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Granger causality analysis, as a time series analysis technique derived from

econometrics, has been applied in an ever-increasing number of publications in the field

of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present studymainly focuses

on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived

analysis method that has been adopted by many fMRI researches in the last few

years. This method generally estimates the causality effect among the time series by an

order-1 autoregression, and defines a positive or negative coefficient as an “excitatory”

or “inhibitory” influence. In the current work we conducted a series of computations from

resting-state fMRI data and simulation experiments to illustrate the signed path coefficient

method was flawed and untenable, due to the fact that the autoregressive coefficients

were not always consistent with the real causal relationships and this would inevitablely

lead to erroneous conclusions. Overall our findings suggested that the applicability of

this kind of causality analysis was rather limited, hence researchers should be more

cautious in applying the signed path coefficient Granger causality to fMRI data to avoid

misinterpretation.

Keywords: signed path coefficient, Granger causality, fMRI, model order, vector autoregression

1. INTRODUCTION

Granger causality analysis is an important time series analysis technique that originally derived
from econometrics. In recent years it has been widely employed across the field of neuroscience,
especially for constructing effective networks among brain regions in fMRI causal modeling studies
(Friston, 2009, 2011; Bressler and Seth, 2011; Valdes-Sosa et al., 2011; Friston et al., 2012; Stephan
and Roebroeck, 2012). The basic idea of Granger causality can be traced to Norbert Wiener (1956)
and a practical implementation was proposed by Clive Granger (1969) in the framework of linear
autoregressive model. The concept is based on the idea that the “cause” will precede and help to
improve the prediction of the “effect.” As a broadly applied time series analysis method for assessing
directional influence in neuroscience data, Granger causality has been proven to be useful and
informative, while on the other hand it has also drawn a lot of debates about its applicability and
interpretation in fMRI studies. Previous discussions around the controversial aspects of application
of Granger causality to fMRI data are mostly focused on hemodynamic response latency, low
sampling rate or measurement noise (David et al., 2008; Witt and Meyerand, 2009; Smith et al.,
2011; Webb et al., 2013; Friston et al., 2014). Various factors could impact the detectability of
the neuronal interactions by Granger causality analysis in fMRI, and a great deal of detailed
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literature has been written on this topic. Some simulation
studies pay attention to hemodynamic response variability on
Granger causality at the level of group (Schippers et al., 2011;
Smith et al., 2012), others focus on the effect of signal-to-
noise ratio or the sampling period (Deshpande et al., 2010),
also there is investigation addressing this problem by a rigorous
combination of theory and simulationmodeling atmultiple levels
of biophysical details, showing that severe downsampling may
render Granger causality to follow the hemodynamics rather than
the neural mechanisms (Seth et al., 2013), and to cope with the
hemodynamic response variability some researchers propose to
use the difference of Granger causality influence term rather
than each direction separately (Roebroeck et al., 2005). Although
these discussion is far from settled, and miscellaneous factors
may corrupt Granger causality which lead to confounding results,
highly interpretable applications of Granger causality to fMRI
continue to appear, hence it is still widely considered as a viable
technique for analyzing fMRI data (Wen et al., 2013).

In the present study, we were mainly concerned with an
alternative formulation of Granger causality, the “signed path
coefficient” method. In the most commonly used formulations
of Granger causality (Ding et al., 2006), the degree to which
a causal variable help to predict an effective variable beyond
the information contained in the effective variable’s own past
is measured either by the decrease of the residuals (Ding
et al., 2006; Jiao et al., 2014; Kullmann et al., 2014), i.e., the
time domain formulation, or by the frequency decomposition
(Geweke, 1982; Bajaj et al., 2014, 2015), i.e., the frequency
domain formulation, both through estimating an autoregression
model with a fixed order. However, in some recent studies,
another “signed path coefficient” version of Granger causality
was proposed (Chen et al., 2009) and had been firstly used to
reveal the causality from brain regions of patients with major
depression disorder (Hamilton et al., 2011), and gradually it
was popular among a number of researchers in the field of
fMRI. Some researchers had integrated this idea in their toolkit
(Zang et al., 2012) and a great deal of papers had applied
it to analyze effective networks in fMRI data (Ji et al., 2013;
Palaniyappan et al., 2013; Abe et al., 2015; Wu et al., 2015;
Zhang et al., 2015; Feng et al., 2016; Yuan et al., 2016). Generally
speaking, this coefficient-based causality method characterizes
the strength and direction of causal influence among ROIs or
voxels in fMRI data by directly computing the signed path
coefficients through an order-1 autoregression model, and in
this process the positive or negative coefficients are respectively
defined as excitative or inhibitive influences that one brain
region cast to another. Therefore, many authors in recent
years prefer this method for two reasons: first, it is easy to
implement with a relatively low computational burden because
it only requires to estimate the lag-1 coefficient matrix; second
and the most important, compared with the traditional (with
on sign) Granger causality that based on residuals, this new
method could distinguish an excitatory/inhibitory relationship
among brain regions (Hamilton et al., 2011) by means of a
positive/negative sign of coefficient, which provides a convenient
neural interpretation for the final conclusion. Different from the
classic Granger causality method which aims to measure the

“causal effect” between time series, the signed path coefficient
method is actually a measure of “causal mechanism” (Barrett
and Barnett, 2013), and in this paper we will point out there
exists some ambiguous aspects about the excitatory/inhibitory
definition in this kind of denationalization of Granger causality
which needs to be clarified.

The present study’s aim is to investigate under what condition
the signed path coefficient Granger causality will meet some bias
or induce false interpretation as a method in causality inference.
To do this, we test the signed path coefficient approach in fMRI
data and perform a series of simulations to elucidate the unproper
application of this method.

2. GRANGER CAUSALITY

The original Granger causality formalization introduced by
Granger (1969) is based on the linear autoregression framework,
in which the degree of predictors minimizing the forecast mean
squared errors (MSEs) is measured as the causality strength. To
illustrate this in bivariate context, consider two jointly stationary
stochastic processes Xt and Yt , which could be individually
described by an autoregression representation (Ding et al., 2006).

Xt =

p
∑

j= 1

a0jXt− j + ǫ0t

Yt =

p
∑

j= 1

d0jYt− j + η0t

(1)

One the other hand, the two process Xt and Yt could be jointly
represented as:

Xt =

p
∑

j= 1

a1jXt− j + b1jYt− j + ǫ1t

Yt =

p
∑

j= 1

c1jXt− j + d1jYt− j + η1t

(2)

The time lags parameter p is the model order that can be
determined by some information criteria to reach a parsimonious
model through the trade-off between bias and variance (Burnham
and Anderson, 2002). To apply in computation we need to pick
a finite order p, which is equivalent to place zero-restrictions
uniformly on the rest of coefficients with the lags larger than p
(Lütkepohl, 2005). The traditional Granger causality measure is
define as the ratio between the variances of the residual errors,
which could be easily extended to the multivariate process.

FX→Y = log

(

var (η0t)

var (η1t)

)

FY→X = log

(

var (ǫ0t)

var (ǫ1t)

) (3)

In the method of signed path coefficient Granger causality which
is introduced by Chen et al. (2009) and has been employed
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in a series of recent fMRI studies (Hamilton et al., 2011;
Zang et al., 2012; Ji et al., 2013; Palaniyappan et al., 2013;
Kullmann et al., 2014; Abe et al., 2015; Wu et al., 2015; Zhang
et al., 2015; Feng et al., 2016; Yuan et al., 2016). The causality
strength between time series is measured not by the change
of the residuals, but directly by the regression coefficients in
(2.2) through an order-1 autoregression model (Hamilton et al.,
2011), without considering the higher lags (i.e., p = 1). In
this case, the time series Xt significantly Granger causes the
time series Yt if the signed path coefficient c11 is significantly
larger or smaller than zero, and vice versa, the causal influence
from Yt to Xt is measured by the coefficient b11. According to
this formulation, any significant positive/negative coefficient is
interpreted as an excitatory/inhibitory interaction among brain
regions (Hamilton et al., 2011). An advantage of the signed path
coefficient method is the direct computation of an autoregressive
model, without resorting to the restricted model (Seth, 2010).
That means the terms in (2.1) are irrelevant and can be
neglected.

Nevertheless, in this kind of causality analysis procedure,
an essential factor which is critical to the interpretation of
the final result has been usually neglected by the researchers:
will the optimal model order which is used to construct the
autoregressive model (under bivariate or multivariate condition)
always be one? And if not, how the outcome will be impacted?
In the present work our primary purpose is to gain an insight
into the validity of this form of causality analysis. And we will
show that the signed path coefficients are not always consistent
with the underlying causal relationships if the actual order
of the real data generation process is larger than one but
the analysis is processed by estimating an underfitted order-
1 autoregressive model. Here we are trying to clarify two
points: first, the procedure to determine the optimal order of
the time series to be analyzed is imperative, inasmuch as the
signed path coefficient method focuses on the correct estimation
of parameters, so it must be verified whether the choice of
order-1 autoregressive model is sufficient to reconstruct the
underlying causality relationships; second, if we need to consider
more information of higher lags to make correct inference
from the data, does the assumption that positive/negative
coefficients indicating the excitatory/inhibitory interaction still
holds? Actually from some simulation results we will show that,
under certain situations the signs of the path coefficients are
not consistent with the real causal relationships, which means
for higher order autoregressive models the interpretation that
positive/negative coefficients as excitatory/inhibitory influence
could hardly hold.

In this paper our statistical analysis for the coefficient
Granger causality was performed by non-parametric methods,
which involved permutation resampling of the original data
for constructing surrogates to assess whether a path coefficient
value was significantly different from zero (i.e., a two-tailed
permutation test with a p-value of at least 0.05). In the resampled
data the the order of the time points had been shuffled to
destroy any underlying causality structure. And significance
thresholds were derived by examining the empirical quantiles of
the distribution of regressive coefficients.

3. MATERIALS AND METHODS

3.1. Resting-State fMRI Data
To illustrate the problem of signed path coefficient Granger
causality, we started with an identification of the optimal order
in fMRI data with different TR times. The following causality
analysis were performed on a publicly released resting-state fMRI
dataset: the enhanced Nathan Kline Institute-Rockland sample
from “1000 Functional Connectomes Project” http://fcon_1000.
projects.nitrc.org/indi/pro/eNKI_RS_TRT. Two resting-state
fMRI data sets with different TR (TR = 0.645 s, 3mm isotropic
voxels, 10min; and TR = 1.4 s, 2mm isotropic voxels, 10min)
were acquired on Siemens 3T Trio Tim scanners. All participants
had no history of neurological and psychiatric disorders and all
gave the informed consent approved by local Institutional Review
Board.

3.2. Data Preprocessing
Preprocessing of the resting-state fMRI data was performed
using Statistical Parametric Mapping 8 (SPM8, http://www.fil.
ion.ucl.ac.uk/spm) and Data Processing Assistant for Resting-
State fMRI (DPARSFA, http://rfmri.org/DPARSF; by Yan and
Zang, 2010). The first ten volumes of functional images were
discarded to allow stability of the longitudinal magnetization,
then the data were realigning with the corresponding T1-
volume, spatial normalization into the stereotactic space of
the Montreal Neurological Institute and resampling to 3-
mm isotropic voxels, linearly detrended, followed by nuisance
covariate regression (six head motion parameters, global mean
signal, white matter signal and cerebrospinal fluid signal).
Three subjects were excluded from further analysis because
of head movement exceeding 1.5mm or 1.5 degree in
rotation.

With respect to bandpass filtering, it has been demonstrated
(Barnett and Seth, 2011) this procedure has critical impact on
the Granger causality analysis, disturbs the causal information
and leads to spurious or missed causality. This kind of effect
has been thoroughly discussed by former researchers (Florin
et al., 2010; Barnett and Seth, 2011), however some fMRI
study that adopt signed path coefficient causality method (Ji
et al., 2013; Palaniyappan et al., 2013; Abe et al., 2015; Wu
et al., 2015; Zhang et al., 2015; Feng et al., 2016; Yuan et al.,
2016) still apply this procedure during preprocessing while a
few others not (Hamilton et al., 2011; Wu et al., 2011). To
investigate the influence of bandpass filtering to the signed
path coefficient causality we will compare the both results
of the preprocessed data with and without bandpass filtering
procedure.

Finally, the functional images were segmented into 90 regions
of interest (ROI) using automated anatomical labeling (AAL)
template and the respective time series of each ROI was obtained
by averaging the fMRI signals across all voxels in the ROI. Spatial
smoothing was not performed for it might blur the boundary
among the brain regions, but it is not crucial to the conclusion
of this study, actually the following analysis will not meet any
difference in the smoothed data and we just do not include
that.
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3.3. Model Order Determination
The construction of the autoregressive model requires to
determine the order p to make sure a satisfactory amount of
coefficients to fit the data optimally. There are many propositions
and discussions in econometrics field around this topic, and
the most used two kinds of information criteria are: Akaike
Information Criteria (AIC) which is based on the Kullback-
Leibler information, aims to make the best forecast precision;
and Bayesian Information Criteria (BIC) which is based on the
dimension-consistency, aims to select the true model order. The
former is more biologically rational compare with the later since
the brain is such a complex system and no “true model” could be
expected to exist. Andmoreover, the usual limited length of fMRI
data is not large enough for the dimension-consistent criteria to
converge (Umbach and Wilcox, 1996; Burnham and Anderson,
2002). For this reason in fMRI analysis AIC shall perform better
than BIC, whose penalty term is more strict and tend to give an
underfitted model.

The formulation of small-sample bias adjustment AIC: AICc
(Hurvich and Tsai, 1989) which is used in the following
computation is:

AICc = T ∗ ln(det(6))+ 2K ∗
T

T − K − 1
(4)

and the formulation of BIC is:

BIC = T ∗ ln(det(6))+ K ∗ log (T) (5)

where T is the data length, 6 is the maximum likelihood
estimator obtained by fitting an autoregressivemodel (Lütkepohl,
2005), and K = p∗n2 is the total number of estimated regression
parameters, which increases in the penalty term by n2 in both
criteria, i.e., the more time series of ROIs are considered, the
more likely a small number will be chosen as the optimal order
by AIC/BIC.

4. RESULTS

4.1. Results of Order-1 Autoregression to
fMRI Data
First by AICc criteria we computed the optimal model orders and
(non-diagnal) order-1 autoregressive coefficients of respectively
2, 4, 8, 16, and 32 ROIs, each group for 90 combinations
(for example, AAL k to AAL k+ 31 (mod90), for k = 1 to
90) and the value were averaged for every person, on filtered
and unfiltered data, the result was shown in Figure 1 (TR =

0.645 s). The difference of the numbers of positive coefficients
and negative coefficients (A+

− A−)/(A+
+ A−) indicated that

the fewer time series were considered, the bias of coefficients
toward positive value would become more prominent, which
implied more “excitatory” influences existing, in the following
section we would try to give an explanation of this phenomenon
through some simulations.

The optimal model order that was determined by AICc turned
to be lower when more ROI time series were considered in the
autoregression, since the penalty term in the criteria formula

increased rapidly with the square of number of time series and the
likelihood of choosing a small p became dominant (the boxplot
in Figure 2. showed the decrease trending of the orders and
coefficients respectively). Compared with the unfiltered data, the
model orders computed from filtered data were larger, which was
in accord with the conclusion of Barnett and Seth (2011) that the
filtering procedure will induce an increase in the model order,
leads to model mis-specification under very limited data andmay
corrupt the empirical estimates. On the other side, the bias of
positive coefficients disappeared, thus consolidated the causality
structure has been distorted after the filtering.

In Figure 3 we compared the difference between data with
TR = 0.645 and 1.4 s, it showed the TR time could also affect
model order determination. Shorter TR always induces a higher
order and vice versa, thus to reach an optimally fitted model it
is rationally to use different order for data under different TR
set, this important factor has been generally overlooked by a
remarkable number of researchers, who always simply choose to
use the order-1model across miscellaneous fMRI data, which will
inevitably lead to some kind of erroneous conclusions. To address
this issue we would provide some simulation examples in the
next section to illustrate the application of signed path coefficient
method will indeed lead to mistaken identification of causality.

The results of BIC (Figure 4) was similar to the result of AICc
except that optimal orders of different ROI combinations were
lower due to the more strict penalty term in the formulation
of BIC.

4.2. Results of Simulations
In this section we construct some bivariate time series models
of which the underlying data generating processes are all
autoregressive models with an optimal order higher than one, to
manifest that in certain cases the choice of order-1 autoregression
to fit the data is improper and may cause erroneous results, since

FIGURE 1 | The trending of the optimal model order by AICc and the

coefficients bias for different ROI combinations, on filtered and

unfiltered fMRI data. TR = 645ms.

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2016 | Volume 10 | Article 47

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Zhang et al. Insights into Coefficient Granger Causality

FIGURE 2 | The boxplot of the optimal model order by AICc, the

coefficients bias and the mean coefficients for different ROI

combinations, on filtered and unfiltered fMRI data. TR = 645ms.

FIGURE 3 | The trending of the optimal model order by AICc and the

coefficients bias for different ROI combinations, on fMRI data of TR =

645ms and TR = 1400ms.

the signed path coefficient Granger causality will be contradictory
to the real causal relationship between the time series. Briefly
speaking, the definition of excitatory/inhibitory influences to the
positive/negative coefficients shall mostly be restricted to order-1
autoregression coefficient method in the case of an order-1 data
generating process, and when we use an order-1 (underfitted)
model to the data generated by a higher order process, the

FIGURE 4 | The trending of the optimal model order by BIC and the

coefficients bias for different ROI combinations, on filtered and

unfiltered fMRI data. TR = 645ms.

coefficient method is often not able to correctly identify the
underlying causal structure, this fact illustrates why we should
be rather cautious to the application of this kind of causality
analysis.

Model 1. Here we start with an order-3 bivariate
autoregression process with unit variance Gaussian noise.
The model is:

(

Xt

Yt

)

=

(

0 0
0 0

) (

Xt−1

Yt−1

)

+

(

0 0.6
−0.6 0

) (

Xt−2

Yt−2

)

+

(

0 c
0 0

) (

Xt−3

Yt−3

)

+

(

ǫx, t
ǫy, t

)

(6)

Where c is a negative influence on the order-3 from Y to X whose
strength varies from −0.5 to −0.9 with a step size of 0.02 (c =

−0.5− 0.02 ∗ k), so that both AICc and BIC will give an optimal
order no less than 3 (Table 1, averaged from 100 simulations
with data length 1000). On order-1 there is not any interaction
between X and Y, and on order-2 two causal influences exist
with the same strength and opposite signs (+0.6/−0.6). However,
it is impossible to deduce an excitatory/inhibitory influence
from this model by the coefficient causality method, because the
autoregression coefficients produce a completely contrary result.
From outcome of 100 simulations it can be noticed that the
signed path coefficient causality (Figure 5, right part) of X to Y
was positive and increased with the absolute value of c, while the
actual order-2 influence of X to Y was an opposite −0.6, hence
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TABLE 1 | Granger causality results from Model 1.

C #A+ #A− AICc BIC

−0.52 101 99 3.14 3

−0.54 100 100 3.21 3

−0.56 100 100 3.14 3

−0.58 100 100 3.31 3

−0.60 101 99 3.2 3

−0.62 100 100 3.21 3

−0.64 100 100 3.22 3

−0.66 100 100 3.28 3

−0.68 100 100 3.25 3

−0.70 100 100 3.26 3

−0.72 100 100 3.16 3

−0.74 100 100 3.24 3

−0.76 100 100 3.36 3

−0.78 100 100 3.34 3

−0.80 100 100 3.29 3

−0.82 100 100 3.34 3

−0.84 100 100 3.36 3

−0.86 100 100 3.26 3

−0.88 100 100 3.2 3

−0.90 100 100 3.25 3

Number of positive/negative coefficients and the average AICc/BIC in 100 simulations

under different causality strength c.

in this example the coefficient method could not correctly detect
the interactions on the order that higher than one. The problem
was derived from the underfitted order-1 model being applied
to the higher data generation process. On the other side, the
coefficient of Y to X was negative and decreased with the absolute
value of c, while the actual order-2 influence of X to Y was 0.6,
jointly with an negative order-3 influence c, which apparently
could not simply be described as an inhibitory interaction since
that will undoubtedly made this kind of relationship confused.
As the strength of c increased the coefficients became larger
that rendered this misleading effect more significant (Figure 6),
and we can see the different performance between the residual
Granger causality (Figure 5, left part) and coefficient Granger
causality. To make this point more clear, let us construct the
following order-1 model (Model 1b) in which the coefficients are
generated in a way to approximate the outcome derived from
Model 1 by coefficient method:

Model 1b.
(

Xt

Yt

)

=

(

0.5 −0.071− 0.011 ∗ k
0.186+ 0.005 ∗ k 0.5

) (

Xt− 1

Yt− 1

)

+

(

ǫx, t
ǫy, t

)

(7)

In this alternative model we had set two casual influence between
X and Y on order-1: a positive influence as 0.186 + 0.005 ∗ k
from X to Y, and a negative influence as −0.071 − 0.011 ∗ k
from Y to X (1 ≤ k ≤ 20). And two autocorrelation as
0.5, whose actual value was not very important. After applying
coefficient causality method to this model we could observe

FIGURE 5 | Granger causality results from Model 1. Left: result from

traditional residual causality under optimal order. Right: result from order-1

signed path coefficient causality.

an almost identical causal relationship (Figure 7A) as in the
Model 1 (Figure 7B), but by the residual Granger causality
method, the real causal strength (computed under the optimal
order) was far lower in Model 1b (Figure 7C) than in Model
1 (Figure 7D). This example demonstrated that we could not
discriminate the two causal mechanisms from the results by the
coefficientmethod, since under the order-1 autoregression a large
amount of information on higher order had been neglected,
that’s why a similar relationship was extracted, even though the
causal strengths in the two models were quite different and the
coefficient signs were also opposite. For this reason we concluded
the advisable method in this case was the traditional (no-signed)
Granger causality measure, which was based on the residuals and
did not indicate any excitatory/inhibitory relationship.

Model 2. A model with order-1 autocorrelation.

(

Xt

Yt

)

=

(

0.18 0
0 0.18

) (

Xt− 1

Yt− 1

)

+

(

0 0.8
−0.8 0

) (

Xt− 2

Yt− 2

)

+

(

0 c
0 0

) (

Xt− 3

Yt− 3

)

+

(

ǫx, t
ǫy, t

)

(8)

The main difference between Model 2 and Model 1 is the
autocorrelation of X and Y on order-1 (with a strength 0.18), and
the interactions on order-2 are a bit larger (+0.8/−0.8), c is still a
negative influence on order-3 from Y to X whose strength varies
from −0.1 to −0.9 with a step size of 0.04 (c = −0.1− 0.04 ∗ k).
Still we ran 100 trial simulations. An interest feature of this
model was when the value of c was small, the coefficient causality
method would give a pair of opposite signs compared with the
result when the c was large (Figure 8, right part). As the strength
of c increased, the causality from X to Y jumped from negative
to positive, and the causality from Y to X changed from positive
to negative, while the actual signs were all fixed. So the coefficient
method failed to produce a consistent result. Even worse, when
the influence c was of medium size, the value of one or both
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FIGURE 6 | Statistically significant percentage of connections between X and Y under permutation test for Model 1. For each strength of c (x-axis), the

number of significant results were showed by 100 simulations.

FIGURE 7 | Granger causality results from Model 1 and Model 1b by

100 simulations. (A) result from Model 1b by signed path coefficient

causality. (B) result from Model 1 by signed path coefficient causality. (C) result

from Model 1b by traditional residual causality under optimal order. (D) result

from Model 1 by traditional residual causality under optimal order. (B,D) are

same as in Figure 5.

coefficients were relatively small so that they were not statistically
significant, thus less likely to be detected (Figure 9), while on the
other hand the causality derived from the residual method was
steadily increasing with the strength of c (Figure 8, left part).

The total number of positive/negative coefficients computed
by coefficient causality method in the 100 simulations was
listed in Table 2. Comparing with the result in Model 1, there
were always more positive coefficients than negative ones,
the reason was due to the positive autocorrelation added in
this model. And in actual fMRI time series this “positive
autocorrelation” was a common condition, so this fact partly
explained why the underfitted order-1 model leads to the
positive bias of the coefficients in the fMRI result (Figure 1).

FIGURE 8 | Granger causality results from Model 2. Left: result from

traditional residual causality under optimal order. Right: result from order-1

signed path coefficient causality.

From the results of Models 1 and 2 we could conclude that
for some data generating process the signs of coefficients
by an order-1 underfitted autoregression may change from
positive to negative as other interactions on higher order varied,
thus contradict the real underlying causal relationship. That
explained why an excitatory/inhibitory assignment could hardly
be operated, because given all the other coefficients fixed, just
by changing the strength of an order-3 influence could radically
alter the relationship from excitatory to inhibitory, therefore
any attempt to define an interaction as excitatory/inhibitory
would be impractical in this case. Moreover, since the
information on higher orders were likely to be neglected by
coefficient causality method, it tended to miss certain significant
connections which could be identified by the residual causality
method.

Model 3. An example that the coefficient method may give an
approximately correct outcome.
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FIGURE 9 | Statistically significant percentage of connections between X and Y under permutation test for Model 2. For each strength of c (x-axis), the

number of significant results were showed by 100 simulations.

TABLE 2 | Granger causality results from Model 2.

C #A+ #A− AICc BIC

−0.52 100 100 3.28 2.34

−0.54 100 100 3.29 2.77

−0.56 100 100 3.23 2.98

−0.58 100 100 3.18 3

−0.60 104 96 3.19 3

−0.62 115 85 3.26 3

−0.64 137 63 3.32 3

−0.66 169 31 3.19 3

−0.68 183 17 3.2 3

−0.70 195 5 3.23 3

−0.72 185 15 3.18 3

−0.74 192 8 3.32 3

−0.76 174 26 3.32 3

−0.78 155 45 3.35 3

−0.80 141 59 3.14 3

−0.82 123 77 3.15 3

−0.84 112 88 3.24 3

−0.86 100 100 3.24 3

−0.88 100 100 3.22 3

−0.90 100 100 3.33 3

Number of positive/negative coefficients and the average AICc/BIC in 100 simulations

under different causality strength c.

(

Xt

Yt

)

=

(

0 0.5
−0.5 0

) (

Xt− 1

Yt− 1

)

+

(

0 0
0 0

) (

Xt− 2

Yt− 2

)

+

(

0 c
0 0

) (

Xt− 3

Yt− 3

)

+

(

ǫx, t
ǫy, t

)

(9)

Model 3 is designed to give an example in which a correct
conclusion could be derived by the coefficient method of an
underfitted order-1 autoregression, to illustrate the signed path
coefficient is applicable under certain conditions. In this model
there is no order-2 interaction, but on order-1 two equal cross
influences exist with the opposite signs (+0.5/−0.5), and on
order-3 is a negative influence c from Y to X as same as in Model

2 (−0.1 ∼ −0.9). The AICc and BIC still provide an optimal
order of 3. From the result by 100 simulations (Figure 10) we
can observe the signs of coefficients are consistent with the real
causal relationships, with an exact negative influence (−0.5) from
X to Y, and an slightly increasing positive influence from Y to X
(the trend is due to the varying c on order-3). In this example,
the order-1 signed path coefficient Granger causality successfully
captured the underlying causal structure despite the optimal
order was 3. That’s because although there existed an order-3
influence, its impact on the final results was not that critical
compared with the dominated order-1 interactions between X
and Y, hence this model did not greatly differ from an order-
1 autoregressive model, for this reason the coefficient method
could be fairly operationalized in this case.

5. DISCUSSION AND CONCLUSION

In the present study we have focused primarily on the validity
of a causality analysis technique: the signed path coefficient
Granger causality, which has been applied by a number
of fMRI researchers as an alternative method of Granger
causality. In general, besides the formulations of original Granger
causality and signed path coefficient causality which focus in
time domain, there are other variants of causality measures
derive from Granger causality that also rely on autoregressive
modeling and are defined in frequency domain, among the
most popular definitions are the spectral Granger causality
(Geweke, 1982; Ding et al., 2006), direct transfer function
(DTF) (Kaminski and Blinowska, 1991; Eichler, 2006), direct
DTF (dDTF) (Korzeniewska et al., 2003), full frequency DTF
(ffDTF) (Korzeniewska et al., 2003), partial directed coherence
(PDC) (Sameshima and Baccalá, 1999; Baccalá and Sameshima,
2001), square partial directed coherence (sPDC) (Astolfi et al.,
2006), and relative power contribution (RPC) (Yamashita et al.,
2005). Although these methods perform diversely under different
network situations, some previous studies have shown that
Granger causality is robust enough to give an accurate prediction
on neural network structure despite the complexity of network
interconnections (Wu et al., 2011; Papana et al., 2013). Therefore,
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FIGURE 10 | Granger causality results from Model 3. Left: traditional

residual causality by optimal order. Right: signed path coefficient causality by

order-1.

several neuroimaging studies have applied this approach to reveal
the causality structure of their data.

However, can the signed path coefficient method be thought
of as an efficient statistical Granger-like tool? Some researchers
have used it as an equivalent form of traditional Granger causality
for its ease of implementation andmeaningful interpretation, but
there are still some unclear aspects that need to be addressed.
The most doubtful point is the signed path coefficient method
to deduce causality relationship by an order-1 autoregression.
Though the value of order is an important parameter for an
autoregressive model, few authors mention it in their fMRI
research, probably due to the usually long TR time of fMRI
data. This fact has been noticed by some previous studies (Wu
et al., 2013; Li et al., 2014) but without much discussion about
the impact to the final analysis. Another reason why this issue
was always neglected in the papers that adopted the signed
path coefficient method is this method defining the property of
a causal connection by the signs of coefficients, to distinguish
whether an interaction is excitatory or inhibitory between brain
regions, thus it is actually an intrinsic drawback. Since if we
consider more higher orders to the autoregressive model, the
definition of excitation/inhibition becomes invalid.

To investigate the impact of model order on the signed
path coefficient method, we conducted a series of computations
from resting-state fMRI data and simulation experiments.
Firstly, we pointed out in fMRI data the optimal order of the
autoregression model will not always be one, which actually
depends on several other factors, e.g., the TR time and the
number of ROIs to be analyzed. A shorter TR time or fewer
time series of ROIs would often mean a higher optimal
order, in this case the adoption of an universally order-1
was unreasonable. On the other hand, for the data with a
relatively longer TR, the information criteria tend to give an
optimal order of one, while the severe downsampling may
corrupt the underlying causality (Seth et al., 2013), hence we
meet the dilemma. Secondly, based on a few simulations that

generated from process of a higher order, we demonstrated that
under certain conditions the signed path coefficient method
will present an outcome which contradict the real causal
relationship of the data. Therefore, to some extent the definition
of excitatory/inhibitory influence on the order-1 autoregression
coefficient could only be constrained in the extreme narrow
case of an actual order-1 data generation process, hence
the application of the signed path coefficient method is not
reliable to be generalized to any kind of fMRI analysis without
limitation.

A constantly existing problem of the traditional (uniform)
autoregression method in causality analysis is the number of
model parameters increaseing rapidly (equal to the square of
the total number of time series multiply by the model order)
so the final model is prone to overparameterized which may
lead to inefficient estimates, especially under the common sample
size in fMRI. Therefore, it is difficult to uncover the real causal
structure by this way (the “dimension curse”). And other sets
of variables which provide information for the future state of
target variable may worsen this situation (Stramaglia et al., 2012;
Faes et al., 2014; Barrett, 2015). To improve the estimation to
reach a well fitted model the parameters to be estimated should
be properly reduced. Several shrinking strategies focus on this
objective has been proposed by a number of researchers, in
econometrics it is under the name “subset regression” (Penm
and Terrell, 1984, 1986; Brüggemann and Lütkepohl, 2001;
Brüggemann et al., 2003) which is based on sequential t-tests
and model selection criteria or branch-and-bound strategy to
cut subtrees (Gatu and Kontoghiorghes, 2005, 2006), and in
physics it is called “Non-uniform Embedding” (Judd and Mees,
1998; Vlachos and Kugiumtzis, 2010; Kugiumtzis, 2013) which
is based on the concept of transfer entropy (Schreiber, 2000),
an information-theoretic analog to Granger causality, and the
non-uniform state space reconstruction. Similar methods can
also be found in climatology (Runge et al., 2012a,b; Hlinka
et al., 2013; Radebach et al., 2013) and physiology (Faes et al.,
2011, 2012), all of which are kind of variable specification
and reduction procedures in which the most significant lag
variables are picked up while others are restricted to zero
in the model, thus reduce the dimensionality and shrink the
state space. It has been shown all these sort of strategies can
reserve the most relevant information in the data and give
a parsimonious model (Wibral et al., 2014), thereby increase
the forecast precision compare with the full autoregressive
model. Nevertheless, by this strategy the higher order lags
of variables are prone to be included in the analysis, and
through our discussion above the signed path coefficient causality
method can hardly be ameliorated, that means a critical part
of indispensable higher order information will certainly be lost
and the defect of signed path coefficient method can not be
compromised.

Our current work concluded that the signed path coefficient
method was not always suitable for fMRI data analysis compared
to the traditional Granger causality method based on residuals,
especially for the data with a shorter TR time and among fewer
ROIs. We performed a series of simulations to indicate that the
order-1 autoregressive model applied to data which derived by
a higher order data generation progress may lead to incorrect
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results, thus any influence could not be properly defined as
excitatory/inhibitory, which explained why this approach should
be employed very carefully.

AUTHOR CONTRIBUTIONS

In this work JZ has contributed the majority of analysis and
synthesis. TJ and CL revised it critically and approved the version
to be published.

FUNDING

This work was partially supported by the National Key
Basic Research and Development Program (973) (Grant No.
2011CB707801), the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant No. XDB02030300), and
the Natural Science Foundation of China (Grant No. 91132301)
and the National Natural Science Foundation of China (Grant
No. 11571308).

REFERENCES

Abe, Y., Sakai, Y., Nishida, S., Nakamae, T., Yamada, K., Fukui, K., et al.

(2015). Hyper-influence of the orbitofrontal cortex over the ventral striatum

in obsessive-compulsive disorder. Eur. Neuropsychopharm. 25, 1898–1905. doi:

10.1016/j.euroneuro.2015.08.017

Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccalà, L. A., de Vico Fallani,

F., et al. (2006). Assessing cortical functional connectivity by partial directed

coherence: simulations and application to real data. IEEE Trans. Biomed. Eng.

53, 1802–1812. doi: 10.1109/TBME.2006.873692

Baccalá, L. A., and Sameshima, K. (2001). Partial directed coherence: a new

concept in neural structure determination. Biol. Cybern. 84, 463–474. doi:

10.1007/PL00007990

Bajaj, S., Drake, D., Butler, A. J., and Dhamala, M. (2014). Oscillatory motor net-

work activity during rest and movement: an fNIRS study. Front. Syst. Neurosci.

8:13. doi: 10.3389/fnsys.2014.00013

Bajaj, S., Butler, A. J., Drake, D., and Dhamala, M. (2015). Functional organization

and restoration of the brain motor-execution network after stroke and

rehabilitation. Front. Hum. Neurosci. 9:173. doi: 10.3389/fnhum.2015.00173

Barnett, L., and Seth, A. K. (2011). Behaviour of Granger causality under

filtering: theoretical invariance and practical application. J. Neurosci. Meth. 201,

404–419. doi: 10.1016/j.jneumeth.2011.08.010

Barrett, A. B., and Barnett, L. (2013). Granger causality is designed to measure

effect, not mechanism. Front. Neuroinform. 7:6. doi: 10.3389/fninf.2013.00006

Barrett, A. B. (2015). Exploration of synergistic and redundant information

sharing in static and dynamical Gaussian systems. Phys. Rev. E 91:052802. doi:

10.1103/PhysRevE.91.052802

Bressler, S. L., and Seth, A. K. (2011). Wiener-Granger causality: a well established

methodology. Neuroimage 58, 323–329. doi: 10.1016/j.neuroimage.2010.02.059

Brüggemann, R., and Lütkepohl, H. (2001). “Lag selection in Subset VAR models

with an application to a U.S. monetary system,” in Econometric Studies - A

Festschrift in Honour of Joachim Frohn, eds R. Friedmann, L. Knüppel, and H.

Lütkepohl (LIT: Münster), 107–128.

Brüggemann, R., Krolzig, H. M., and Lütkepohl, H. (2003). Comparison of model

reduction methods for VAR processes. Technical Report 2003-W13. Economics

Group, Nuffield College. Oxford: University of Oxford.

Burnham, K. P., and Anderson, D. R. (2002). Model Selection and Multimodel

Inference: A Practical Information-Theoretic Approach, 2nd Edn. New York, NY:

Springer-Verlag.

Chen, G., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., Saad, Z. S., and Cox, R.

W. (2009). “Multi-region Granger causality tuned for FMRI data analysis,” in

AnnualMeeting of the International Society forMagnetic Resonance inMedicine.

Honolulu.

David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth,

C., et al. (2008). Identifying neural drivers with functional MRI: an

electrophysiological validation. PLoS Biol. 6:e315. doi: 10.1371/journal.pbio.00

60315

Deshpande, G., Sathian, K., and Hu, X. (2010). Effect of hemodynamic variability

on Granger causality analysis of fMRI. Neuroimage 52, 884–896. doi:

10.1016/j.neuroimage.2009.11.060

Ding, M., Chen, Y., and Bressler, S. L. (2006). “Granger causality: basic theory

and application to neuroscience,” in Handbook of Time Series Analysis: Recent

Theoretical Developments and Applications, eds B. Schelter, M. Winterhalder,

and J. Timmer (Weinheim: Wiley-VCH), 437–460.

Eichler, M. (2006). On the evaluation of information flow in multivariate

systems by the directed transfer function. Biol. Cybern. 94, 469–482. doi:

10.1007/s00422-006-0062-z

Faes, L., Nollo, G., and Porta, A. (2011). Information-based detection of nonlinear

granger causal-ity in multivariate processes via a nonuniform embedding

technique. Phys. Rev. E. 83:051112. doi: 10.1103/PhysRevE.83.051112

Faes, L., Nollo, G., and Porta, A. (2012). Non-uniform multivariate

embedding to assess the information transfer in cardiovascular and

cardiorespiratory variability series. Comput. Biol. Med. 42, 290–297. doi:

10.1016/j.compbiomed.2011.02.007

Faes, L., Nollo, G., Jurysta, F., and Marinazzo, D. (2014). Information dynamics

of brain-heart physiological networks during sleep. N. J. Phys. 16:105005. doi:

10.1088/1367-2630/16/10/105005

Feng, Z., Xu, S.-L., Huang, M.-L., Shi, Y.-S., Xiong, B., and Yang, H.,

(2016). Disrupted causal connectivity anchored on the anterior cingulate

cortex in first-episode medication-naive major depressive disorder.

Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 124–C130. doi:

10.1016/j.pnpbp.2015.07.008

Florin, E., Gross, J., Pfeifer, J., Fink, G. R., and Timmermann, L. (2010). The

effect of filtering on Granger causality based multivariate causality measures.

Neuroimage 50, 577–588. doi: 10.1016/j.neuroimage.2009.12.050

Friston, K. (2009). Causal modelling and brain connectivity in functional magnetic

resonance imaging. PLoS Biol. 7:e1000033. doi: 10.1371/journal.pbio.1000033

Friston, K. (2011). Functional and effective connectivity: a review. Brain Connect.

1, 13–36. doi: 10.1089/brain.2011.0008

Friston, K., Moran, R., and Seth, A. K. (2012). Analysing connectivity with Granger

causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178.

doi: 10.1016/j.conb.2012.11.010

Friston, K. J., Bastos, A. M., Oswal, A., van Wijk, B., Richter, C., and

Litvak, V. (2014). Granger causality revisited. Neuroimage 101, 796–808. doi:

10.1016/j.neuroimage.2014.06.062

Gatu, C., and Kontoghiorghes, E. J. (2005). Efficient strategies for deriving the

subset VAR models. Comput. Manage. Sci. 2, 253–278. doi: 10.1007/s10287-

004-0021-x

Gatu, C., and Kontoghiorghes, E. J. (2006). Branch-and-bound algorithms for

computing the best-subset regression models. J. Comput. Graph. Stat. 15,

139–156. doi: 10.1198/106186006X100290

Geweke, J. (1982). Measurement of linear-dependence and feedback

between multiple time series. J. Am. Stat. Assoc. 77, 304–313. doi:

10.1080/01621459.1982.10477803

Granger, C. W. J. (1969). Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 37, 424–438. doi: 10.2307/1912791

Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., and Gotlib,

I. H. (2011). Investigating neural primacy in Major Depressive Disorder:

multivariate Granger causality analysis of resting-state fMRI time-series data.

Mol. Psychiatry 16, 763–772. doi: 10.1038/mp.2010.46

Hlinka, J., Hartman, D., Vejmelka, M., Runge, J., Marwan, N., Kurths, J. et al.

(2013). Reliability of inference of directed climate networks using conditional

mutual information. Entropy 15, 2023–2045. doi: 10.3390/e15062023

Hurvich, C. M., and Tsai, C.-L. (1989). Regression and time series model selection

in small samples. Biometrika 76, 297–307. doi: 10.1093/biomet/76.2.297

Ji, G.-J., Zhang, Z.-Q., Zhang, H., Wang, J., Liu, D.-Q., Zang, Y.-F., et al. (2013).

Disrupted causal connectivity in mesial temporal lobe epilepsy. PLoS ONE

8:e63183. doi: 10.1371/journal.pone.0063183

Frontiers in Neuroinformatics | www.frontiersin.org 10 October 2016 | Volume 10 | Article 47

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Zhang et al. Insights into Coefficient Granger Causality

Jiao, Z.-Q., Zou, L., Cao, Y., Qian, N., and Ma, Z.-H. (2014). Effective connectivity

analysis of fMRI data based on network motifs. J. Supercomput. 67, 806–819.

doi: 10.1007/s11227-013-1010-z

Judd, K., and Mees, A. (1998). Embedding as a modeling problem. Phys. D. 120,

273–286. doi: 10.1016/S0167-2789(98)00089-X

Kaminski, M. J., and Blinowska, K. J. (1991). A new method of the description

of the information-flow in the brain structures. Biol. Cybern. 65, 203–210. doi:

10.1007/BF00198091

Korzeniewska, A., Manczak, M., Kaminski, M., Blinowska, K. J., and Kasicki, S.

(2003). Determination of information flow direction among brain structures by

a modified directed transfer function (dDTF) method. J. Neurosci. Meth. 125,

195–207. doi: 10.1016/S0165-0270(03)00052-9

Kugiumtzis, D. (2013). Direct coupling information measure from non-uniform

embedding. Phys. Rev. E. 87:062918. doi: 10.1103/PhysRevE.87.062918

Kullmann, S., Giel, K. E., Teufel, M., Thiel A., Zipfel, S., and Preissl, H. (2014).

Aberrant network integrity of the inferior frontal cortex in women with

anorexia nervosa. Neuroimage 4, 615–622. doi: 10.1016/j.nicl.2014.04.002

Li, Y., Wee, C.-Y., Jie, B., Peng, Z.-W., and Shen, D.-G. (2014). Sparse multivariate

autoregressive modeling for mild cognitive impairment classification.

Neuroinformatics 12, 455–469. doi: 10.1007/s12021-014-9221-x

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Berlin:

Springer-Verlag, 206–212.

Palaniyappan, L., Simmonite, M.,White, T. P., Liddle, E. B., and Liddle, P. F. (2013)

Neural primacy of the salience processing system in schizophrenia. Neuron 79,

814–828. doi: 10.1016/j.neuron.2013.06.027

Papana, A., Kyrtsou, C., Kugiumtzis, D., and Diks, C. (2013). Simulation study of

direct causality measures in multivariate time series. Entropy 15, 2635–2661.

doi: 10.3390/e15072635

Penm, J. H. W., and Terrell, R. D. (1984). Multivariate subset autoregressive

modelling with zero constraints for detecting overall causality. J. Econometrics

24, 311–330. doi: 10.1016/0304-4076(84)90056-3

Penm, J. H. W., and Terrell, R. D. (1986). The derived moving average model and

its role in causality. J. Appl. Probab. 23, 99–111. doi: 10.2307/3214346

Radebach, A., Donner, R. V., Runge, J., Donges, J. F., and Kurths, J. (2013).

Disentangling different types of El Niño episodes by evolving climate network

analysis. Phys. Rev. E. 88:052807. doi: 10.1103/PhysRevE.88.052807

Roebroeck, A., Formisano, E., and Goebel, R. (2005). Mapping directed influence

over the brain using Granger causality and fMRI.Neuroimage 25, 230–242. doi:

10.1016/j.neuroimage.2004.11.017

Runge, J., Heitzig, J., Petoukhov, V., and Kurths, J. (2012a). Escaping the curse

of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett.

108:258701. doi: 10.1103/PhysRevLett.108.258701

Runge, J., Heitzig, J., Marwan, N., and Kurths, J. (2012b). Quantifying causal

coupling strength: a lag-specific measure for multivariate time series related to

transfer entropy. Phys. Rev. E. 86:061121. doi: 10.1103/PhysRevE.86.061121

Sameshima, K., and Baccalá, L. A. (1999). Using partial directed coherence to

describe neuronal ensemble interactions. J. Neurosci. Methods 94, 93–103. doi:

10.1016/S0165-0270(99)00128-4

Schippers, M. B., Renken, R., and Keysers, C. (2011). The effect of intra- and inter-

subject variability of hemodynamic responses on group level Granger causality

analyses. Neuroimage 57, 22–36. doi: 10.1016/j.neuroimage.2011.02.008

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461–464.

doi: 10.1103/PhysRevLett.85.461

Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. J.

Neurosci. Meth. 186, 262–273. doi: 10.1016/j.jneumeth.2009.11.020

Seth, A. K., Chorley, P., and Barnett, L. (2013). Granger causality

analysis of fMRI BOLD signals is invariant to hemodynamic

convolution but not downsampling. Neuroimage 65, 540–555. doi:

10.1016/j.neuroimage.2012.09.049

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., et al. (2011). Networkmodelling methods for FMRI.Neuroimage

54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Smith, S. M., Bandettini, P. A., Miller K. L., Behrens, T. E. J., Friston, K.

J., David, O., et al. (2012). The danger of systematic bias in group-level

FMRI-lag-based causality estimation. Neuroimage 59, 1228–1229. doi:

10.1016/j.neuroimage.2011.08.015

Stephan, K. E., and Roebroeck, A. (2012). A short history of causal modeling of

fMRI data. Neuroimage 62, 856–863. doi: 10.1016/j.neuroimage.2012.01.034

Stramaglia, S., Wu, G.-R., Pellicoro, M., and Marinazzo, D. (2012). Expanding the

transfer entropy to identify information circuits in complex systems. Phys. Rev.

E 86:066211. doi: 10.1103/PhysRevE.86.066211

Umbach, D. M., and Wilcox, A. J. (1996). A technique for measuring

epidemiologically useful features of birthweight distributions. Stat. Med.

15, 1333–1348. doi: 10.1002/(SICI)1097-0258(19960715)15:13<1333::AID-

SIM271>3.0.CO;2-R

Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., and Friston, K. (2011). Effective

connectivity: influence, causality and biophysical modeling. Neuroimage 58,

339–361. doi: 10.1016/j.neuroimage.2011.03.058

Vlachos, I., and Kugiumtzis D. (2010). Nonuniform state-space reconstruction and

coupling detection. Phys. Rev. E. 82:016207. doi: 10.1103/PhysRevE.82.016207

Webb, J. T., Ferguson, M. A., Nielsen, J. A., and Anderson, J. S. (2013).

BOLD Granger causality reflects vascular anatomy. PLoS ONE 8:e84279. doi:

10.1371/journal.pone.0084279

Wen, X., Rangarajan, G., and Ding, M. (2013). Is Granger causality a

viable technique for analyzing fMRI data? PLoS ONE 8:e67428. doi:

10.1371/journal.pone.0067428

Wibral, M., Vicente, R., and Lizier, J.T. (2014). Directed Information Measures in

Neuroscience. Berlin; Heidelberg: Springer-Verlag.

Wiener, N. (1956). “The theory of prediction,” in Modern Mathematics for

Engineers, Chapter 8, ed E. F. Beckenbach (New York, NY: McGraw-Hill),

165–190.

Witt, S. T., and Meyerand, M. E. (2009). The effects of computational method,

data modeling, and TR on effective connectivity results. Brain Imaging Behav.

3, 220–231. doi: 10.1007/s11682-009-9064-5

Wu, G.-R., Liao, W., Stramaglia, S., Ding, J.-R., Chen, H.-F., and Marinazzo, D.

(2013). A blind deconvolution approach to recover effective connectivity brain

networks from resting state fMRI data. Med. Image Anal. 17, 365–374. doi:

10.1016/j.media.2013.01.003

Wu, M.-H., Frye, R. E., and Zouridakis, G. (2011). A comparison of multivariate

causality based measures of effective connectivity. Comput. Biol. Med. 41,

1132–1141. doi: 10.1016/j.compbiomed.2011.06.007

Wu, Y., Ji, G.-J., Zang, Y.-F., Liao, W., Zhen, J., Liu, Y.-L., et al.

(2015). Local activity and causal connectivity in children with benign

epilepsy with centrotemporal spikes. PLoS ONE 10:e0134361. doi:

10.1371/journal.pone.0134361

Yamashita, O., Sadato, N., Okada, T., and Ozaki, T. (2005). Evaluating

frequency-wise directed connectiv ity of BOLD signals applying relative power

contribution with the linear multivariate time-series models. Neuroimage 25,

478–490. doi: 10.1016/j.neuroimage.2004.11.042

Yan, C.-G., and Zang, Y.-F. (2010). DPARSF: a MATLAB toolbox for

“pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13. doi:

10.3389/fnsys.2010.00013

Yuan, K., Qin, W., Yu, D.-H., Bi, Y.-Z., Xing, L.-H., Jin, C.-W., et al. (2016).

Core brain networks interactions and cognitive control in internet gaming

disorder individuals in late adolescence/early adulthood. Brain Struct. Funct.

221, 1427–1442. doi: 10.1007/s00429-014-0982-7

Zang, Z.-X., Yan, C.-G., Dong, Z.-Y., Huang, J., and Zang, Y.-F. (2012). Granger

causality analysis implementation on MATLAB: a graphic user interface

toolkit for fMRI data processing. J. Neurosci. Meth. 203, 418–426. doi:

10.1016/j.jneumeth.2011.10.006

Zhang, H.-Y., Tang, H., Chen, W.-X., Ji, G.-J., Ye, J., Wang, N., et al.

(2015) Mapping the functional connectivity of the substantia nigra, red

nucleus and dentate nucleus: a network analysis hypothesis associated

with the extrapyramidal system. Neurosci. Lett. 606, 36–41. doi:

10.1016/j.neulet.2015.08.029

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Zhang, Li and Jiang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 11 October 2016 | Volume 10 | Article 47

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	New Insights into Signed Path Coefficient Granger Causality Analysis
	1. Introduction
	2. Granger Causality
	3. Materials and Methods
	3.1. Resting-State fMRI Data
	3.2. Data Preprocessing
	3.3. Model Order Determination

	4. Results
	4.1. Results of Order-1 Autoregression to fMRI Data
	4.2. Results of Simulations

	5. Discussion and Conclusion
	Author Contributions
	Funding
	References


