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The past decade has been marked with a proliferation of community detection

algorithms that aim to organize nodes (e.g., individuals, brain regions, variables) into

modular structures that indicate subgroups, clusters, or communities. Motivated by the

emergence of big data across many fields of inquiry, these methodological developments

have primarily focused on the detection of communities of nodes from matrices that are

very large. However, it remains unknown if the algorithms can reliably detect communities

in smaller graph sizes (i.e., 1000 nodes and fewer) which are commonly used in brain

research. More importantly, these algorithms have predominantly been tested only on

binary or sparse count matrices and it remains unclear the degree to which the algorithms

can recover community structure for different types of matrices, such as the often

used cross-correlation matrices representing functional connectivity across predefined

brain regions. Of the publicly available approaches for weighted graphs that can detect

communities in graph sizes of at least 1000, prior research has demonstrated that

Newman’s spectral approach (i.e., Leading Eigenvalue), Walktrap, Fast Modularity, the

Louvain method (i.e., multilevel community method), Label Propagation, and Infomap

all recover communities exceptionally well in certain circumstances. The purpose of the

present Monte Carlo simulation study is to test these methods across a large number of

conditions, including varied graph sizes and types of matrix (sparse count, correlation,

and reflected Euclidean distance), to identify which algorithm is optimal for specific types

of data matrices. The results indicate that when the data are in the form of sparse

count networks (such as those seen in diffusion tensor imaging), Label Propagation

and Walktrap surfaced as the most reliable methods for community detection. For

dense, weighted networks such as correlation matrices capturing functional connectivity,

Walktrap consistently outperformed the other approaches for recovering communities.

Keywords: community detection, modules, functional connectivity, functional MRI, Monte Carlo simulation

1. INTRODUCTION

Network theory has been used to examine the organization of networks across disparate research
foci, including the World Wide Web (Latora and Marchiori, 2001), social networks (Zachary,
1977), the power grid (Watts and Strogatz, 1998), brain processes (Bassett and Bullmore, 2006),
and food-webs (Dunne et al., 2002). It has been shown in research using both structural
and functional brain data that networks of the brain exist that have well-defined internal
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structures that can be described or demarcated with network
theory analyses (Sporns, 2011). For this reason, neuroscientists
often organize brain regions into neural networks from within a
network theoretic perspective (e.g., McNally et al., 2011) using
community detection. While work on methods for arriving at
community structures in networks began in 1927 (Rice, 1927),
there has been a proliferation of techniques in the short time
since Girvan andNewman’s seminal paper (Girvan andNewman,
2002). This paper introduced a highly successful function
(“modularity”) for arriving at a stopping point within the
community structure search (Fortunato, 2010). An unintended
consequence of this influx is that investigators use algorithms
that work well on one type of data or problem (e.g., count
matrices; large graphs) on other types of data (e.g., correlation
matrices; smaller graphs) for which they have not been evaluated
(Orman and Labatut, 2009). This is particularly evident in
neuroimaging studies where community detection is used on
functional connectivity correlation matrices obtained from fMRI
data (e.g., Mumford et al., 2010; Rubinov and Sporns, 2010)
as well as on matrices generated from diffusion tensor imaging
(DTI; e.g., Bassett et al., 2011). In both cases, the goal is to uncover
neural components that are highly connected to others in their
module and less connected to components outside their module.
However, at present it is unknown the extent to which a given
weighted community detection algorithms perform well when
applied to correlation matrices that neural scientists often use
(Orman and Labatut, 2009). The distributional differences in data
types (i.e., count vs. correlational matrices) are likely to have
an effect on the performance of a given algorithm. To assist in
selecting the appropriate algorithm given the qualities of the data,
the present paper offers formal and independent testing of the
most commonly used algorithms across different data formats
and numerous plausible conditions that likely will be encounter
by neural scientists.

For generalizability when describing the community detection
algorithms we offer some terms. Graphs (“networks”) can
generally be defined as a set of nodes (also called “vertices”) that
are connected in pairs by edges (“adjacencies,” “connections,” or
“ties”). “Degree” generally refers to the count of the number of
connections a node has; for correlation and Euclidean distances,
this is technically called “strength.” Connections among nodes
within the same community are quantified with “in-degree,” with
connections for nodes in different communities is termed “out-
degree.” To enable succinctness in writing, we use in-degree and
out-degree even when discussing weighted networks since the
concepts of degree and strength are synonymous. Practically,
graphs are simply square matrices that in some way indicate
the degrees of connectivity among the brain regions or voxels.
Most commonly, in neuroimaging studies each element in the
matrix (i.e., edge) indicates the connectivity weight (either
functional or structural). Communities are formally considered
to be subgroups of nodes comprising a modular component that,
in terms of edges, has higher within-community connectivity
than expected by chance given the properties of the network as
a whole (Guimerà et al., 2005; Newman, 2006). One particularly
useful benefit of many community detection techniques is that
the researcher does not need to specify a priori the number of

communities (or “clusters,” “modules,” “classes,” or “subgroups”).
Community detection approaches arose from the inability to

feasibly and efficiently compare all possible partitions for a given
set of data, including relatively small graphs. The presence of
large-scale data collection, greater computing power, and a desire
to understand behaviors of systems as a whole has altered the way
in which networks are approached (Albert and Barabási, 2002).
Since the number of possible partitions grows faster than the
exponential rate, the most recently developed algorithms aim to
partition even larger sets of nodes with greater computational
efficiency. While these methods have demonstrated success in
their ability to recover true community structures with relatively
low error in large networks, they have not all been evaluated on
smaller systems (e.g., Infomap; Rosvall and Bergstrom, 2008).
Given the exceptional performance on large graphs (on the
order of thousands), neuroimagers routinely apply community
detection algorithms to graphs with node size on the order of
hundreds (e.g., Power et al., 2011) and smaller (e.g., He et al.,
2009). This disconnect between evaluation on large graphs and
use on smaller graphs needs to be rectified so researchers have
adequate information with which to identify algorithms that
perform well at this smaller resolution. A primary aim of the
current paper is to test the use of these methods on smaller
network sizes to understand the robustness across varying data
types.

Of perhaps greater importance is that there is a gap in
the literature such that community detection algorithms have
typically been developed and tested on binary matrices or
the weighted counterpart: sparse count matrices. In practice,
however, these algorithms are increasingly being used on
networks quantified as correlation matrices for which they have
not been evaluated. This regularly occurs in studies analyzing
fMRI data, where the temporal bivariate correlations across time
among predefined brain regions constitute the graph (e.g., Fair
et al., 2009). What is often overlooked is that correlation matrices
have distinct properties that are unlike those seen in sparse count
matrices. In addition to being dense, there are explicit node
interdependencies. These are not taken into account in any of
the weighted algorithms, most of which assume that the weight
of an edge between two nodes A and B is independent of the
weight of edges between node A and other nodes (i.e., dyadic
independence exists). Still, some algorithms might perform well
on correlation matrices despite being developed for use with
sparse matrices—others may not. The present paper explores
which community detection algorithms perform most reliably
on graphs conceived as similarity matrices, such as correlation
and the reflected difference measure Euclidean distance, which
could feasibly be generated for networks such as brain regions of
interest.

The major contribution provided by the present paper is
the independent evaluation of community detection algorithms’
ability to assign nodes to their true community for sparse count,
correlation, and reflected Euclidean distance (EucD) matrices
across a number of conditions using simulated data. The most
popular algorithms have predominantly been evaluated using
empirical data (Clauset et al., 2004; Newman, 2006; Blondel
et al., 2008). To date, few large-scale independent study have
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compared approaches across numerous varied conditions using
simulated data (Schaub et al., 2012), and none have focused
on the use of correlation matrices (Pons and Latapy, 2006;
Orman and Labatut, 2009; Lancichinetti and Fortunato, 2011,
all generated count matrices). Importantly, our work tests these
varied matrix types across parameters and conditions that are
seen in empirical brain data across varied samples and likely
to influence the efficacy of community detection algorithms.
Explained in detail below, the simulations broadly vary across
these conditions: (1) graph size; (2) heterogeneity in node edge
weights within communities; (3) community sizes; (4) number of
communities; (5) highly correlated communities (i.e., ill-defined
communities); and (6) between-community heterogeneity in
edge weight (i.e., level differences according to community).
Following an overview of the methods tested, we provide a
description of the creation of these benchmark graphs. Next,
we present results for each method applied to each graph. We
conclude with summaries of the conditions in which each one
thrived (and failed) at recovering the true community structures
and suggestions for users. The present paper provides an
unbiased, direct comparisons of publicly distributed community
detection approaches for undirected, weighted graphs under
varied conditions often found in real networks.

2. METHODS

2.1. Community Detection Algorithms
Tested
We do not explore unweighted, directed, or graph-partition
approaches. While many unweighted approaches can be
extended to accommodate weighted matrix entries, we only
evaluated approaches that already have a weighted algorithm that
is publicly distributed. This directly follows from the primary
goal of the present paper, which is to evaluate commonly
used algorithms under various conditions that previously
have not been explored. Directed approaches (i.e., asymmetric
matrices) pertain to specific topics that as of yet, have not
reached the popularity of undirected graphs in neuroimaging
studies, and thus we do not examine them in detail. Also,
unlike the alterations needed to make an unweighted approach
accommodate weights, it is less straightforward to make
undirected approaches work for directed graphs (Fortunato,
2010). However, as the popularity of community partitions
in direct graphs increases a thorough examination, as done

here, will be warranted. The class of algorithms under graph-
partition approaches require knowledge of the number of groups,
which is usually not known. We test only methods for which a
priori information regarding the community structure (including
number of partitions) is not necessary. We also limited our
investigation to algorithms that can accommodate >75 nodes
and do not allow for overlap in communities (such as OSLOM;
Lancichinetti et al., 2011). This left 6 popular approaches:
Newman’s Spectral Approach (also referred to as Leading
Eigenvector), Walktrap, Fast Modularity, the Louvain method
(i.e., the multilevel community method), Label Propagation,
and Infomap. These approaches have the following properties:
(1) have been extended for use on weighted graphs; (2) can
perform on graphs with node size >75; (3) assume the graph
is undirected (i.e., symmetric); (4) do not require the user to
indicate the number of communities. The specific sources for
these algorithms are listed in Table 1.

We briefly discuss the algorithms selected for comparison.
Technical descriptions have been extensively discussed in reviews
(Porter et al., 2009; Fortunato, 2010) as well as specific sources
cited below and thus are not repeated in detail here. The present
study seeks to evaluate algorithms and thus does not adapt
or change them from the original authors. For instance, some
algorithms include negative values whereas others set these to
zero. We use the algorithms as developed by the originators
and do not alter these decisions so that results directly speak
to the present algorithms’ ability to detect communities across
conditions. Another difference is that some algorithms are
deterministic, meaning that each run on the same data will
produce the same community assignments, whereas others (such
as the Louvain GJA method and Label Propagation), are not
deterministic. While the authors of these algorithms suggest
conducting multiple runs to identify similarities in community
assignments, the main findings here present the results when
running the algorithm once on each data set. The rationale being
that we wish to test the algorithm in its current form and not
have our results influenced by an algorithm we would introduce
to consolidate the findings across multiple runs. In an auxiliary
set of results we provide results for when we ran Louvain GJA and
Label Propagation 100 times on each data set. For these results
one can identify the degree to which the solutions differ across
runs and if this relates to accuracy in findings.

One striking commonality is that Newman’s Spectral
algorithm, Fast Modularity, and the Louvain methods are
hierarchical clustering approaches that maximize a score called,

TABLE 1 | Community detection methods tested.

Method Platform Function Source

NSA Matlab Toolbox modularity_und.m https://sites.google.com/site/bctnet/

Walktrap R Package walktrap.community igraph; CRAN

Fast Modularity R Package fastgreedy.community igraph; CRAN

Louvain Method Matlab Toolbox modularity_louvain_und_sign.m https://sites.google.com/site/bctnet/

Label Propagation R Package label.propagation.community igraph; CRAN

Infomap R Package infomap program http://www.mapequation.org/
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modularity, and Walktrap uses this score to identify the optimal
partitioning of nodes. Despite this similarity, the reader will soon
see that the results vary greatly.

In weighted networks, modularity measures the density (or
strength, when the matrices are not count) of edges within a
community compared against the density (strength) of edges
outside the community (Blondel et al., 2008). When the strength
of edges within a group is larger than what is expected at random,
modularity rises (Newman and Girvan, 2003; Newman, 2004a).
Formally, modularity for weighted networks can be written as
(Fan et al., 2007):

Qw
=

1

2w

∑

ij

(wij −
wiwj

2w
)δ(si, sj) (1)

with δ being 1 if the nodes belong to the same community
and 0 if otherwise. The value wiwj/2w provides the expected
strength of the edge between the given nodes with w being the
summation of the edge strengths in the network and wi (wj)
the summed strength of node i (j). wij is the edge strength for
the provided node pair. Maximizing modularity can be used
to arrive at the best partitioning of communities with small
and negative numbers indicating no clear communities. For
methods that maximize modularity, the division (or combining
of communities in agglomerative approaches) of communities
stops when there no longer is a positive change in modularity.
Hence the definition of the community for modularity is that
they are indivisible subgraphs (Newman, 2006). Modularity has
surpassed other metrics in its ability to identify the optimal
partition of communities (Danon et al., 2006); however, it
comes with limitations such as a reported inability to recover
graphs with small communities (Fortunato and Barthélemy,
2007; Porter et al., 2009), different sized communities (Pons
and Latapy, 2006), and sometimes inflated modularity for
sub-optimal partitions (Fortunato, 2010).

2.1.1. Newman’s Spectral Approach (NSA)
Newman (2006) introduced a spectral approach that iteratively
places nodes into communities based on the principal
eigenvector after decomposition of a modularity matrix, which
has some similar properties to the commonly used Laplacian
graph. In short, the modularity matrix results from subtracting
the degree (equivalently the “weight”) that is expected by chance
between two given nodes from their actual edge weight. Nodes
that have positive loadings on this first component are placed
in one group, with nodes having negative loadings placed in
another. From there groups are iteratively created in this divisive
manner until there is no longer any improvement in modularity.
When compared to prior approaches thatmaximizedmodularity,
this approach obtained the highest modularity on empirical data
sets that were count matrices (Newman, 2006). This was taken
to mean that the quality of the partitions was better. It should
be noted that modularity has previously been suggested to not
be a poor marker of performance (Porter et al., 2009). Simulated
data comparisons conducted on sparse count matrices suggest
that NSA may not perform optimally when the ratio of internal

to external community degree is low (Orman and Labatut,
2009).

2.1.2. Walktrap
A random walk approach, Walktrap (Pons and Latapy, 2006),
which is related to Newman (2006)’s eigendecomposition
algorithm described above, enables greater computational
efficiency without sacrificing reliability of results. Walktrap
begins by generating a matrix of transition probabilities for
each pair of nodes. Each element of this matrix represents the
transition probability of going from one node to each given
node in a random walk of a given length of time. The transition
probabilities, which are based on node degrees or strength (i.e.,
average weight of edges from the given node to other nodes),
are used to arrive at a distance measure for each pair of nodes.
A traditional hierarchical clustering technique (Ward’s method;
Ward, 1963) is then applied to this distance matrix, forming
communities by minimizing the sum of squared distances of
each node to the other nodes within its own community.
Conceptually, this approach aims to arrive at communities that
have more transitions within clusters than with outside nodes.
This agglomerative approach utilizes modularity to select the
optimal partition. Prior work on simulated sparse count matrices
has suggested that Walktrap performs well in the presence
of lower in-degree to out-degree ratios (Orman and Labatut,
2009) and at graph sizes as small as 100 (Pons and Latapy,
2006), particularly as compared to methods which maximize
modularity.

2.1.3. Fast Modularity
Fast modularity scales up the ability of a previous greedy
algorithm (Newman, 2004b) for use on matrices as large as
10 million (Clauset et al., 2004). The agglomerative algorithm
merges together communities, starting with each node as its own
community, in order to optimize modularity. Fast modularity
capitalizes on shortcuts based on the premise that sparse
graphs are being used. However, in the absence of sparsity the
algorithm still should perform well (albeit slower). A drawback
of fast modularity comes from its propensity to produce super
communities that contain a large fraction of nodes (Fortunato
and Barthélemy, 2007) as depicted in Figure 1 and may not
perform well for graph as small as 100 (Pons and Latapy,
2006).

2.1.4. Louvain GJA Method
What has come to be known as the Louvain method (or
the “multilevel community method” developed by Blondel and
colleagues) similarly utilizes modularity to identify the best
partitions but uses a different method than the previously
described approaches (Blondel et al., 2008; Rubinov and Sporns,
2011). Importantly, the motivation behind the Louvain method
was to reveal the hierarchical structure of very large graphs
(hundreds of millions). It identifies the local maxima of
modularity by looking iteratively at the change in modularity
that results from moving each node to another community,
with each node starting in its own community. The algorithm
iteratively creates smaller weighted networks by creating latent
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FIGURE 1 | Conceptual depiction of types of accuracy. (A) “Perfect Recovery” refers to all nodes being placed in the correct community; (B) “Good Recovery”

reflects nodes being placed in the correct community most of the time; (C) “Super Community” indicates a phenomenon where nodes are subsumed into one large

community; (D) “Poor Recovery” is when nodes are simply placed in communities with other nodes erroneously. (A) indicates ARIHA of 1.00; (B) would have <1.00;

(C,D) would be closer to 0.00.

“supernodes” generated by the nodes within a community and
identifying edge weights between these latent nodes and other
observed or latent nodes. In this way, the Louvain method claims
to circumvent the aforementioned resolution problem seen in
modularity-optimization approach in that it can find small
communities. We present here results from the GJA algorithm
(Rubinov and Sporns, 2011) which offers improvements upon the
original algorithm as described by Blondel et al. (2008).

2.1.5. Label Propagation
Label propagation (Raghavan et al., 2007) iteratively assigns
community designations by placing nodes in a community that
contains the majority of its neighbors. An important note is
that the algorithm begins by randomly placing individuals into
communities; thus multiple runs on the same data may remit
different solutions and the ordering may have implications for
the reliability of the solution (Steinley, 2003). The aim is to
arrive at communities in the strong sense, with each node having
more edges with others in its community than those out of their
community. Because of this constraint, label propagation may
work better on sparse matrices. This is a fast technique that
works well on large matrices. It is equivalent to finding the local
energy minima of a simple zero-temperature Potts model, but the
number ofminima is larger than the number of nodes (Tibély and
Kertész, 2008). Label Propagation was shown in simulated sparse
count matrices to evidence a steep decline in performance once
the weight of in-degree to out-degree became more equivalent
(Orman and Labatut, 2009).

2.1.6. Infomap
Rosvall and Bergstrom (2008) developed an approach that,
like Walktrap, utilizes random walks. This algorithm also uses
the definition that there should be minimal transitions of a
random walker between clusters and more transitions within
clusters (Fortunato, 2010). Infomap diverges from the previous
approaches by compressing the information obtained from
the random walks using a constrained minimization of the
conditional information of the original graph given the signal
of the compression. This compression assists in computationally
efficient clustering for very large graphs. In this way, Infomap
arrives at the optimal compression that contains the most
information needed to describe the process of information
diffusion found in the graph. The minimization is carried out
as a combination of simulated annealing combined with an
adaptation of the greedy search used in the Louvain method

(Blondel et al., 2008; Rosvall and Bergstrom, 2008). Much like
the Louvain method described above, the nodes are iteratively
joined to arrive at latent supernodes, and adjacencies among
these are then considered. This approach may capture flows
of information better than modularity, which solely focuses on
pairwise relationships. Prior work on simulated sparse count
matrices reveal that Infomap may outperform approaches that
optimize modularity (Lancichinetti and Fortunato, 2011).

2.2. Simulations
When simulating the data we followed what Radicchi et al.
(2004) define as a community in a strong sense. That is, for
each node the degree distribution in terms of weights of edges
is higher with nodes within its community than with nodes
outside its community. The focus of the present investigation
on weighted, undirected graphs limited our options in terms
of available benchmark-generating programs. Data were thus
generated within R using three methods (see Figure 2), two
of which were data generation algorithms developed in-house.
The first data generation algorithm is the publicly available
Lancichinetti-Fortunato (LFR) benchmark approach for arriving
at sparse count matrices (Lancichinetti et al., 2008). These
count matrices emulate the count of structural connections
in the brain. Given the high use of community detection
algorithms on correlation matrices obtained from fMRI data,
the second approach (developed by the present authors) creates
correlation matrices by generating model-implied multivariate
time series data. Each of these variables (e.g., brain regions
of interest) are similar to other variables in their community
in terms of their activity across time and are less similar to
those outside their community. The third approach generates
Euclidean distance matrices from the data used in the second
approach. As the Euclidean distances indicate differences rather
than similarities, this measure is reflected. These data simulations
enable investigation into the circumstances under which each
approach may prevail when a researcher must choose between
generating a correlation or a Euclidean distance matrix (a
situation common for functional MRI researchers with data for
many regions across time). Below we offer brief descriptions of
the simulation procedures, with the specific conditions indicated
in Tables 2, 3 as well as in the X-axes of Figures 3, 4. Details of
the simulations are provided in the Supplemental Information
for the interested reader. The full set of simulated networks
can be found here: https://gateslab.web.unc.edu/simulated-data/
weighted-community-detection/.
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FIGURE 2 | Depiction of data simulation and analytic process. For dense weighted networks, time series data are generated. From these, correlation and

(reflected) Euclidean distance matrices are computed. Sparse count matrices are made directly using the LFR benchmark simulation program. All data generated

across all conditions are then subjected to each of the 6 community detection algorithms and their performance evaluated. “V” indicates variable or node; “O”

indicates the observation, and “C” the condition.

2.2.1. Simulation of Count Matrices
Sparse count represent the types of matrices used by researchers
examining anatomical connectivity by counting streamlines to
arrive at the total number of tracts between two given brain
regions (Kaiser, 2011). Thematrices become sparse become some
brain regions are not structurally connected. Count matrices
were generated using the Lancichinetti and Fortunato (LFR)
algorithm (Lancichinetti et al., 2008). Graphs produced by the
LFR benchmark follow the power law distribution for degree.
Power law distribution appropriately describes data that has
a long tail containing rare but extreme values (Clauset et al.,
2009) and has become a guiding property in the generation
and testing of algorithms (Newman, 2006; Barabási, 2013). This
distribution has long been considered an aspect inherent in
many networks containing counts, from large networks such
as the world wide web (Albert et al., 1999) to biological
systems (Clauset et al., 2009) to smaller networks of scientific
collaborators (Newman, 2001). Brain networks also appear to
have similar distributional properties as those seen in these other
contexts (Bassett and Bullmore, 2006). While other generative
programs for countmatrices also follow a power-law distribution,

we chose the LFR benchmark program primarily because it
allows for variation in node degree average and community
size.

The LFR algorithm for generating benchmarks allows the
user to define parameters relating to the (1) graph size (number
of nodes), (2) average and (3) max degree for each node
(drawn from a power-law distribution), (4) the proportion
of links that are outside their community vs. in, and (5)
heterogeneity in the community sizes. The simulation conditions
are specified in Table 2 (also indicated at the 666 bottom
legend of Figure 3). In terms of graph size, we tested low
numbers of nodes (25 and 75) for which the methods had
previously not been tested. The average and max degrees
increased as graph size increased given the increased number
of nodes and were informed by prior studies (Lancichinetti and
Fortunato, 2009). For the majority of conditions, the proportion
of connections that are out of the community was low (0.10)
but we also tested a higher proportion of out-degree (0.30).
Finally, we tested the impact of heterogeneity in the size of
communities. One hundred graphs were generated for each
condition.
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TABLE 2 | LFR simulations.

Number Nodes Ave. Degree Max Degree Prop. Out Hetero. Size

1 25 2 4 0.1 1

2 25 3 4 0.1 1

3 25 2 4 0.1 2

4 25 3 4 0.1 2

5 75 4 15 0.1 1

6 75 4 15 0.1 2

7 75 6 15 0.1 1

8 75 6 15 0.1 2

9 75 10 15 0.1 1

10 75 10 15 0.1 2

11 500 8 30 0.1 1

12 500 8 30 0.1 2

13 500 12 30 0.1 1

14 500 12 30 0.1 2

15 500 15 30 0.1 1

16 500 15 30 0.1 2

17 1000 15 50 0.1 1

18 1000 15 50 0.1 2

19 1000 15 50 0.3 1

20 1000 15 50 0.3 2

21 1000 20 50 0.1 1

22 1000 20 50 0.1 2

23 1000 20 50 0.3 1

24 1000 20 50 0.3 2

25 1000 25 50 0.1 1

26 1000 25 50 0.1 2

27 1000 25 50 0.3 1

28 1000 25 50 0.3 2

“Ave.” indicates “Average”; “Prop. Out” indicates the proportion of edges that nodes’

have with nodes outside their community; “Hetero.” refers to “Heterogeneous” with larger

values indicating more equality with regards to community sizes.

2.2.2. Simulation of Correlation and Euclidean

Matrices
Here we offer a conceptual overview with details needed for
replication contained in the Supplemental Material. In following
the current state of science and use of correlation matrices
with community detection (Zuo et al., 2012; Sporns, 2013), we
generate matrices which reflect only the lag-0 relations among
brain regions. As seen in previous fMRI studies, the correlation
matrices contain negative correlations and connection weights
that span from near zero to very strong (Fair et al., 2009;
Gates et al., 2014). We also generate Euclidean Distance
(EucD) matrices since this offers an alternative to correlation
matrices that may be preferred if the researcher wishes to retain
information regarding the level of the brain activity (i.e., the
scale) in addition to the degree to which the series fluctuates
across time in accordance with another region (which is the only
information captured by correlation).

The generative algorithm for arriving at the full, weighted
correlation and Euclidean distance matrices stems from
structural equation modeling (SEM). The approach first arrives

at a population-level correlation matrix for each replication
of each condition indicated in Table 3; from this matrix,
multivariate time series data are generated. The specific
conditions are set as follows. First, we define the number
of nodes in the graph (much like in the LFR count matrix
simulations) with graphs as small as 25 nodes. Next, the
number of communities is set. We then indicate how distinct
the communities are by allowing varying degrees of overlap
(i.e., correlation among the communities or latent variables
in SEM nomenclature). Fourth, we specify the connectivity
range within communities for how strongly they relate to
other nodes within the community (set by the factor loading
matrix loading on the latent community variable). High
numbers here indicate a higher degree of connectivity for that
node with the rest of those in their community. Finally, we
specify the heterogeneity in community sizes. This platform
for data generation is highly flexible, enabling us to dictate
directly the number of communities, as well as how much each
individual node is connected to its community as well as other
communities.

From the joint probability specified by the population-
level correlation matrices we generated random variables to
arrive at N-variate by t-observations data matrices for each
data replication in each condition. These data matrices have
a large number of observations across time (T ≥ 502 for
graph sizes of 25–500; T ≥ 1002 for graph sizes of 1000).
These sizes were chosen such that there are more observations
than nodes and also are in line with the number of time
points expected in a block or resting state fMRI study. Much
like the LFR matrices, these data can be considered to be
random pulls from the population, and 100 data matrices for
each condition are generated in this manner. At this point,
the data produced here is in the same format as functional
MRI data collected across time for specific brain regions. From
these time series data matrices, both correlation and Euclidean
distance matrices are generated using standard equations. The
resulting correlation matrices are directly used to evaluate the
methods. The Euclidean distance matrices must be further
manipulated since the approaches used herein expect similarity
matrices and the Euclidean distance matrices are difference
matrices with high values indicating low connectivity. The
values in the Euclidean distance matrix are reflected by taking
the absolute value of the difference between each value and
the highest Euclidean distance in the matrix. Thus, what was
originally the highest distance becomes zero (for no similarity),
and the shortest distance becomes high in value (for high
connectedness), resulting in a reflected Euclidean Distance
Matrix (EucD).

An important step taken prior to conducting community
detection algorithms is setting the diagonal in each correlation
and EucD matrix to zero. The diagonal here represents the
similarity that a given node has with itself, and thus from
a conceptual viewpoint is not informative in arriving at
communities. Analytically it may cause problems because the
diagonal contains the highest value found in the matrix for
both the correlation and EucD matrix, with the diagonal being
ones for the former and the highest value in the original
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TABLE 3 | Correlation and euclidean distance simulations.

Number Nodes Conn. Range Hetero. Comm. Size # of Comms. Overlap Level Diff.

1 25 0.25–0.95 Equal 2 0.1 0

2 25 0.25–0.95 Equal 2 0.1 1

3 25 0.5–0.5 Equal 2 0.1 0

4 25 0.25–0.95 Equal 4 0.1 0

5 25 0.25–0.95 As many large as small 4 0.1 0

6 25 0.25–0.95 Equal 5 0.1 0

7 75 0.25–0.95 Equal 2 0.1 0

8 75 0.25–0.95 Equal 4 0.1 0

9 75 0.25–0.95 Equal 4 0.1 1

10 75 0.25–0.95 As many large as small 4 0.1 0

11 75 0.5–0.5 Equal 4 0.1 0

12 75 0.25–0.95 Equal 8 0.1 0

13 500 0.25–0.95 Equal 2 0.1 0

14 500 0.25–0.95 Equal 5 0.1 0

15 500 0.25–0.95 Equal 10 0.1 0

16 500 0.25–0.95 Equal 10 0.1 1

17 500 0.25–0.95 As many large as small 10 0.1 0

18 500 0.5–0.5 Equal 10 0.1 0

19 500 0.25–0.95 Equal 20 0.1 0

20 1000 0.25–0.95 Equal 1 0.1 0

21 1000 0.25–0.95 Equal 2 0.1 0

22 1000 0.25–0.95 Equal 4 0.1 0

23 1000 0.01–0.01 Equal 10 0.1 0

24 1000 0.1–0.1 Equal 10 0.1 1

25 1000 0.1–0.95 Equal 10 0.1 0

26 1000 0.25–0.25 Equal 10 0.1 0

27 1000 0.25–0.95 Equal 10 0.1 0

28 1000 0.25–0.95 Equal 10 0.25 0

29 1000 0.25–0.95 Equal 10 0.75 0

30 1000 0.25–0.95 Equal 10 0.1 1

31 1000 0.25–0.95 Equal 10 0.1 5

32 1000 0.25–0.95 More large than small 10 0.1 0

33 1000 0.25–0.95 As many large as small 10 0.1 0

34 1000 0.25–0.95 More small than large 10 0.1 0

35 1000 0.5–0.95 Equal 10 0.1 0

36 1000 0.75–0.75 Equal 10 0.1 0

37 1000 0.75–0.95 Equal 10 0.1 0

38 1000 0.95–0.95 Equal 10 0.1 0

39 1000 0.25–0.95 Equal 20 0.1 0

“Conn. range” refers to the connectivity range for each node connecting with their community with high values indicating high connectivity; “Hetero.Comm. Size” describes degree of

heterogeneity in size of communities with communities being either “equal” in size, different sized (large or small) but in the same proportion, or different sized with one size dominating;

“# of Comms.” refers to the number of communities; “Overlap” refers to the degree to which communities are related in their connectivity; “Level Diff.” refers to communities having

different overall averages of within-network connectivity.

Euclidean distance matrix for the latter. While NSA and GJA
algorithms would be unaffected by this choice, Walktrap, Fast
Modularity, Label Propagation, and Infomap will be affected.
For consistency, we present in the main text the results for
the analysis conducted with the diagonal set to zero as this
provided superior results for Label Propagation while returning
similar rates of performance on the aggregate for Walktrap, Fast
Modularity, and Infomap.

2.3. Evaluation of Community Detection
Methods
Three indices are used for evaluating appropriate community
designation across the simulations: majority placement, the
Hubert-Arabie Adjusted Rand Index, and modularity ratio.
“True community” here refers to the community to which a
node was assigned in the generating procedures. These measures
have been extensively used to describe the accuracy of each
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FIGURE 3 | Community precision for LFR count matrices. Simulation numbers correspond to those described in Table 2. In the legend depicting the simulation

parameters appended at the bottom of the graph, “Ave.” indicates average, “Prop. Out” indicates the proportion of edges that connect nodes with other nodes

outside their community (“mixing parameter,” “L,” and “H” indicates low and high number of equally-sized groups (“community distribution exponent”), respectively. No

approach could reliably return community structures in count matrices with nodes = 25. Walktrap and Label Propagation consistently performed nearly perfectly for

count matrices with nodes = 500 and higher.

community detection method’s ability to place nodes in the

correct community. Finally, multiple regression analysis was

conducted for each community detection method using the

Hubert-Arabie Adjusted Rand Index as the dependent variable

to identify conditions that influenced appropriate recovery of
community structures. Post hoc comparisons between methods
were conducted to arrive at effect sizes for the differences in their
accuracy.

2.3.1. Majority Placement
The first index is the commonly used Girvan and Newman
(2002)’s approach of looking at the fraction of correctly classified
nodes. This is referred to here as majority placement (MP)
because nodes are placed with the majority of their true
community. Here, nodes placed in a cluster with the majority
(“>” 50%) of the other nodes in its true community is identified
as being in the correct cluster (Fortunato, 2010), providing a
number between 0 and 1 which indicates the proportion of nodes
with correct community identification. Formally,

MP =

N
∑

i = 1

τi/N, τi =







1 if node i placed with ≥ 50%
of true community

0 otherwise
(2)

where for each individual i, τ is “1” if the individual is in a
community with at least 50% of others in their true community. A
benefit of this approach is that it quantifies one of the underlying

premises driving community detection: nodes are placed with
others with whom they are highly connected. A critical drawback
is that the results are biased and tend to overinflate accuracy.
For instance, in the case where only one community is identified,
every node will be categorized as “correct” placement since they
are with the majority of their fellow community members (see
Figure 1C for a visual depiction of “Super Community”). Hence
it will be inflated for when there are fewer communities found
than there are in the generated data (i.e., high sensitivity, but low
specificity).

2.3.2. Hubert-Arabie Adjusted Rand Index
Classification rates, a category that MP falls into, may not be
the best choice because of the arbitrary distinctions necessary to
arrive at what the “correct” placement is (Steinley, 2004). Given
this insight and the inflated bias sometimes seen in MP, we also
used a second metric that better addresses specificity, Hubert-
Arabie Adjusted Rand Index (ARIHA; Hubert and Arabie, 1985).
ARIHA complements MP by assessing the precision of node
assignment to the correct community and is a stricter criterion
than MP in that it accounts for chance placement of nodes.
Formally, the ARIHA is defined as:

ARIHA =

(N
2

)

(a+ d)− [(a+ b)(a+ c)+ (c+ d)(b+ d)]
(N
2

)2
− [(a+ b)(a+ c)+ (c+ d)(b+ d)]

(3)
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FIGURE 4 | Hubert-Arabie adjusted Rand Index ARIHA for correlation and reflected euclidean distance matrices. Simulation numbers correspond to those

described in Table 3. In the legend depicting the simulation parameters appended at the bottom of the graph, “Comms.” indicates communities; in the “Additional”

row, numbers indicate the connectivity range (when not stated, it is 0.25–0.95); “X” indicates unequal group sizes, with “X−” indicating more small groups than large

and “X+” indicating more large groups than small; “Med” and “High” indicate medium and high degrees of community overlap (i.e., correlation among communities),

respectively. Infomap conducted on correlation matrices performed best for graphs with 25 nodes. Walktrap on correlation matrices outperformed the other methods

for graph sizes ≥75 across the varied conditions. Walktrap and Infomap conducted on correlation matrices were the only approaches to not return false communities

when there is only 1 community (Simulation #20).

where each pair of nodes provides a count for either a, b, c, or
d. The value a indicates the number of pairs placed in the same
community for both the true and recovered partition. Both b and
c indicate wrong placement of nodes, with the former indicating
the counts of pairs in the same group for the true community
structure but different groups for the recovered structure (and
the latter indicating the opposite). Finally, d indicates the count
of pairs that are in different communities in the generated data
and also different communities in the recovered structure. The
ARIHA has an upper limit of 1.0, which indicates perfect recovery
of the true community structures and lower values indicating
incrementally poorer recovery. The R package clues was used
to calculate ARIHA (Chang et al., 2010). In the case of super
communities, ARIHA penalizes for the placement of two nodes
from different true communities into the same community. In
this way, ARIHA is tightly linked to the detection algorithms
ability to recover the correct number of communities and
penalizes for combining two communities into one (i.e., requires
high sensitivity and high specificity) or splitting a community
into two smaller ones.

2.3.3. Modularity Ratio
The third metric is modularity ratio, or MR. We utilize MR
to evaluate how closely the recovered modularity normed by
the true modularity for the generated community structure
corresponds with the index of accurate community detection

recovery (i.e., ARIHA). Modularity has been used by a number
of studies to demonstrate superiority of methods (e.g., Newman,
2006). Utilizing modularity (Q) as a descriptive property
of the network, we used Equation (1) to arrive at the
modularity in the generating graph clustering assignments,
Qmax, and the recovered modularity, Qr . The same values
are used in both except the δ indicator will differ based
on recovered community assignments. The ratio of the
recovered Qr over the maximum Qmax is taken. Thus, we
arrive at a proportion of the maximum true modularity in
the recovered solution. Modularity values above 0.3 is often
considered an indication of good community assignments
(Newman, 2006). We wished to investigate the extent to
which modularity should be used as an absolute (rather than
comparative) indication of appropriate community structure
recovery.

2.3.4. Effect Sizes of Differences
Cohen’s d was used to quantify the effect sizes for post hoc
comparisons of mean differences between the methods (Cohen,
1988). Specifically,

d =
¯ARIHAi − ¯ARIHAj

sij
(4)
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where the average ARIHA of a given community detection
approach, ¯ARIHAj, is subtracted from the average of one or

more other community detection approaches, ¯ARIHAi, for a given
condition. The denominator, sij, indicates the pooled standard
deviation. Given the multiple tests possible in this analysis as
well as the high power, effects sizes are preferred over significance
testing. Conventional interpretations of effects sizes are followed,
with the values of 0.20, 0.50, and 0.80 respectively indicating
small, medium, and large (Cohen, 1988).

2.3.5. Multiple Regression
In order to identify the influence each condition had on the
evaluation criteria, a series of multiple regressions were run
for each community detection method with the ARIHA as the
dependent variable. For both the LFR and correlation/EucD
matrix simulations, the condition specifiers were dummy-coded
with the reference category being the smallest size graph and
“typical” situation (e.g., adequate in-degree, or the average
strength of within-community connections; low community
overlap).

3. RESULTS

We first investigated which measures used (MP, ARIHA, and MR)
best related to optimal community recovery. MP was consistently
high across most conditions for all methods (see Supplemental
Tables 1–3 and Supplemental Figure 1) Thus, it was not useful
in discriminating among them. Either all methods performed
nearly perfectly across these conditions, or super communities
were generated. Super communities (see Figure 1C) occur when
multiple communities are subsumed into one large community.
MP will still be high in this situation since it does not account for
specificity of communities. Hence we do not focus on MP for the
majority of the results and only refer to this measure as needed.

We also investigate the utility of using modularity as an
indicator for how well-partitioned the modules are. Modularity
did not have a clear relationship with accurate community
recovery rates. Recall from above that a high modularity ratio of
the recovered modularity to the true modularity would suggest
that the algorithm found a partition that was as good as the
one used to generate the data (see Supplemental Tables 7–9 for
full modularity ratio results and Supplemental Figure 2). We

TABLE 4 | Modularity Ratio as an Indication of Accurate Community

Assignments.

Method Correlation EucD LFR

NSA −0.04 −0.03 0.48

Walktrap −0.05 −0.30 0.39

Fast modularity −0.03 0.01 0.41

GJA −0.05 −0.04 0.68

Label Prop. 0.98 0.99 0.92

Infomap 0.99 1.00 0.89

Correlation coefficients for relations between ARIHA and Modularity Ratio (MR) across all

trials for simulated correlation, EucD, and LFR matrices.

see in Table 4 that MR can be unrelated, and in some cases
orthogonal, to the actual accuracy of the community structure
obtained. For instance, for NSA, Walktrap, and Fast Modularity
conducted on the LFR count matrices the effect sizes for the
relation between ARIHA and MR were moderate to low. A more
striking pattern of results was found for NSA, Walktrap, Fast
Modularity, and Louvain GJA conducted on correlationmatrices,
where the effect sizes were 0.00. For, Walktrap connected on the
reflected Euclidean matrices, there was actually a negative effect
between ARIHA and MR, suggesting that as accuracy in recovery
goes down, MR goes up (and conversely, as MR goes down, the
ability to recover the true communities rises). Taken together,
these results suggest a low coherence between modularity and
identification of the true communities for NSA, Walktrap, Fast
Modularity, and Louvain GJA. Thus, while modularity may be
useful for identifying the best partition among multiple solutions
for the same graph, it may not be the best approach for comparing
solutions between graphs.

This incongruence indicates that modularity may not be
the best measure of accuracy in community structure recovery
for all methods. These issues have been highlighted previously
by Fortunato (2010), namely that high modularity does not
necessarily indicate that the network has a community structure
and that sub-optimal partitions can reach the same modularity
value. Obtaining a high modularity may not always reflect that
the community structure as defined here was obtained (also
see Karrer et al., 2008). Interestingly, Label Propagation and
Infomap provided noteworthy exceptions in the present paper
with regards to the correlation between accuracy in communities
and MR—these two measures are nearly perfectly related for
the correlation and EucD matrices, and the effect sizes for LFR
matrices were also high. Full results for the modularity ratios
across conditions and methods can be found in the Supplemental
Information. For reasons outlined here, results presented in the
main text concern only ARIHA.

3.1. Sparse Count Matrices
Walktrap outperformed the other methods in terms of average
ARIHA across all conditions, with effect sizes for the differences
between Walktrap and other methods ranging from small
(d = 0.14 for Label Propagation) to large (d > 1.30 for
Fast modularity and NSA; see Supplemental Table 10). This
follows previous findings on sparse count matrices that indicated
Walktrap performs excellently across a range of conditions (Pons
and Latapy, 2006; Orman and Labatut, 2009). Fast Modularity
was among the worst performing methods for these sparse count
matrices. While exhibiting higher average ARIHA than NSA (d =
0.42), Fast Modularity exhibited such wide variability in results
for each condition (ranging from ARIHA = 0.00 to ARIHA =

1.00 for many simulations) that it is not recommended for the
conditions examined here due to the inconsistency of results.
Walktrap’s superior performance is consistent with previous
findings that simulated sparse matrices (Orman and Labatut,
2009). Indeed, for graphs with 500 or more nodes Walktrap
recovered the nodes’ appropriate community 100% of the times.
This near-perfect performance for large graphs was not the only
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driver of Walktrap’s superior overall performance: for graphs
sized 25 and 75, Walktrap’s average ARIHA was 0.90 (SD =

0.15) with an effect size of 0.32 when compared to the ARIHA
aggregated across other methods (average ARIHA = 0.83, SD =

0.20).
A couple of commonalities existed across the methods in

terms of the ability to recover the underlying community
structure in sparse matrices. None of the methods could
appropriately recover communities of size 25 when the in-degree
is low (LFR Simulations 1 and 3) , with average recovery ranging
from ARIHA = 0.38 for NSA to approximately ARIHA = 0.65
for the other methods (see Figure 3 and Supplemental Table 6
for LFR dataset results). However, overall the regression results
for the LFR simulations with ARIHA as the dependent variable
revealed that unequal community sizes has little effect on any of
the methods’ ability to recover the true community assignments
(see Figure 5).

3.2. Correlation and Distance Matrices
Walktrap conducted on correlation matrices again had overall
higher average ARIHA than the other methods conducted on
either correlation or EucD matrices, with effect sizes ranging
from low (d = 0.13 for Louvain GJA conducted on correlation
matrices) to large (e.g., d = 0.71 for Fast Modularity conducted
on correlation matrices; d ≥ 2.50 for Label Propagation and
Infomap conducted on EucD; see Figure 4 and Supplemental
Tables 4, 5 and 11). For researchers wishing to use full weighted
matrices which may share similar properties to the EucD
matrices, Louvain GJA performed the best on these. However,
performance was worse than conductingWalktrap on correlation
matrices with a small to moderate difference in performance (d
= 0.37). It is noteworthy that Walktrap performed considerably
better for correlation (M ARIHA = 0.91, SD = 0.24) than for
EucD matrices (M ARIHA = 0.74, SD = 0.32) with a medium
effect size of d = 0.60 for the mean difference.

FIGURE 5 | Heatmap of multiple regression results for LFR count

matrices. Standardized betas are depicted from multiple regressions

conducted for each method using the condition indicator variables to predict

ARIHA. “Med” = medium; “Indeg.” = in-degree; “Comm.” = Community; “N”

refers to graph size; Reference category is: N = 25, equal community sizes,

low proportion of outdegree, and low indegree.

As noted above, researchers with fMRI data (i.e., numerous
temporal observations for many variables) can either generate
correlation or reflected Euclidean distance (EucD) matrices that
indicate the degree of similarity between two nodes. The decision
of whether to generate a correlation vs. an EucD matrix for a
given set of data should be informed by the method one wishes
to use. For all methods, the EucDmatrices returned worse results
than using correlation matrices.

Walktrap, Label Propagation, and Infomap, consistently
returned the appropriate community structure at rates far
higher when using correlation matrices rather than using
EucD matrices. Of note, these methods require setting negative
correlations between nodes to zero, whereas Louvain GJA utilizes
information from negative values. Due to the data generating
process, negative correlations occur for nodes that are in different
communities at around a rate of 50% of the total correlations
of a given simulation set. Thus, thresholding by setting negative
values to zero provides Walktrap, Label Propagation, and
Infomap with an immediate gain by decreasing the number of
potential dyads that can be in the same community. In the
end, the most robust approach for arriving at communities
of functionally related brain regions using fMRI data is to a
create correlation matrix, set the diagonal to zero, and conduct
Walktrap. If the researcher would rather conceptualize the data as
a pure distance matrix such as the reflected Euclidean Distance,
then Louvain GJA is the best option (again, setting the diagonal
to zero).

3.3. Graph Sizes
In general the methods performed better as graph size increased.
However, increasing the node size did not relate to improved
performance for all methods. For instance, when looking at
recovery of communities in sparse count matrices, Newman’s
Spectral Approach performed worse as seen in the performance
for simulations 11 and higher which had graph sizes of 500 and
larger (MARIHA = 0.62). BothMP andARIHA followed the same
pattern, suggesting that the problem in community recovery
for NSA is not super communities but rather the generation of
communities comprised of nodes that do not belong together
(depicted as“Poor Recovery” in Figure 1).

Small graph sizes of 75 and lower presented problems for most
algorithms when looking across all matrix types. Walktrap (M
ARIHA = 0.90, SD= 0.15), Louvain GJA (average ARIHA = 0.89,
SD = 0.14), and Label Propagation (M ARIHA = 0.89, SD =

0.11) all performed about equally well on the small sparse count
matrices. While high relative to the other methods tested here,
it must be noted that these performance rates are passable but
not exceptional. The majority of methods performed well for
small graph sizes on correlation matrices (e.g., Walktrap had a
mean ARIHA = 0.97, SD = 0.07). This suggests that for small
weighted networks, maintaining the full information rather than
thresholding to create binary graphs appears to work well.

3.4. Ill-Defined Communities in the
Generated Graphs
We also tested the algorithms under a number of additional
conditions that emulate qualities of graphs that would be outside
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the control of the researcher. These would be conditions such
as low within-community connectivity (i.e., low average in-
degree), unequally sized subgroups, small subgroups, overlap
in communities, and the absence of communities in the graph
(i.e., one community). As noted above, Walktrap generally
outperformed on average across conditions, and as such typically
performed well in these instances.

With regards to the sparse count matrices,Walktrap and Label
Propagation were robust even in the presence of relatively high
proportion of out- to in-community degree, low average degree,
and similar sized communities. Similar to previous findings
Fortunato (2010), approaches based from traditional modularity-
optimization approaches (i.e., Louvain GJA, Fast Modularity,
and Newman’s Spectral approach) as well as Infomap performed
poorer on the sparse count matrices as average node degree
decreased in the count matrices.

For the correlation matrices, as expected none of the
community detection methods could recover the true
communities for low connectivity ranges (i.e., extremely
low within-group average weights of 0.01). This is seen in
Simulation 23, where the average ARIHA across each method
was 0.00. Indeed, while the nodes were placed into communities
during data generation, it could be argued that this condition had
no communities given the low within-community connectivity.

Regression results revealed that all of the approaches
experienced decreased performance rates when there were a
greater number of subgroups containing smaller percentages
of the sample. For instance, when tasked with identifying
20 communities with 50 nodes assigned to each (i.e., each
subgroup contained 5% of the sample; Simulation 39), ARIHA
on correlation matrices ranged from an average of 0.59 for NSA
to 0.94 for Walktrap and Label Propagation. All methods had
high MP for this condition, indicating that super communities
were generated since nodes were appropriately placed with the
majority of their true community members at the cost of there
being poor distinction between communities. While Walktrap is
sensitive to small communities with recovery rates decreasing as
the resolution of the communities increased (see Figures 6 and
7), this is relative to its near-perfect recovery in other conditions.
As seen in Figure 4 and specifically Simulation 39, this slight
decrease in accuracy is likely not meaningful. Hence Walktrap
uniquely can recover communities a high level of specificity when
they are small.

Both Walktrap and Louvain GJA were robust in the presence
of poorly defined communities. This includes cases when there
is medium to high correlations among the communities as well
as conditions with unequally sized communities. In particular,
Louvain surpassed most other methods in its ability to recover
the underlying groups when correlation among the communities
exists: for Simulations 28 and 29, the average ARIHA for
each was 1.00. This is only slightly higher than Walktrap
conducted on correlation matrices (0.99 and 0.98, respectively).
Label Propagation was particularly negatively influenced by
the presence of overlap in the communities, resulting in an
average ARIHA of 0.33 (SD = 0.43) for these simulations. Label
Propagation and Infomap both performed particularly poorly
when the average in-degree was set to 0.25. This result for
Label Propagation coincides with results seen in sparse count

matrix simulations that found a sharp decline in performance
once the in- and out-degree ratio was blurred (Orman and
Labatut, 2009). One particularly noteworthy finding is that
when all nodes were generated to belong in one community
(i.e., there is no community structure) Label Propagation and
Infomap were the only approaches that appropriately returned
one community. That is, they do not find communities when
they do not exist. These were the onlymethods that accomplished
this.

3.5. Consistency in Solutions for Louvain
GJA and Label Propagation
In an auxiliary set of analysis we investigated the degree to which
instability in results influenced the findings above. As noted in the
description of methods, the Louvain GJA and Label Propagation
approaches are non-deterministic. In this way, they may be
sensitive to starting points. For this reason researchers sometimes
run the algorithms a number of times on the same data set and
choose a solution that appears consistent. We followed suit here
by running the algorithms 100 times on each data set for each
of the 100 matrices within the conditions. We present here the
deviation in ARIHA across these runs (see also Supplemental
Tables 12 and 13).

The standard deviations in the appropriateness of solutions
for running Louvain GJA on the sparse count matrices or densely
weighted matrices were quite low. Rarely was the deviation in
ARIHA > 0.01. This suggests that, for the conditions tested here,
Louvain GJA is relatively consistent across runs.

By contrast, Label Propagation demonstrated a high degree of
deviation in it’s solutions for the correlation matrices, ranging
from an average of 0.00 in some simulations to 0.40 for others.
Interestingly, the degree of deviation in the accuracy of solutions
did not correspond to overall mean ARIHA (r = 0.04).
Thus, inconsistencies in solution do not necessary indicate
poor recovery in this case. The primary cause for instability in
solutions seems to stem from having small communities. For
instance, the solutions were the most inconsistent for Simulation
19, which had the largest number of communities to nodes
ratio. For sparse count matrices, Label Propagation was fairly
consistent across runs with an average of zero deviation inARIHA
for multiple runs on the same data set. Supplemental Tables 12
and 13 provide results for the amount of deviation for each data
set within each condition.

4. DISCUSSION

The present work extends previous findings demonstrating

that not all community detection algorithms recover the true

community structure well across varied types of weighted

matrices. We conducted the first evaluation into the performance

of weighted community detection algorithms on matrices which

these algorithms are often applied yet not always evaluated:

sparse count, correlation, and distance matrices. The present
findings indicate that some of the commonly used community
detection algorithms do not perform well for correlation
matrices. Walktrap (Pons and Latapy, 2006) and Louvain GJA
(Blondel et al., 2008) conducted on correlation matrices appears
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FIGURE 6 | Heatmap of multiple regression results for correlation matrices. Standardized betas are depicted from multiple regressions conducted for each

method using the condition indicator variables to predict ARIHA. “Wt.” = indegree connectivity weight; “k” refers to the proportion of the sample in each community;

“Med” = Medium; “Unequal” refers to unequal community sizes; “N” refers to graph size. Reference category is: N = 25, equally sized communities, low overlap, each

community containing at least 25% of the sample, and indegree weight between 0.25 and 0.95.

FIGURE 7 | Heatmap of Multiple Regression Results for Reflected Euclidean Matrices. Standardized betas are depicted from multiple regressions conducted

for each method using the condition indicator variables to predict ARIHA. “Wt.” = indegree connectivity weight; “k” refers to the proportion of the sample in each

community; “Med” = Medium; “Unequal” refers to unequal community sizes; “N” refers to graph size. Reference category is: N = 25, equally sized communities, low

overlap, each community containing at least 25% of the sample, and indegree weight between 0.25 and 0.95.

to be the best options available for researchers with fMRI data
who wish to identify modular communities of brain regions that
function together. For sparse count matrices (such as those used
for structural brain connections), Label Propagation (Raghavan
et al., 2007), and Walktrap perform equally well under varied
conditions.

Modularity appears to be a good stopping mechanism
but comes with limitations. In many cases where the true
communities were not recovered modularity was still high, with

the reverse occurring as well. Hence using modularity alone as
a criterion for identifying the underlying community structure
may not always indicate that the communities truly have greater
within-community than between-community connectivity, and
it likely is not the appropriate measure on which to decide
if a method is performing appropriately. Optimization of
modularity has been shown to have a problem with resolution
in that it merges smaller communities into larger communities
(Lancichinetti et al., 2011). We see this in the present data,
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with there being a high ratio of recovered to true modularity
even when communities were poorly recovered. It is important
to note that while Walktrap utilizes modularity to identify
the best partition, it does not optimize modularity during
partitioning. Perhaps for this reason it performed better when the
communities were relatively small.

The reliability of methods varied greatly. Fast Modularity
results in particular varied widely within multiple simulations for
the sparse count matrices. For condition number 12, for instance,
Fast Modularity sometimes perfectly returned the community
and other times had recovery rates around zero. Walktrap and
label propagation, by contrast, routinely had small variability
in terms of their performance. Thus, they reliably returned the
same results across the numerous runs within a condition. For
the correlation matrices, Walktrap and Infomap consistently
provided the same results within runs. However, Infomap
sometimes had recovery of zero for all runs within a condition;
thus while being reliable, it consistently provided the wrong
results. Two methods—Louvain GJA and Label Propagation—
are non-deterministic and thus results may vary even when
the exact same data set is used. Our analyses revealed that
the deviation from one run to another for the same data set
was quite small for Louvain, whereas for Label Propagation the
difference in solutions across runs for the same data set could
be quite large. Taken together, Walktrap would be an optimal
algorithm for investigating consistency of networks across time.
Increasingly it is becoming apparent that individuals may vary in
their functional connectivity across time (Laumann et al., 2015).
Thus, it is imperative that methods such as Walktrap, which is
both reliable and accurate, are used when investigating brain
functioning across time; otherwise changes in the results may be
erroneously produced by the algorithm being unreliable.

A few limitations need be noted. What constitutes a
community often can be arbitrary since the concept is
somewhat ill-defined (Fortunato, 2010). Hence when the present
evaluation identifies that the community detection algorithms
appropriately recovered the “true” community structures, it is
more appropriately said that it recovered the true communities
as we conceived them. Perhaps, in the cases where the recovered
modularity was high despite adequate recovery as indicated by

the Hubert-Arabie Adjusted Rand Index, the communities did
exist but simply under a different definition. That an algorithm
performs poorly in one case simply highlights the type of
bias or structure of communities it is likely to recover. An
additional limitation is that this is not an exhaustive analysis of all
community detection algorithms described in the literature. The

algorithms chosen were based on public availability and ability
to handle undirected weighted graphs. Thus, these results do not
extend to directed or unweighted counterparts. It is important to
remember that these findings are contingent on the specifications
that we have selected for our simulations. While we have done
our best to provide realistic tests for themethods, our finding that
Walktrap performs best for correlation may not be generalizable
to all types of data. Additionally, researchers should attend to
the qualities of their data and, using the findings regarding the
strengths of each approach for varying conditions, utilize this
information as well to make their decision.
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