporate the best algorithms from multiple
standard packages as well as custom tools into a single workflow.
At the same time, many scientists who use neuroimaging in their
research are not skilled programmers, and rely primarily upon
mainstream software packages written by others, with limited
customizability (e.g., FSL and SPM graphical user interfaces, and
AFNI python scripts).

The contribution of this paper is to describe how we
can program neuroimaging workflow using Make, a software
development tool designed for specifying how to create
executable programs from source files. We show we can
achieve many of the features of more integrated neuroimaging
pipeline systems such as Nipype and LONI pipeline, including
reproducibility, parallelization, fault tolerance, and quality
assurance reports. The reason for considering this approach is
because it reduces the technical skill and time required to write,
debug, and maintain neuroimaging workflows, as compared
to workflow systems that incorporate layers of abstraction
(i.e., “wrappers”) around neuroimaging tools. This in turn
reduces the cost and time associated with scientific progress
in a dynamic environment, where pipelines are often modified
to accommodate new best practices or to study the effect
of alternative preprocessing steps, and where the underlying
packages change frequently.

This paper has an accompanying manual with lab practicals
and examples (see Supplemental Materials) and all data, scripts
and Makefiles necessary to run the practicals and examples are
available in the “makepipelines” project at NITRC.

PROGRAMMING SKILL VS. FLEXIBILITY

Because Linux is the most popular neuroimaging platform
(Hanke and Halchenko, 2011; Halchenko and Hanke, 2012;
Halchenko et al., 2014), most neuroimaging applications and
utilities run on Linux and can be called from bash scripts.
For some popular neuroimaging packages (e.g., FSL, AFNI) it
is necessary to be familiar with bash, both to run programs
and to make contact with existing documentation from the
software developers and other lab groups. At one extreme,
nonprogrammers can use graphical user interfaces provided by
the tools. At the other, sophisticated users can develop new

R
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MATLAB
Java
C++
N|pype Python
MATLAB*
Programming ’\l;'aas e
ability
FSL+bash
AFNI
LONI pipeline
AFNI scripts
FSL
SPM

Customizability

* to call neuroimaging programs

FIGURE 1 | Conceptual two dimensional space of pipeline tools. In one
dimension is customizability; how possible is it to modify the pipeline to include
new neuroimaging processing algorithms? In the second dimension is
programming ability. How much programming skill does it take to modify the
pipeline? Relative programming ability is estimated based on our collective lab
experience and current salaries for skills, where available (Dice.com., 2015).
Customizability is estimated based on our lab experience.

algorithms to supplement or replace processing steps in higher
level scripting or compiled languages (e.g., MATLAB, Python,
C). In between, scientists may write scripts using bash and
other Linux utilities, or parallelize execution of neuroimaging
commands through MATLAB’s Paralle] Computing Toolbox if
this resource is available through a user’s institution. There
is a tradeoft between programming ability and customizability
(see Figure 1)!. To allow combination of tools from a variety
of commonly available packages, systems such as Nipype
(Gorgolewski et al, 2011) and LONI pipeline theoretically
allow implementation of flexible, modular components without
knowing the particulars of each underlying tool. These systems
“wrap” components from other packages to provide a consistent
interface, data provenance, and parallelism. This allows creation
of canned pipelines that incorporate these features and can be
executed as easily as other pipelines that provide these features
within a specific software package (e.g., FSLs FEAT, SPM’s batch).
However, the programming skill required to wrap new modules
and incorporate those into pipelines is still on par with the
difficulty of the wrapping language.

Make is a simple system that can be used for writing
and maintaining customizable pipelines that requires less skill
and time than any pipeline system that wraps the underlying
neuroimaging tools. Make is included in all standard Linux
distributions (and is available for OSX and all other UNIX-
based systems), so there is nothing additional to install. Make
requires no additional code, and thus programmer time, to wrap
neuroimaging packages. Wrappers require users who wish to

'We used salary for skills from the 2015 Dice Tech Salary report (Dice.com.,
2015) as a rough proxy for ability to approximately rank different programming
languages (Hunt and Madhyastha, 2012). Bash is an average of bash, shell, and
Linux.
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modify pipelines to understand the calling syntax of the packages
in addition to the language and software design of the wrapper.
While operating without wrappers means that the idiosyncrasies
of the underlying packages are not hidden from the user, the
calling syntax and program options of the underlying packages
are clearly exposed. This makes debugging specific steps easier,
because code can be cut and pasted into the shell. This also
helps when versions of the underlying programs change, because
wrappers do not have to be changed to accommodate version
changes in syntax. Anything that can be called from the shell can
be included in a makefile.

Using Make for neuroimaging workflow occupies an
important space in the tradeoff between customizability and
programming ability. As shown in Figure 1, it provides the
customizability and reproducibility available from a script in
addition to parallelism and fault tolerance. It represents only
an incremental increase in customizability and programming
ability from bash shell scripting, but a greatly advanced capacity
to process large data sets, and thus may address a need of the
larger neuroimaging community.

IMPLEMENTATION

Make refers to a development tool created for expressing a
directed acyclic dependency graph (Feldman, 1979). A makefile
(or a file of instructions for the progam make) consists of a set
of rules that create or update target files if they have not been

modified since their dependencies were last modified. Rules take
the form:

target: dependency_1
recipe

dependency_n

The target and dependencies are normally files, and the recipe
is a sequence of shell commands (where each line begins with
a TAB character) that are executed to produce the target file
from the dependencies. To understand the use of Make in
a neuroimaging example, consider the simple case of skull
stripping a T1 weighted image called T1.nii.gz. The skull
stripped file will be called T1_brain.nii.gz, following FSL
conventions. The command to perform this skull stripping in
FSL is called bet. We create a file, named Makefile, which
contains the following lines (Example 1A):

Tl_brain.nii.gz: Tl.nii.gz
bet Tl.nii.gz Tl_brain.nii.gz

Example 1A | Makefile for skull stripping.

import nipype.interfaces.fsl as fsl
mybet = £s1.BET(in_file='Tl.nii.gz’,

out_file='T1l_brain.nii.gz’)
result = mybet.run()

Example 1B | Nipype command for skull stripping.

class BETInputSpec (FSLCommandInputSpec) :
in_file=File (exists=True,

desc='input file to skull strip’,
position=0,

argstr='%s’,

mandatory=True)

Example 1C | Continued

out_file=File(desc='name of output skull stripped image’,
argstr='%s’, position=1, genfile=True, hash_files=False)
outline=traits.Bool (desc='create surface outline image’,
argstr='-0")
mask=traits.Bool (desc='create binary mask image’,
argstr="-m’)
skull=traits.Bool (desc='create skull image’,
argstr='-s"’)
no_output=traits.Bool (argstr='-n’,
desc="Don’t generate segmented output")
frac=traits.Float (desc='fractional intensity threshold’,
argstr='-f $.2f')
vertical_gradient=traits.Float (argstr='-g %$.2f’,
desc='vertical gradient in fractional intensity '
"threshold (-1, 1)')
radius=traits.Int (argstr='-r %d’, units='mm’,
desc="head radius")
center=traits.List (traits.Int, desc=’center of gravity in voxels’,
argstr='-c %s’, minlen=0, maxlen=3,\
units='voxels’)
threshold=traits.Bool (argstr="-t’,
desc="apply thresholding to segmented brain image and mask")
mesh=traits.Bool (argstr='-e’,
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desc="generate a vtk mesh brain surface")
_xor_inputs=(’functional’, ’reduce_bias’, ’'robust’, ’'padding’,
"remove_eyes’, ’'surfaces’, ’'t2_guided’)
robust=traits.Bool (desc='robust brain centre estimation '
"(iterates BET several times)’,
argstr=’'-R’, xor=_xor_inputs)
padding=traits.Bool (desc='improve BET if FOV is very small in Z '
" (by temporarily padding end slices)’,
argstr='-72’, xor=_xor_inputs)
remove_eyes=traits.Bool (desc='eye & optic nerve cleanup (can be ’
"useful in SIENA) ',
argstr='-S’, xor=_xor_inputs)
surfaces=traits.Bool (desc="run bet2 and then betsurf to get additional ’
"skull and scalp surfaces (includes ’
"registrations)’,
argstr='-A’, xor=_xor_inputs)
t2_guided=File (desc="as with creating surfaces, when also feeding in '/
"non-brain-extracted T2 (includes registrations)’,
argstr='-A2 %s’, xor=_xor_inputs)
functional=traits.Bool (argstr='-F’, xor=_xor_inputs,
desc="apply to 4D fMRI data")
reduce_bias=traits.Bool (argstr='-B’, xor=_xor_inputs,
desc="bias field and neck cleanup")
class BETOutputSpec (TraitedSpec):

out_file=File(

desc="path/name of skullstripped file (if generated)")
mask_file=File(

desc="path/name of binary brain mask (if generated)")
outline_file=File(

desc="path/name of outline file (if generated)")
meshfile=File(

desc="path/name of vtk mesh file (if generated)")
inskull_mask_file=File(

desc="path/name of inskull mask (if generated)")
inskull_mesh_file=File(

desc="path/name of inskull mesh outline (if generated)")
outskull_mask_file=File(

desc="path/name of outskull mask (if generated)")
outskull_mesh_file=File(

desc="path/name of outskull mesh outline (if generated)")
outskin_mask_file=File(

desc="path/name of outskin mask (if generated)")
outskin_mesh_file=File(

desc="path/name of outskin mesh outline (if generated)")
skull_mask_file=File(

desc="path/name of skull mask (if generated)")

class BET (FSLCommand) :
_cmd="bet’

input_spec=BETInputSpec
output_spec=BETOutputSpec
def _run_interface(self, runtime):

runtime=super (BET, self)._run_interface(runtime)

Example 1C | Continued
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if runtime.stderr:
self.raise_exception(runtime)
return runtime
def _gen_outfilename(self):
out_file=self.inputs.out_file
if not isdefined(out_file) and isdefined(self.inputs.in_file):
out_file=self._gen_fname(self.inputs.in_file,
suffix=’_brain’)
return os.path.abspath(out_file)
def _list_outputs(self):
outputs=self.output_spec().get ()
outputs[’out_file’]=self._gen_outfilename/ )
if ((isdefined(self.inputs.mesh) and self.inputs.mesh) or
(isdefined(self.inputs.surfaces) and self.inputs.surfaces)):
outputs[’meshfile’]=self._gen_fname (outputs|[’out_file’],
suffix='_mesh.vtk’,
change_ext=False)
if (isdefined(self.inputs.mask) and self.inputs.mask) or \
(isdefined(self.inputs.reduce_bias) and
self.inputs.reduce_bias):
outputs|[’mask_file’]=self._gen_fname (outputs|[’out_file’],
suffix='_mask’)
if isdefined(self.inputs.outline) and self.inputs.outline:
outputs[’outline_file’]=self._gen_fname (outputs[’out_file’],
suffix='_overlay’)
if isdefined(self.inputs.surfaces) and self.inputs.surfaces:
outputs[’inskull_mask_file’]=self._gen_fname (outputs|[’out_file’],
suffix='_inskull_mask’)
outputs[’inskull_mesh_file’]=self._gen_fname (outputs|[’out_file’],
suffix=’_inskull_mesh’)
outputs|
"outskull_mask_file’]=self._gen_fname (outputs[’out_file’],
suffix='_outskull_mask’)
outputs [
"outskull_mesh_file’]=self._gen_fname (outputs[’out_file’],
suffix=’'_outskull_mesh’)
outputs|[’outskin_mask_file’]=self._gen_fname (outputs[’out_file’]
suffix='_outskin_mask’)
1
)

4

outputs[’outskin_mesh_file’]=self._gen_fname (outputs|[’out_file’],
suffix='_outskin_mesh’
outputs[’skull_mask_file’]=self._gen_fname (outputs|[’out_file’],
suffix='_skull_mask’)
if isdefined(self.inputs.no_output) and self.inputs.no_output:
outputs[’out_file’]=Undefined
return outputs
def _gen_filename(self, name):
if name == ’'out_file’:
return self._gen_outfilename /()
return None

Example 1C | Nipype wrapper for skull stripping.

Having created this file, the command make will perform the
operations necessary to skull strip the T1 image if it happens
to be newer than T1_brain.nii.gz, or if T1_brain.nii.gz does not
exist. Although, this is a simple example, multiple rules can be
included in a makefile that, if chained together, form a directed

acyclic dependency graph that can be arbitrarily complex. By
comparison, we illustrate the equivalent workflow in Nipype,
a wrapper-based workflow (Example 1B). Note that calling a
module is similarly straightforward, albeit abstracted from the
original command. However, creating a wrapper (Example 1C),
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which is required to add any new tool to a workflow, requires
substantial knowledge of the wrapping language and the
workflow conventions (e.g., InputSpec, TraitedSpec classes) in
addition to understanding the syntax of the underlying command
line tool.

Example 2 shows a slightly more complicated makefile that
uses the skull stripped T1 to perform hippocampal segmentation
(using FSLs FIRST) and to generate a quality assurance image
using FSL utilities (overlay and slices). Note that some
targets (such as skstrip and ga) do not correspond to actual
files, and are denoted in the first line of Example 2 as “phony”
targets. These targets will always be created if their dependencies
do not exist. We also notice that the target clean is phony
but has no dependencies. It will always be created, allowing us
a simple way to remove our work by typing make clean. We
can specify multi-line recipes, written in the shell of our choice
(here, bash) or simply call programs from other neuroimaging
packages. As in the recipe for hippo.csv in Example 2 and in
other examples, we make heavy use of bash shell programming
and utilities such as awk and sed to manipulate the output of
commands. However, recipes can also be executable scripts in
other languages.

The dependency graph for the QA target is shown in Figure 2.
Note that the dependency graph is created automatically from
the specification of the rules, unlike Nipype and LONI Pipeline,
which require the user to describe all the connections in
a graph. If you add a rule, the dependency graph will be
automatically modified. The programmer does not need to
specify the dependency graph; it is generated automatically from
the individual inputs and outputs of specific steps. Therefore, it
is easy to break the workflow into individual rules as shown here
for development, testing, and reuse.

Because Make is organized around the concept of a
dependency graph, the primary arguments that control its
execution are targets to build and variables that parameterize
its execution. In this way it is possible to specify that only a
specific part of the dependency graph should be executed, or that
a specific subject or session should be used.

After nearly 40 years, Make is still widely in use and is
the basis of many derivative systems, ranging from simple
reimplementations that support new features to new build
systems that address limitations of Make. For example, makepp
is a drop-in replacement for Make that supports generation
of dependency graphs (Pfeiffer and Holt, 2013) as shown in

.PHONY: skstrip first ga clean
SHELL=/bin/bash

gqa: skstrip first QA/rendered_hippo.png
skstrip:

Tl _brain.nii.gz

Tl _brain.nii.gz:
bet $< $@

Tl.nii.gz

first:

first_all_ fast_firstseg.nii.gz
run_first_all -s

hippo.csv: first_all_fast_firstseg.nii.gz
rh='fslstats $< -u 54 -1 52 -V| awk
lh=‘fslstats $< -u 18 -1 16 -V| awk
echo $$1h $Srh > hippo.csv

QA/rendered_hippo.nii.gz:
mkdir -p QA;\

first_all_fast_firstseg.nii.gz hippo.csv

Tl_brain.nii.gz
"L_Hipp,R_Hipp" -b -d -i Tl_brain.nii.gz -o first

"{print $$2}7* ;\
"{print $$2}7* ;\

first_all fast_firstseg.nii.gz

overlay 1 1 Tl_brain.nii.gz -a first_all_fast_firstseg.nii.gz 1 10 $@

QA/rendered_hippo.png: QA/rendered_hippo.nii.gz
slices $< -o $@

clean:
rm -rf first® Tl _brain_to_std_sub® hippo.csv QA

Example 2 | A more complicated Makefile for hippocampal segmentation.
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/usr/lib/fsl/5.0/bet T1 .nii.gz
/ust/lib/fsl/5 0/run_first_all T1_brain.nii.gz
! /
/bin/mkdir /usr/lib/fsl/5 .0/overlay first_all_fast_firstseg.nii.gz /usr/bin/awk /usr/lib/fs1/5 .0/fslstats
QA /rendered_hippo.nii.gz /usr/lib/fsl/5 O/slices hippo.csv
QA/rendered_hippo.png first skstrip
qa
FIGURE 2 | Dependency graph of the “qa” target defined in the Makefile in Example 2. Rectangles represent files, and ellipses represent phony targets (that
are defined for convenience and do not correspond to actual files). Yellow shaded rectangles are programs installed on the system that are part of the default Linux
distribution or FSL utilities, and are important for provenance but not dependency checking.

Figure 2. CMake is a popular cross-platform make system that
addresses the issue that people may want to build software across
systems that run different operating systems and have different
commands (Martin and Hoffman, 2013). Snakemake is a Python-
compatible workflow system (with a Python-like syntax) based
on the logic of Make (Koster and Rahmann, 2012). FreeSurfer
supplies a -make option to run via a standard makefile. Any
variant of Make can be used as described in this paper to support
neuroimaging workflow. However, most Linux platforms come
supplied with a version of GNU Make released by the Free
Software Foundation, which is stable, robust, and excellently
documented. The examples in this paper and in the manual (see
Supplemental Materials) all work with GNU Make version 3.8.1.
The newest version of GNU Make (version 4.1 as of this writing)
supports additional useful features, but it may not be available on
all systems.

Organizing Neuroimaging Projects to Work
with Make

The use of consistent file and directory naming conventions
is critical for any scripted data analysis, as it is for Make. We
typically create a directory for each project that contains (1)
subdirectories for scripts and programs specific to the analysis
(bin), (2) masks, templates and makefiles (lib), (3) auxiliary
behavioral data (data), and (4) one or more sessions of subject
imaging data. Figure3 shows the directory structure for a
project called Udall, for which each subject was imaged on
three occasions. We use symbolic links (files that reference
other files) to create the illusion that the data are organized by
subject/timepoint, and by timepoint/subject. This can be seen

in Figure 3 by observing that /project_space/Udall/
subjects/SUBJECT/session3 is the same directory
as /project_space/Udall/subjects/session3/
SUBJECT. This organization is convenient for longitudinal
analyses. By creating links to subject and session-level makefiles,
it is possible to build targets for both a single subject/timepoint,
and across all subjects at a single timepoint (by calling Make
recursively within each subject directory). This use of Make
limits the depth of directory trees that researchers have to
keep track of while exposing parallelism of processing multiple
subjects (see Supplemental Materials: Setting up an Analysis
Directory for more details). However, symbolic links can be
confusing for users and system managers and it may not be
necessary to expose the single subject/timepoint organization. In
this case it is possible to copy subject and session-level makefiles
and avoid additional complexity. In practice both approaches
work successfully.

Parallel Execution

Most neuroimaging pipelines are inherently parallelizable—
even if the processing of a single scan cannot be parallelized,
typically the subject-specific processing of most data does not
depend upon other subjects. This type of processing is called
“embarrassingly parallel” (Moler, 1986; Foster, 1995) because
of this lack of dependency, and is well suited to running
on multiple cores in a single shared memory multiprocessor,
or on clusters of computers that are grouped together with
a scheduler such as the Sun Grid Engine (now Open Grid
Scheduler). Because a dependency graph expresses inherent
parallel structure, a single makefile is a parallel program that
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/project_space/Udall

/bin # Holds scripts written for this project
/R # R scripts written for this project
Jtcl # tcl scripts written for this project
/data # other sources of data for all subjects

/networkROls

makefile_session.mk # session-level makefile
makefile_subject.mk # subject-level makefile
/SUBJECT # specific subject

[session2
[session3

/Dicoms
/Parrecs
/physio

[xfm_dir

# Original DICOMs

# physiological data
# registration files

/lib  # Holds things that are used by many scripts and analyses in this project
/makefiles # makefiles for specific processing streams for the project
# A set of ROI masks used for fMRI analysis

[tractographyMasks # A set of masks used for tractography analysis
[freesurfer # Freesurfer (cortical thickness) runs for this project
[tbss # group level Tract-Based Spatial Statistics analyses for this project
/subjects # All subject data collected in neuroimaging sessions

/sessionl # Different subject sessions, that hold subject-specific results

/behavioral # Subject behavioral (e.g. task) data

# PAR/REC files, the native Philips scanner format

Makefile ->/project_space/Udall/subjects/makefile_subject.mk

/session3/SUBJECT -> /project_space/Udall/subjects/SUBJIECT/session3 # symbolic links to the subject session 3 directories
Makefile -> /project_space/Udall/subjects/makefile_session.mk

FIGURE 3 | Example directory structure for use with Make. Symbolic links are typeset in red with arrows to the files they point to.

can be easily executed on either a multicore machine (using
the —j flag to specify the number of cores to use) or on a
cluster using gmake, an Open Grid Scheduler-supplied utility.
When working with thousands of subjects, after performing
QA and adjusting critical steps in the pipelines, redeploying
make will automatically parallelize only the remaining work,
based on dependency analyses of which targets need to be
regenerated.

Fault Tolerance

Fault tolerance is an additional feature Make provides that is
not natively supported by scripting languages. Because Make
builds and executes recipes based on a dependency graph, when
a step in the processing pipeline fails (e.g., due to a cluster node
going down during a long running job, a hard drive filling up, a
computer running out of memory, or a failure to complete a step
correctly due to corrupted inputs) it can be re-executed with the
same command line and will recreate only those dependencies
that still need to be updated.

As a concrete example, consider the following bash script
that runs multiple subject level GLM analyses in parallel using
FSLs FEAT program. Parallelism is provided by FSLs £s1_sub
program and enabled by setting the FSLPARALLEL environment
variable. Because the cluster machines have limited memory,
sometimes some arbitrary number of these analyses will fail (Note
that by default FEAT will append a + to the output directory if it
already exists but we assume the . £sf configuration file specifies
overwriting it instead).

\#!/bin/bash
export FSLPARALLEL=true
for subject in ‘cat subjects”’

do
if [ -f ${subject}/firstlevel.feat/
stats/cope5.nii.gz ]
then
feat ${subject}/firstlevel.fsf
fi
done

Fault tolerance is implemented here explicitly by checking for
the existence of the final cope (number 5), so that the script can
be rerun until all jobs have completed. An alternative approach
would be to edit the script to include only the subjects who need
to be reprocessed. Because coding workflow for fault tolerance is
normally an afterthought, the latter approach is frequently used
in scripts, leading to errors and inconsistencies in the processing
of the data.

In contrast, a makefile to do this task would be written as
follows:

subjects=$(shell cat subjects)
all: $(subjects:=/firstlevel.feat/stats/
copeb5.nii.gz)

$/firstlevel.feat/stats/copeb5.nii.gz:
<dependencies>
feat $*/firstlevel.fsf
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As above, the subjects are obtained from the file called subjects.
The main target all uses the subject names to construct the
lists of copes to be created. A single recipe asserts that
the cope depends upon some optional set of dependencies
(here these are not specified and indicated by a placeholder
in italics). Although, missing from the bash script, these
dependencies could be used to specify that the FEAT analysis
should be rerun if any of the dependencies (e.g., regressors,
fMRI input file, or.fsf file) changes. The same makefile
can be used to execute in parallel (with any degree of
parallelism required to allow sufficient memory for the jobs) or
sequentially. Finally, no explicit test is required to rerun the FEAT
analysis if the cope does not exist; fault tolerance in Make is
implicit.

Writing Self-Documenting Makefiles

One of the advantages of using makefiles is that phony targets
can be defined that allow underlying neuroimaging calls to
be conceptually named or grouped. For example, in Example
2, the phony target “skstrip” will run bet to perform skull
stripping, and the phony target “transforms” will create all the
necessary transformation matrices using f1irt, epi_reg, or
convert_xfm. Writing makefiles in this way makes it easier
for people who are new to neuroimaging to understand and work
with the pipelines. Documenting these targets is helpful, and
our first approach was to create a target that produces a “usage”
message for the makefile. However, we quickly discovered that it
is also easy to fail to keep documentation up to date as new targets
are added, removed, or modified.

One solution to this problem is to define a macro that can
be used to annotate targets of interest with a descriptive help
message. In this way, the help message and the target are close
together in the makefile, so that it is easier to keep the help
up to date. The target depends upon the help message being
displayed, if requested. This has been implemented in a help
system described by Graham-Cumming (2015), that produces a
list of targets and their corresponding line numbers in specific
makefiles. For example, processing of a single subject involves
several piplines (e.g., for registration, structural analysis, resting
state preprocessing, and functional connectivity analysis). Each
of these can pipelines is cleanly written in its own makefile. To see
this implemented in real example, see Supplemental Materials:
Processing Data for a Single Testsubject.

Example 4 (discussed in detail later) is a makefile to perform
registrations. To document the transforms target in Example 4,
one would modify it as follows:

transforms: $(call print-help, transforms,
Create resting state to MNI transformations)
xfm_dir xfm_dir/MNI_to_rest.mat

We refer the reader to a detailed online description of how
the help system is implemented (Graham-Cumming, 2005).
However, to summarize, we add a “help” dependency to each
target that we wish to document. This takes the form of the
call function to Make shown above. When the user types
“make help,” all help messages will be printed. If Example 4 is
located in the Makefile xfm.mk, the help message for target

transforms (highlighted) would appear along with other
target help messages written for other targets (to execute several
subject-level processing pipelines) as shown below. This helps
people find the targets that are defined by multiple makefiles in
separate files.

resting.mk:20: rest -- "Run resting
state preprocessing pipeline"
xfm.mk:3: transforms —-- Create resting

state to MNI transformations
fcconnectivity.mk:6:
"Perform subject-level seed-based
connectivity analysis"

QA.mk:10: ga —-- Create QA report
Makefile:42: all —-- Do skull stripping &
etiv & HC volume calculation

Makefile:55: robex —- Alternate skull
stripping with ROBEX

Makefile:61: freesurferskullstrip --
Alternate skull stripping with FreeSurfer
Makefile:71: Estimation of ICV
using enigma protocol

Makefile:100: flex —- Run flex for white
matter hyperintensity quantification
Makefile:142: clean —-- Clean up everything
from all makefiles

Connectivity —-

etiv ——

Debugging

Debugging makefiles has a reputation for being rather difficult.
There are probably several reasons for this. Make has unusual
syntax, requiring recipes to be prefaced by TAB characters, and
it does not cope well with indiscriminate white space. It has a
very different model of execution than scripts (variables are, by
default, evaluated at time of use, and targets within a makefile
are not executed sequentially). Use of pattern substitution can be
difficult. Finally, when executing in parallel, the output messages
of multiple jobs are interleaved, making it difficult to interpret
these outputs from Make.

On the positive side, makefiles are naturally broken down into
targets that can be tested individually. We encourage building
of a makefile by adding and testing one target at a time. Once
Make frameworks have been developed, most problems lie in
debugging the neuroimaging commands. Because recipes are
simply shell scripts, it is easy to cut and paste recipes into the
command line to test them.

We document common causes of errors or misunderstandings
(See Supplemental Materials: Troubleshooting Make). Other
strategies that are useful are the use of the “-n” option, which
prints out commands without executing them, and the “-p”
option, which prints the database of rules (including the result
of pattern substitution). The most recent version of GNU Make
(4.1) has a —trace option, which describes why given lines are
executed. It also has a —output-sync option to synchronize
the output of recipes that are executed in parallel on multiple
cores, a source of confusion in debugging problems that show
up during parallel execution and not sequential execution. These
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are useful features for debugging, even if this is not the primary
version of Make installed on the system.

QUALITY ASSURANCE AND DATA
PROVENANCE

Established neuroimaging software packages often include
information describing which steps and associated options were
applied to the data as well as images and metrics for assessing data
quality at various stages (e.g., FSLs FEAT reports). Unfortunately,
these systems are necessarily limited to accounting for steps
applied within that specific package, limiting their utility when
the user incorporates methods from different packages or custom
algorithms into a single pipeline. Options are available for
wrapper-dependent workflow systems (e.g., MacKenzie-Graham
et al., 2008), but are less likely to be routinely employed by
users who are executing a range of commands via bash or
MATLAB scripts. There are likely multiple ways to address this
problem for custom pipelines, but we describe the system we
have implemented using a combination of R Markdown (Rstudio,
2015) and Make.

identifier so that we know which subject we are looking at. Next,
a command to R renders the document. These reports are then
checked by research staff.

R Markdown is a simple authoring format that allows writing
text as well as executing chunks of code from a range of languages
including R, bash, HTML, and Python. Output is similarly
flexible (e.g., .html, .pdf, .doc). For the purposes of QA, we prefer
an HTML report over a PDF, because the HTML reports allow
embedding of videos (e.g., of timeseries data) and doesn’t require
the user to control pagination. The flexibility of R Markdown
allows generation of QA reports that best suit a given project.
One the one hand, it may be desirable to generate a single report
showing the data quality for each subject as they are acquired
to immediately identify potential problems. On the other hand,
for the simultaneous processing of a large, open dataset (e.g.,
from the Autism Brain Imaging Data Exchange (ABIDE) or
Alzheimer’s Disease Neuroimaging Initiative (ADNI)), it may be
more sensible to create a report that aggregates data from a single
modality for many subjects at once. We incorporate R Markdown
into Make workflows by specifying the script, images, and metrics
as dependencies of a QA report target.

QA/Structural.html:

sed —e ’s/SUBJECT/S (SUBJECT) /g’

R —e

Example 3 | Creating a QA report.

$ (TEMPLATES) /Structural .Rmd QA/images/Tl_brain.gif \
QA/images/csf.gif QA/images/gm.gif QA/images/wm.gif

$(word 1,8\")

"library ("rmarkdown") ; rmarkdown: :render ("QA/Structural.Rmd") ’

> QA/Structural.Rmd ;\

Quality Assurance

The ability to quickly identify problems in data acquisition or
processing is important for ensuring reliable results. This is
generally accomplished by a combination of viewing selected
images (e.g., skullstripping, image segmentation, registration)
and examining metrics (e.g., motion parameters, global intensity
changes). Tools exist in standard neuroimaging software
packages to generate both images (e.g., FSLs slicer) and
metrics. To reduce the burden of generating quality assurance
(QA) reports (thus increasing the likelihood that QA will be
incorporated into workflow), we generate most images and
metrics using these existing tools, then aggregate them into
reports with R Markdown (Figure 3).

Workflow for QA occurs in two stages. The first is to generate
QA metrics and images. For example, in Example 2, FSLs
slices is used to create a .png image of the segmented
hippocampus overlaid on a limited set of axial, sagittal, and
coronal slices of the subject’s T1 image. The second stage is
to incorporate such images into a single HyperText Markup
Language (HTML) report with a script or using R Markdown,
as shown in Example 3. Here, QA images for a skull-stripped
brain and tissue parcellation are used to generate the report
QA/Structural.html. The sed utility is used to replace the generic
SUBJECT variable in the R Markdown file with the actual subject

Data Provenance

Provenance, which is the metadata describing how a dataset
was acquired and altered through subsequent manipulation,
is critical for ensuring reproducibility and allowing for
comparison of study results, combination across datasets, and
data sharing. Standards have been proposed for neuroimaging
data provenance (Keator et al., 2015) but have not been widely
implemented even for tools included in standard software
packages. At a minimum, data provenance must be sufficient to
allow for replication of data collection, processing, and analysis.
Because this standard is the same as the standard for methods
reporting in a publication (Poldrack et al., 2008; Carp, 2012), we
currently implement a basic form of data provenance as an auto-
generated methods section with appropriate references, much in
the way that a processing methods description is generated by
FSL FEAT for more basic analyses (see Figure 4).

Our methods generator makefile acquires raw MRI
acquisition parameters (e.g., repetition time TR, echo time
TE) pertinent to reporting by calling a bash script that
automatically pulls these parameters from the raw PAR/REC (a
Philips-specific file format) data and stores them in a comma
separated value (CSV) file. Similarly, the versions of tools
(e.g., FSL) as indicated by their installation directories and
options for the implemented MRI preprocessing tools (e.g.,
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FIGURE 4 | Data provenance of resting state processing with R markdown.
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MRI Acquisition

Data were acquired using a Philips 3T Achieva MR System (Philips Medical Systems, Best, Netherlands, software version
3.2.2) with a 32-channel SENSE head coil. During each session, whole-brain axial echo-planar images (46 sequential
ascending slices, 3.00 mm? isotropic voxels, field of view = 240x240x138, repetition time = 2499.9 ms, echo time(s) = 25 ms ,
flip angle = 79°, SENSE acceleration factor = 0) were collected parallel to the AC-PC line for all functional runs. Each resting
state scan was 144 volumes (6.30 minutes). A sagittal T1-weighted 3D MPRAGE (176 slices, matrix size = 256x256,
inversion time = 0.0 ms, turbo-field echo factor = 225, repetition time = 7.552 ms, echo time = 3.51 ms , flip angle = 7.00°,
shot interval = 0 ms) with 1.00 mm? isotropic voxels was also acquired for registration

MRI Processing

Functional images from the resting-state session were processed using a pipeline developed using software from FSL 5.0
(Jenkinson et al., 2011), FreeSurfer 5.3 (Fischl and Dale, 2000), and AFNI (Cox, 1996). Data were initally corrected for
motion and slice-time acquisition using 4dRealign implemented in nipy (Roche, 2011). The pipeline then sequentially
invoked BET for skullstripping, removed spikes using AFNI

(http://afni.nimh.nih. gov/pub/dist/d

html), and regressed out time series motion parameters,
individual motion spikes (framewise displacement greater than 0 mm and DVARS outliers identified with FSL's motion
outliers), and the first five principal components (Behzadi et al, 2007) for eroded (1 mm in 3D) masks of the lateral ventricles
and white matter derived from running FreeSurfer on the T1-weighted image. Three dimensional spatial smoothing was
performed using a Gaussian kernel with a HWHM of sigma = 3 mm. Registration to standard MNI space was implemented
using boundary-based registration in FSL's epi_reg from functional space to the T1 and FLIRT from the T1 to standard
space. We did not regress ot the global signal or perform bandpass filtering. These were avoided so as to prevent
artificially inflating correlations or inducing structure that was not actually present in the data and because resting state
networks exhibit different levels of phase synchrony at different frequencies (Handwerker et al., 2012; Niazy et al., 2011)

ogram_h
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smoothing kernel size), are pulled from the makefiles for specific
processing streams and additionally stored in this CSV file. We
can then write an R Markdown methods file that documents
the processing streams and is parameterized by the values
in this CSV file. The makefile renders this R Markdown file,
automatically filling in the parameter values and generating
an HTML output report. Although the R Markdown methods
file must be changed by hand when pipelines change, minor
revisions to software versions will be automatically noted as
data are collected for a project. The flexibility of the Make/R
Markdown-based system allows for updating the fields included
as provenance when mainstream software packages are updated
to be compliant with recommended standards.

USAGE EXAMPLES

Over the last several years we have created pipelines to perform
basic subject-level processing of structural, functional, diffusion,
and perfusion data using Make, in addition to group level
analysis and complex reporting. These incorporate tools from
FSL, AFNI, Nipype, FreeSurfer, SPM, ANTs and many other
neuroimaging software packages, and custom programs written

in shell, MATLAB, Python and R. Examples of these pipelines
are documented in the manual (see Supplemental Materials),
and accompanying code and examples are available in the
“makepipelines” package on NITRC. A sample of these examples
is highlighted below.

Registrations

Registrations are especially suited for execution with makefiles,
because a registration process across several types of images
involves multiple steps that can normally be calculated
individually (in parallel) and concatenated. It is easy to
describe this dependency relationship in Make. The syntax of
registration commands and the order of arguments can be
difficult to remember, but these are abstracted by targets in
the makefile. Interim registrations need to be checked and may
be hand-corrected, in which case make will regenerate only
what needs to be updated following modification. Example
4 (See Supplemental Materials: Testsubject Transformations
for a detailed description) is an example of a makefile to
create resting state to standard MNI space transformations.
Figure 5 shows the dependency graph generated for this
example.
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.PHONY=clean_transform tranforms

transforms: $(call print-help,transforms,Create resting state to MNI\
transformations) xfm dir xfm_dir/MNI_to_rest.mat

xfm_dir:
mkdir -p xfm_dir
xfm_dir/T1_to_MNI.mat: xfm_dir T1l_skstrip.nii.gz
flirt —-in T1_skstrip.nii.gz -ref $(STD_BRAIN) -omat $@

rest_dir/rest_mc_vol0O.nii.gz: rest_dir/rest_mc.nii.gz
fslroi $< $@ 0 1

xfm_dir/rest_to_Tl.mat: rest_dir/rest_mc_vol0O.nii.gz T1l_skstrip.nii.gz
mkdir -p xfm_dir ;\
epi_reg —--epi=rest_dir/rest_mc_vol0.nii.gz —--tl=T1l.nii.gz \
-tlbrain=T1_skstrip.nii.gz —--out=xfm_dir/rest_to_T1

xfm dir/Tl_to_rest.mat: xfm_dir/rest_to_T1l.mat
convert_xfm —-omat $@ —-inverse $<

xfm dir/MNI_to_Tl.mat: xfm_dir/T1l_to_MNI.mat
convert_xfm —-omat $@ —-inverse $<

xfm_dir/MNI_to_rest.mat: xfm dir/Tl_to_rest.mat xfm dir/MNI_to_T1l.mat
convert_xfm -omat xfm_dir/MNI_to_rest.mat \
—concat xfm_dir/Tl_to_rest.mat xfm_dir/MNI_to_TI1.mat

clean_transform:
rm -rf xfm_dir

Example 4 | Registering fMRI data to standard space using FSL utilities.

Conditional Processing distortion corrected image called “sdc_mec_diffusion.nii.gz.”
Often different processing or analysis methods may be desirable =~ The recipe required for generating the distortion corrected data
based on data type or on the availability of ancillary data (e.g.,  is chosen automatically by Make depending on whether a field
physiologic data). Make is well-suited to handling workflows  map image or an acquisition parameters text file is present, as
which require different actions under different circumstances.  reflected by the variable SDC_METHOD (in red). This variable
Of course, many programming languages allow for conditional  is queried later in the corresponding conditional set of rules (also
logic. However, a conditional in Make can be used to specify = highlighted in red). It is worth noting that the evaluation of the
different dependencies for a target. When the makefile is read,  conditional takes place before any commands are run, because
the conditional will be evaluated and the dependency graph will ~ Make first needs to construct the dependency graph. This means
include only the necessary components. that if files are created or deleted during a single invocation of
In Example 5 (explained in greater detail in Supplemental = Make, it may affect the behavior of the commands that are called,
Materials: DTT Distortion Correction with Conditionals), the  but it won’t change whether they are executed, or the sequence in
final target, “tensor” (highlighted in blue), requires creation of a ~ which they are executed, unless it causes an exit due to an error.

SDC_METHOD = $(shell if [ -f fieldmap.nii.gz ] ; then echo FUGUE; \
elif [ -f acgparams.txt ] ; then echo TOPUP; \
else echo FALSE ; fi)$

mec_diffusion.nii.gz: raw_diffusion.nii.gz bval bvec brain_mask.nii.gz
echo "0 1 0 0.072" > temp_acgparams.txt ;\

Example 5 | Continued
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for 1 in ‘seq 1 $(NUM_DIFFUSION_VOLS) ‘; do echo 1 >> temp_index.txt;
done ;\

eddy —--imain=raw_diffusion.nii.gz —--mask=brain_mask.nii.gz —--index=
temp_index.txt —--acgp=temp_acgparams.txt -—--bvecs=bvec --bvals=bval
——out=mec_diffusion --niter=$(EDDY_ITERATIONS) -verbose FAN

rm temp_acgparams.txt temp_index.txt

topup_results_movpar.txt: raw_diffusion.nii.gz acgparams.txt

fslroi raw_diffusion.nii.gz SO_images.nii.gz 0 2 ;\

topup —--imain=S0_images -—--datain=acgparams.txt --
config=$ (PROJECT_DIR)/1ib/b02b0_$ (TOPUP_MODE) .cnf —-out=topup_results
—-—fout=field_est --iout=unwarped_S0_images --verbose

ifeq ($(SDC_METHOD), TOPUP)

sdc_mec_diffusion.nii.gz: raw_diffusion.nii.gz topup_results_movpar.txt index.txt

eddy --imain=raw_diffusion.nii.gz —--mask=brain_mask \
——acgp=acgparams.txt —--index=index.txt --bvecs=bvec \
—-bvals=bval -—-topup=topup_results \

——out=sdc_mec_diffusion.nii.gz -niter=$(EDDY_ITERATIONS) -verbose
else ifeqg ($(SDC_METHOD),FUGUE)

sdc_mec_diffusion.nii.gz: mec_diffusion.nii.gz fieldmap.nii.gz
fugue --loadfmap=fieldmap.nii.gz —-dwell=$(ECHO_SPACING) \
-1 mec_diffusion.nii.gz —-u sdc_mec_diffusion.nii.gz \
——unwarpdir=$ (UNWARP_DIRECTION) -v

else

S (error ERROR: neither fieldmap for FUGUE nor acquisition parameter file for
TOPUP were found)

endif
tensor: sdc_mec_diffusion.nii.gz Dbrain_mask.nii.gz bvec Dbval

dtifit -k sdc_mec_diffusion.nii.gz -r bvec -b bval \
-m brain_mask -o dti

Example 5 | DTI Distortion Correction with Conditionals.

Integration of Software Packages

One of the strongest motivations to write one’s own workflow this with registrations calculated using the ANTs package, ANTs
is to be able to use the best tools available for any task, even 1 used to move the statistic images from the first level feat
if some of those tools are found in other software packages. into standard space, and then output files are created using the
The challenge is making tools from different packages work  naming conventions of the FSL package. This allows later FSL
together Seamlessly when one is necessarﬂy introducjng an edge processing to continue without error. An interesting feature of
case that the developers of the software packages could not  thisexampleis that it includes a Make function written to identify
have anticipated. In Example 6 (explained in more detail in  all of the available statistic (cope, varcope) images without having
Supplemental Materials: Using ANTs Registration with FEAT),  to specify them explicitly. The variable number of statistics
a directory created by FSUs feat for a first-level (timeseries)  images are identified and rules to Make are created when Make
analysis is modified to allow for running a follow-up higher level  is run. With this method, Make can be allowed to parallelize
feat analysis in standard space without relying on FSL tools for  registration of the statistic images which do not depend on each
registration from functional to standard space. To accomplish  other.
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FirstLevelReg: FirstLevelFeats $(allupdatereq)

define make-cope
Tapping/%.feat/reg_standard/stats/$ (notdir $(1)): Tapping/%.feat/stats/$(notdir $(1))
xfm_dir/Tl_to_mni_Warp.nii.gz xfm_dir/Tl_to_mni_Affine.txt xfm dir/%_to_Tl_ras.txt
mkdir -p ‘dirname $$@‘ ;\
export ANTSPATH=S$ (ANTSpath) ;\
$ (ANTSpath) /WarpImageMultiTransform 3 $$(word 1,$$") $s@ -R
$ (STD_BRAIN) $S(word 2,8$") $$(word 3,S8$") $S(word 4,$88")
endef

S (foreach c¢,$(allupdatereqg), $(eval $(call make-cope, $c)))

Example 6 | Registration of feat outputs with ANTs.

/bin/mkdir rest.nii.gz /bin/In
\ i /
rest_dir/rest.nii.gz bin/4dRegister.py
bet T1.nii.gz rest_dir/rest_mc.nii.gz fslroi
xfm_dir flirt T1_skstrip.nii.gz rest_dir/rest_mc_vol0.nii.gz epi_reg
xfm_dir/T1_to_MNI.mat convert_xfm xfm_dir/rest_to_T1.mat

Ve SN

xfm_dir/MNI_to_T1.mat xfm_dir/T1_to_rest.mat

N S

xfm_dir/MNI_to_rest.mat

FIGURE 5 | Dependency graph for Example 5. Rectangles represent files, and the ellipse represents a phony target (not an actual file). Yellow shaded rectangles
are programs installed on the system that are part of the default Linux distribution or FSL utilities, and are important for provenance but not dependency checking. To
simplify the graph we do not include full paths to these programs as we did in Figure 2.

DISCUSSION track workflow has been described for spike train analysis

(Denker et al, 2010) and anecdotally noted in several blog
None of the individual tools described in this paper are  postings as a feature for reproducible science (Butler, 2012;
novel. The novelty is that we demonstrate how they may  Hyndman, 2012; Bostock, 2013; Hambley, 2013; Jones,
be used in combination to quickly implement sophisticated ~ 2013). This has driven development of several Make-like
and dynamic neuroimaging workflow, with a supporting  systems geared toward specific types of data analysis (e.g.,
manual, lab practicals, and data and examples downloadable  Drake, Factual, 2015, Nextflow, Tommaso, 2015). Instead
from NITRC. The simplicity of using a build system to  of designing a new neuroimaging workflow system we
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have chosen to illustrate what can be done with existing
technologies.

It should be noted that although using Make to track workflow
helps scientists to be able to reproduce their findings in the sense
of obtaining the same results using the same data and software,
nothing about Make will help to improve reproducibility in
the sense of conducting new experiments on different data
(Collaboration, 2015). However, because workflows can be coded
using Make and shared across UNIX systems with minimal
software installation effort, like scripts, they can contribute to
sharing and replicating identical processing steps on different
data sets.

SPM and FSL provide graphical user interfaces for codified
analyses that offer limited flexibility. Within FSL, tools like
FEAT allow the user to select from pre-specified processing
and analyses steps to be applied in a specific recommended
order, and basic shell scripts can be used to modify output
from these GUIs to generalize across subjects. Similarly,
within the SPM GUI, individual steps can be selected
and combined within the batch system to create simple
MATLAB scripts. These systems are useful for the introductory
user; however, they lose some of their appeal when the
scientist wants to combine tools from multiple packages or
introduce custom packages in the middle of the pre-specified
workflow.

We argue that there is a lack of workflow options that
exist just beyond scripting, for people who want to do a more
conceptually sophisticated analysis, or even a simple analysis on
a very large scale. With the availability of large open datasets,
there is a growing market for both types of people. When
workflows must be frequently modified and are expected to scale,
minimizing the complexity of code that must be understood
and edited to make these changes is important. This is the use
case addressed by this paper. Our target audience is people
who can become familiar with basic coding principles, but
who either lack the skills or the interest for extensive software
development.

One of the advantages of Make as a workflow solution for
this audience is that it does not wrap or abstract the details of
neuroimaging command arguments, except by defining phony
targets. When standards are established, implementing layers
of abstraction (while preserving performance) improves ease
of use, in terms of skill required and time to implement,
debug, and maintain workflows. Wrappers can also be used
to add additional checks for correctness of inputs and calling
conventions. However, in a dynamic neuroimaging environment,
every time a new version of a wrapped package is released
there is the potential for many things to break, and individual
users must wait for the person maintaining the wrappers to
fix them. Including a new package means having to wrap
it (and maintain it) to interoperate with everything else.
Therefore, the decision of how much abstraction a workflow
system should provide should ultimately be based upon a
cost-benefit analysis of the cost of the additional time and
software expertise needed to maintain it (dependent upon
the frequency of changes to pipelines and the underlying

abstracted software layers) compared to the benefits of providing
such abstractions (in terms of ease of use and improved
functionality).

Make is not without limitations. It is necessary to be
willing to code to use it; it does not have a graphical user
interface for designing dependency graphs (such as LONI
pipeline). However, complicated syntax is not required for many
examples that afford the parallelization and fault tolerance not
provided by a shell script, and more sophisticated features
can be mastered by copying existing examples. It relies upon
file timestamps, so it cannot transparently operate on web
resources (e.g., images stored in XNAT databases) without
first downloading the files. To handle large analysis directories
it is necessary to select specific output files that represent
late-stage products to “stand-in” for the analysis. Reliance
upon the file system is a potential performance problem
for neuroimaging applications as parallelism scales and a
common file system becomes a bottleneck. However, some
file output is necessary for fault tolerance. We envision that
some optimization of existing neuroimaging applications will
ultimately be necessary to use I/O more intelligently in a parallel
environment. Because none of the neuroimaging applications
are wrapped, provenance cannot be tracked by the wrappers
themselves and must be handled elsewhere. We have described
the use of R Markdown to generate provenance reports.
Although cluster parallelism is seamless with gmake and SGE,
a parallel scheduler-enabled version of Make does not exist
for all cluster environments. We rely upon recursive Make
to descend into subject directories and call itself to conduct
subject-level processing. Much has been written on the pitfalls
of recursive Make (Miller, 1997); however, the problems with
descending into multiple build directories stem primarily from
an inability to control dependencies between directories. We
assume each subject is individual and fully exchangeable with
others; therefore these criticisms do not apply to our use of
Make.

GNU Make is open source and these features could
be modified, or potentially addressed by use of one of
the many other featureful build systems based on Make.
In fact, in 1979 Feldman noted that more complex file
comparisons than simple timestamps could be implemented
to expand functionality. However, to make such modifications
we would begin to sacrifice the stability and reliability of
GNU Make. Having a stable workflow system is a necessity
when neuroimaging applications and practices are constantly
being changed as the science progresses. We suggest that
Make represents a large step toward scientific goals of
reproducibility, parallel execution and fault tolerance, with
only a modest increase in programming demands over shell
scripts.
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