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HIGHLIGHTS

• AxonPacking: Open-source software for simulating white matter microstructure.

• Validation on a theoretical disk packing problem.

• Reproducible and stable for various densities and diameter distributions.

• Can be used to study interplay between myelin/fiber density and restricted fraction.

Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe

white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume

fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr).

While already being used for clinical application, the complex interplay between these

parameters requires thorough validation via simulations. These simulations required a

realistic, controlled and adaptable model of the white matter axons with the surrounding

myelin sheath. While there already exist useful algorithms to perform this task, none of

them combine optimisation of axon packing, presence of myelin sheath and availability

as free and open source software. Here, we introduce a novel disk packing algorithm

that addresses these issues. The performance of the algorithm is tested in term of

reproducibility over 50 runs, resulting density, and stability over iterations. This tool was

then used to derive multiple values of FVF and to study the impact of this parameter on fr

and MVF in light of the known microstructure based on histology sample. The standard

deviation of the axon density over runs was lower than 10−3 and the expected hexagonal

packing for monodisperse disks was obtained with a density close to the optimal density

(obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a

mean inter-axon gap ranging within [0.1, 1.1] µm, MVF ranged within [0.32, 0.44] and fr

ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm

is implemented in the open-source software AxonPacking (https://github.com/neuropoly/

axonpacking) and can be useful for validating diffusion models as well as for enabling

researchers to study the interplay between microstructure parameters when evaluating

qMRI methods.
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INTRODUCTION

The white matter contains bundles of myelinated nerve cell
projections (axons). Over the past years, Magnetic Resonance
Imaging (MRI) has seen the development of quantitative
metrics that can provide microstructural information about
these axons, such as the myelin volume fraction (MVF), the
intra-axonal volume fraction via the fraction of restricted water
(fr), and the ratio of the inner to the outer diameter of the
neuronal fibers (g-ratio) in white matter (Stanisz et al., 1997;
Laule et al., 2007; Assaf et al., 2008; Fieremans et al., 2008,
2016; Alexander et al., 2010; Stikov et al., 2011). However,
the realistic ranges for these parameters, as well as their
sensitivity to microstructural variation (e.g., changes in axon
density, axon diameter distribution, g-ratio) are not clear. While
some relationships can be derived using analytical equations
(e.g., myelin content can be related to fiber volume fraction
(FVF), assuming g-ratio is fixed), other mathematically complex
relationships, such as the axon density as a function of axon
diameter distribution, requires simulations.

Assuming parallel fibers, which is typical for model-based
quantitative diffusion metrics (Assaf et al., 2008), the geometrical
simulation of a fiber bundle can be reduced to a two-dimensional
polydisperse disks packing problem. Despite the presence of
neurite orientation dispersion (Ronen et al., 2014), the 2D
reduction can be useful and is already a close representation of
what is observed in histology in the case of quasi-parallel fibers
(Zaimi et al., 2016). Particle (disks or spheres) packing has been
extensively studied in the past decades with a wide spectrum of
applications in the fields of physics, industry and mathematics.
Examples of applications are the modeling of granular media
(Zhang and Makse, 2005; Isola, 2008) or powder and fluid
(Bernal and Mason, 1960; Yu et al., 1997; Williams and Philipse,
2003), optimal arrangement of cylindrical products in a container
(Dowsland, 1991) or electrical wires in a bundle (Sugihara et al.,
2004) or lastly conformal mapping on a surface (Collins and
Stephenson, 2003).

While particle packing is a very complex optimization
problem (Lenstra and Rinnooy, 1979), multiple approaches exist.

Unfortunately, most of these algorithms were developed with
specific constraints in mind that are not suitable for white matter.
Many algorithms place each particle (disk or sphere) within a
container which limits the maximal disk density and usually
requires strategies that change the diameter distribution or place
same-sized particles close together in the packing (George et al.,
1995; Graham et al., 1998; Wang et al., 2002; Gensane, 2004;
Stoyan and Yaskov, 2008; Belevičius et al., 2011).

In the case of polydisperse disk simulations without border
constraints, a first approach consists of representing a fixed graph
of disk centers positions and then finding the configurations of
each individual disk diameter satisfying preassigned patterns of
tangency (Collins and Stephenson, 2003). A second approach
is to initialize the packing randomly (with a condition to
prevent overlapped disks) and fill the empty spaces with smaller
disks (Bagi, 2005). However, these two approaches cannot build
packing from a set of particles whose sizes are user-defined, and
also they do not guarantee maximum packing.

Algorithms that are free from the above-mentioned
constraints can be found in the field of particle dynamics
(in solid, fluid, or gas). Two main methods exist for such
simulations: (i) dynamic approaches (molecular dynamic)
where the disks are hard or soft particles obeying mechanical
and energetic conservation laws (Donev et al., 2005) and (ii)
non-deterministic approaches based on Boltzmann probabilities
(Frenkel and Smit, 2006). In molecular dynamics (MD) particles
can be displaced either synchronously in small time steps and
detoured when overlap occurs (time-driven MD), or according
to a list of events, such as collisions between particles ordered
in time (event-driven MD). An event-driven based packing
algorithm was presented by Donev et al1 in which disks collide
and expand uniformly until a jammed state is reached. They
showed that this jammed state, called the maximally random
jammed (MRJ) state, is different (lower density) than the
optimal density packing, called the random close packing (RCP)
(Torquato, 2013). Interestingly, the MRJ state is dependent on
the algorithm used (Torquato, 2013) which mean that final
packing density depends on the way disks are packed, stirred
and shaken (making difficult the comparison of performance
between different algorithms). The event-driven based approach
is more mathematically rigorous and prevents overlapping. This
algorithm requires hard wall in order to achieve a jammed state.
One drawback of the event-driven approach is that it is more
difficult to adapt to arbitrary shapes (i.e., other than disks). Also,
this algorithm does not allow to have gaps between disks and it
was not designed to simulate the white matter, therefore useful
outputs are not available (e.g., MVF, FVF).

Regarding the simulation of white matter axons specifically,
several simulators have also been proposed. In order to reach
high density, Hall and Alexander2 (Hall and Alexander, 2009)
used an iterative diameter increase approach in which disks
can be removed to avoid overlap and boundary effects. As a
consequence the final density is neither optimal nor reproducible,
and it cannot be set by the user. An advantage of CAMINO is
that edge effects are addressed by reproducing the pattern at the
four edges of the image, which can be useful for running Monte
Carlo simulations on small substrates. An alternative method for
disk packing has recently been proposed (Mesri et al., 2016),
which places axons iteratively in a controlled manner in order to
achieve maximal density. However, this algorithm is not publicly
available. Dougherty and Sveinsson, 20113 used a triangle mesh
to determine the position of the axons, and while this simulator
has the advantage of being 3D, the fiber density cannot easily be
maximized. Balls and Frank (2009) proposed to add fibers across
several iterations until a user-defined density is reached, which
precludes the possibility to optimize packing from it. When
looking at the problem in 3D, non-parallel fibers are usually
simulated randomly without packing optimization (Kamiya et al.,
2015).

In this paper, we present AxonPacking4, a novel, easy-to-use
and open-source Matlab algorithm for simulating axon packing

1http://cims.nyu.edu/~donev/Packing/PackLSD/Instructions.html
2http://camino.cs.ucl.ac.uk/
3https://github.com/rfdougherty/dSim
4https://github.com/neuropoly/axonpacking.
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with user-defined diameter distribution of the axons and the
gap between axons. This algorithm is based on (MD)without
any border constraints. Disk (i.e., axon) density is optimized
by migrating disks toward the center of the 2D space. A
couple of features were specifically added to model the white
matter realistically: gamma distributions of axon diameter,
presence of a gap between axons, and myelin thickness. Also
a couple of outputs, related to quantitative MRI metrics, were
added, such as the (MVF), (FVF) (i.e., disk density), and the
(fr). This simulator was used to extract realistic ranges of
MVF and fr.

METHODS

White Matter Model
White matter tissue is divided in three compartments: axons,
myelin sheath and extra-axonal space. Axons are assumed to
be parallel cylinders, therefore the invariance along the fiber
axis makes it possible to consider this problem in 2D. The
assumption of parallel fibers is adapted for regions presenting
a good coherence of orientation of the neuronal bundles,

such as in the spinal cord. The dense packing of axons is
thus equivalent to the generation of random 2-dimensional
packing of N perfectly round and non-compressible disks. As
shown in previous histological studies (Pajevic and Basser, 2013;
Sepehrband et al., 2016), axon diameter distributions follow a
Gamma distribution (defined by its meanµ and variance σ

2). The
Gamma probability for a diameter d is defined as follows (with Ŵ

the Gamma function of Euler): ProbGamma(d, µ, σ ) = da−1 ∗
exp(− d

b
) / (Ŵ(a) ∗ ba) where a = (µ/σ )2 and b = σ 2/µ.

Axons are spaced from each other by a gap 1 (see illustration
in Figure 1). This gap is assumed constant in our model and is
not optimized along the packing process. Axons are surrounded
by a myelin sheath. The ratio of the inner (d

unmyelinated
)

to the outer diameter (d
myelinated

) of this myelin sheath is

called the fiber g-ratio: gratio = d unmyelinated / dmyelinated.
Interestingly the g-ratio is fairly constant across species and
white matter regions (Rushton, 1951; Chomiak and Hu,
2009) and is dependent mostly on the diameter of the axon
according to the relationship presented in Ikeda and Oka (2012):
gratio = 0.220 ∗ log(d

unmyelinated
) + 0.508 (see the plot on

Figure 1). Note that this relation was derived from axons of the

FIGURE 1 | AxonPacking model (A). Electron microscopy of a ventral region of a rat spinal cord stained with osmium. Since most fibers are running along the spinal

cord, axons appear like densely packed disks. Three regions can be identified: gracilis (blue), cuneatus (red) and lateral corticospinal (green). (B). Corresponding

Model of the white matter with three compartments: extra-axonal space (gray), myelin sheath (black), intra-axonal (white). Graphical illustration of the gap between

axons 1: the periphery of the center disk is at a distance 1 from the periphery of the other six disks in its neighborhood. (C). Axon diameter distribution is modeled by

a Gamma law described by the mean (µ) and standard deviation (σ). (D). Relationship between the g-ratio and the axon diameters.
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peripheral nervous system, but similar trends can be observed
in the central nervous system (West et al., 2015). See discussion
(section Using AxonPacking for Modeling White Matter) for
more details.

Axonpacking Algorithm
The simulator is implemented in Matlab (R2014a). The different
steps to process packing are the following (Figure 2A): (i)
the diameters of the disks are randomly chosen using a
Gamma distribution parameterized with the mean (µ), standard
deviation (σ) and number of axons (N); (ii) the positions of disks
are initialized on a grid, and thenmigrate toward the center of the
packing area until the maximum disk density is achieved. A video
illustrating the packing is available at: http://www.neuro.polymtl.
ca/downloads.The random disk diameters are obtained using
a Hasting Metropolis algorithm (Chib and Greenberg, 1995).
Briefly, from an initial diameter value, subsequent diameters are
randomly drawn with a Gaussian law and accepted (or rejected)
according to a probability depending on the Gamma probability
density function. The acceptance probability over and under two
fixed diameter values is forced to zero. These two thresholds (set
to 0.2 and 10 µm by default) avoid unrealistically small or large
axons. Figure 2B shows an example of sampling for N = 1000
disks, µ = 3 and σ

2 = 1 µm. From the set of N disks following
the expected diameter distribution, disk positions are initialized
and then move along the iteration packing process according to
specific rules. To account for the gap 1 between the disks during
the packing process, disks are considered having a diameter
d’= d+1. The main inputs and outputs of the algorithm are the
following:
Inputs: 5 Variables

• The number of disks i.e., axons to include in the simulation (N
in AxonPacking),

• The diameter distribution parameters: meanµ and variance σ
2

of disk diameters (d_mean and d_var in AxonPacking),
• The fixed gap between the edge of disks 1 (Delta in

AxonPacking),
• The number of iterations i.e., disk migrations performed by

the algorithm before computing the outputs (iter_max in
AxonPacking).

Outputs: 3 Matlab structures and one image

• The axon features (N, d_mean, d_var, Delta, g_ratio, and the
drawn diameters d) stored in axons.mat,

• The packing results (initial positions of disks (initial_positions)
and final positions of disks (final_positions) stored in
packing.mat,

• The statistics results with the values for each metric computed
in the packing (FVF, FR,MVF, AVF) stored in stats.mat,

• A png image of the final packing with three different labels
(intra-axonal, myelin and extra-axonal).

Initialization
The disks are randomly initialized on a grid within a square area
(Figure 2C). To initialize the disk positions in such a way that the
disks do not overlap and are closed enough to each other the size

of the square area is set to
√

N ∗ (2 ∗max(Rk, k = 1..N)+ 1)2

(Rk the radii, 1 the gap between disks) and the spacing in height
and width of the grid is set to the size of the square area divided
by

√
N + 1. In this way every disk is initialized in a square of the

grid whose side is larger than the disk diameter (Figure 2C).

Migrations
After that, at each iteration, every single disk migrates
(Figure 2D) following the conditions defined in the next
paragraph. At each iteration, the velocity of each disk is computed
according to two different situations. In case of the absence of
overlapping with any other disk, the velocity Vatt is a constant
attraction toward the center of the square area (Figure 2F). Its
direction is computed from the positions of the disk and the
center of the square area. Its norm is fixed to 0.01 µm/iteration.
At each iteration, disk overlapping condition is checked by
computing the matrix P of distance between pairs of disk. In
case of overlap (negative values in P), the attraction term is
omitted and the velocity Vrep is the result of the repulsion
between two disks. The velocity vector is defined by its direction
and its norm. The direction of this velocity vector is defined
by the center of the two disks that are in conflict. If multiple
disks are in conflict, the direction for the disk k is calculated
by summing the normalized individual velocities associated with
the overlapping disks i and j (Figure 2G). The norm of the
velocity vector is set to a constant c. In order to discriminate
the overlapping as much as possible, ||Vrep|| must be higher
than ||Vatt|| i.e., c > 0.01 µm/iteration. However, ||Vrep|| must
be lower than the disk diameters to avoid bouncing of disks.
It was found that a value of c = 0.1 µm/iteration is a good
compromise between the repulsive and the attractive velocities
in order to have (i) minimal overlapping between disks, (ii) fast
convergence and (iii) no major bouncing of the disk. Note that
c can be modified if necessary. The disk density increases over
the migrations and tends toward a limit value. It is necessary
to first launch the algorithm with the packing inputs (N, µ,
σ, and 1) and a high number of iterations: 35000 iterations
when N = 1000 for example. MRI metrics, such as the disks
density e.g., FVF can be calculated every p iterations to assess
the sufficient number of iterations to reach a certain degree
of precision. p is a user-defined integer: p = 250 or 1000 for
example. When the packing process is finished (Figure 2E), the
algorithm converts the packing image into a binary mask from
which subsequent microstructure-related metrics can be derived:
(FVF) e.g., the disk density, (MVF), axon volume fraction (AVF)
and (fr). First a square mask is generated with three different
labels (intra-axonal, myelin and extra-axonal) (see Figure 1B.
for definitions) from which we compute the areas (Aintra−axonal,
Amyelin and Aextra−axonal, respectively). This mask is located at
the center of the packing and its area (Atot), and is defined
such that no disks contained within the mask are located at the
periphery of the packing cloud (to avoid edge effects). Note that
the number of axons in the mask is consequently lower than
the number of axons in the input (N). Also note that N and 1

can be fixed independently, and the resulting mask within which
useful metrics are calculated (FVF, etc.) has a varying size. For
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FIGURE 2 | AxonPacking algorithm (A). Overall procedure for disk packing algorithm. (B) Histogram distribution of disk diameter. In this example, N = 1000

diameters are simulated, and the desire Gamma distribution of disks diameter is µ = 3 µm and σ
2 = 1 µm (red curve). Our implementation of the Hasting Metropolis

algorithm generate disks diameter (blue histogram) that correctly match this distribution. (C) Initialization of the disks randomly chosen on a grid. The area Atot defines

the area where the density FVF is computed (used to control the convergence of AxonPacking). (D) Migration of the disks toward the center. (E) Final packing where

all the statistics are computed. (F,G). Graphical illustration of the attraction velocity that operates for every non-overlapping disks (F) and the repulsion velocity for the

overlapping ones (G).

each disk i, the intra-axonal and the myelin mask is computed
using the associated g-ratio gi. Themicrostructure parameters are
computed using the following formulas:

FVF =
Aintra−axonal + Amyelin

Atot
MVF =

Amyelin

Atot

fr =
Aintra−axonal

Aintra−axonal + Aextra−axonal
(1)

Note that FVF, MVF and fr do not theoretically depend on the
mask size, because they are normalized by the area Atot (see
section Effect of the Number of Disks).

To check the quality of the results, the overlapping area ratio
Roverlap (= Aoverlap / Adisks) is reported. Aoverlap is defined as the
sum of the areas of overlap between disks, and the algorithm was
designed to keep this ratio negligible (<0.1%).

Validation and Performance of
Axonpacking
Validation in Theoretical Packing Condition
Validation of the packing algorithm was performed using the
well-known problem “Hexagonal Close Packing” (HCP), which
shows that the optimal solution for packing disks of the
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same diameter follows a hexagonal lattice structure (Chang
and Wang, 2010). For such a (HCP) the disk density is:
φHCP = π/

√
12 ≃ 0.907. The variance diameter σ

2 was set
to 0 and a set of N = 250 disks with the same diameter (4 µm)
were created. The goal in this first section was to test whether the
automatic packing converges toward a hexagonal structure.

In the following sections, AxonPacking was used with Gamma
parameters (µ and σ) based on histology of the cervical spinal
cord of cat (Zaimi et al., 2016): the mean diameter µ ranged
from 2.5 to 3.5 µm and the standard deviation σ ranged from 0.5
to 2.5µm.

Reproducibility Over Runs
Reproducibility over 50 runs was also studied for three different
Gamma distributions of diameters that could be found in the
spinal cord of cat: µ = 3 µm and σ

2 = [0.5, 1.5, 2.5] µm. The
following parameters were used:N = 1000 disks, 30000 iterations
and a gap1= 0. Then the standard deviation of FVF across runs
was studied.

Effect of the Number of Disks on the Statistics
In order to test the stability of FVF, MVF and fr with regards to
the number of axons in the area Atot , the statistics were computed
with varying Atot in a particular case: N = 1000, µ = 3 µm, σ2 =
2.5 µm, 1 = 0 and 30000 iterations. The number of disks (Nfinal)
in the area Atot ranged from Nfinal = 37 (for the smallest Atot)
to Nfinal = 888 (for the largest Atot). The maximal error on the
statistic STAT was computed as follows:

(STAT) = max(STAT(Nfinal > 200))−min(STAT(Nfinal > 200))

Stability of the Final Solution
In order to quantify the stability of the final density in the last
iterations, the density FVF was computed every 250 iterations
in a particular case (N = 1000 axons, µ = 3 µm, σ

2 = 1
µm, 1 = 0 and 35000 iterations is performed). Based on our
preliminary experiments on several parameter sets, we observed
that convergence was always reached after ∼15,000 iterations.
Therefore, we arbitrarily decided to evaluate the stability between
26,000 and 35,000, which we consider being a conservative range.

The variation of FVF between 26,000 and 35,000 iterations was
computed as follows:

∆(FVF) = max(FVF(26000 ≤ iteration ≤ 35000))

−min(FVF(26000 ≤ iteration ≤ 35000)).

Example of Application of Axonpacking:
Dependency of Fiber Volume Fraction and
Myelin Content on Simulator Parameters
µ, σ, and 1

The algorithm was applied with features specific to the white
matter in the spinal cord of cat. Packings were made for three
different Gamma distributions of inner diameters. Based on the
existing axon segmentation (Zaimi et al., 2016) the diameter
distributions is fitted with a Gamma law for different regions
of the white matter and then three pairs (µ, σ

2) were chosen,
representative of three regions of the white matter: gracilis,
cuneatus and lateral corticospinal. These regions are presented
Figure 7. For each set of axons six packings were performed with
six different values for the gap: 1 = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1]
µm. The evolution of FVF, fr and MVF was assessed with respect
to 1 for the three cases. N was set to 1000 and the number of
iterations was set to 30000.

RESULTS

Hexagonal Packing in Monodisperse Case
Figure 3 shows the packing at three stages of iterations: 0, 1000
and 7000. As expected from the theory, a hexagonal structure is
obtained after convergence. The disk density calculated in the red
rectangle for this packing after 7000 iterations is FVF = 0.892,
which is close to the theoretical values FVFHCP = 0.907 (2%
error). The overlapping ratio is Roverlap = 0.01 %. Note that this
simulation took 30 s on a iMac i5 3.4 GHz (quad core).

Reproducibility over Runs
Figure 4 shows the results of the simulation for the three different
diameter distributions. The standard deviation for FVF over
the 50 runs is lower than 3∗10−3 in all 3 cases, demonstrating

FIGURE 3 | Iteration process for the Hexagonal packing in monodisperse case (A) initial positions of the 250 disks. (B) intermediate positions after 1000

migrations. (C) final results after 7000 migrations.
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FIGURE 4 | Reproducibility of AxonPacking (A). Three diameters distributions. (B) Evolution of FVF (top) and final packing result for each distribution. The three

simulations qualitatively converged before 20000 migrations. (C) Mean disk density (i.e., FVF) with the standard deviation over the 50 runs for the three cases.
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the good reproducibility over runs. In addition, these standard
deviations are lower than the differences between themean values
(>7∗10−3), which shows that the simulator could distinguish
significantly the different cases simulated. As a result, we found
an optimal density, although very close, significantly bigger for
the case with larger dispersion of axon diameter. Note that
Roverlap is lower than 0.1% for all packing simulations.

Effect of the Number of Disks
Figure 5 shows the different areas Atot , along with the FVF, MVF
and fr values computed in these areas. For areas containing over
200 disks, FVF, MVF and fr were found fairly stable with an an
error of 0.010, 0.020, and 0.005, respectively.

Stability of the Final Solution
Figure 6 shows the evolution of the disk density as a function
of the iterations. The variation of the disk density over the last

9000 iterations is: 1(FVF) = 0.8449–0.8440 < 0.001. For a fixed
diameter distribution and N = 1000 disks, the disk density FVF
varies <0.001 after 26000 iterations. For these inputs (µ = 3 µm,
σ
2 = 1 µm and 1 = 0) the algorithm can be stopped after 26000

iterations beyondwhich FVF don’t vary anymore with a precision
of 0.001.

Application in the White Matter
Figure 7 shows the resulting evolution of axonal density
FVF, of the restricted volume fraction fr and the (MVF)
when the distance between axons (1) varied from 0.1
to 1.1 µm, and for three regions of the spinal cord
(cuneatus, gracilis and lateral corticospinal) with typical
diameter distributions (see Figure 7D). Figures 7A–C shows
the range of values for FVF, fr and MVF for the three
different regions. For each distribution, Roverlap is lower than
0.005% for 1 = 0.1 µm, null in every other cases. Note

FIGURE 5 | Effect of the number of axons in the area. Left Result of the simulation and areas Atot where the statistics are computed. The size of the area is

color-coded from cyan (smallest) to purple (biggest). The area automatically selected by AxonPacking is colored in red. Right FVF, fr and MVF values in the different

areas (same color-coding), and measured errors (light green).

FIGURE 6 | Stability of AxonPacking. Evolution of the disk density along the 35000 iterations for a packing of 1000 disks where µ = 3 µm, σ
2 = 1 µm and 1 = 0.
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FIGURE 7 | Application for simulating white matter microstructure (A–C). Evolution of FVF, fr and MVF when different gaps between axons 1 are applied. (D)

Definition of the three diameter distributions used in the plots, obtained from three spinal regions of a cat spinal cord (blue: gracilis blue, red:cuneatus, green: lateral

corticospinal), adapted with permission from Zaimi et al. (2016). (E) Results of axon packing for the cuneatus pathway. Axon diameter histogram and Packing results

obtained for three gaps 1. (F) Ranges of values for FVF, fr and MVF for the three regions: gracilis (first line), cuneatus (second line), lateral corticospinal (third line).

that each simulation took 40 min on a iMac i5 3.4 GHz
(quad core).

DISCUSSION

In this paper, a new algorithm for simulating dense packing
of disks and particularly adapted to model the white matter
is presented. The algorithm correctly converges toward an
hexagonal packing in the monodisperse case and provides highly
reproducible results. An application of the algorithm, presented
in this manuscript, aimed to get the evolution for FVF, fr,
and MVF as a function of the gap between axons for different

distributions found in the spinal cord of a cat. In this section,
the performance and the limitations of AxonPacking will be
discussed, results presented in Figure 7 will be interpreted, and
finally, the pros and cons of using AxonPacking to simulate the
white matter will be detailed.

Validation and Convergence of
Axonpacking
AxonPacking was designed to optimize the density of the disks
by migrating them with a constant velocity toward the center.
As seen in the results section, the algorithm correctly converges
toward the optimal solution in the configuration where all
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disks are identical: the final solution matches the hexagonal
structure that is the theoretically highest reachable density for
such a problem. However, in other configurations, such as in a
bidisperse (two different diameters) or polydisperse disk packing
configuration, no known theoretical solution exists to calculate
the highest density, and the solution provided by AxonPacking
might not be optimal. Qualitatively however, we observe that only
few empty spaces remain in the final solution. Also the final disk
density is highly reproducible over runs (see Figure 4), no matter
the initialization of the disks on the initial grid, suggesting that
the final solution is physically optimal for particle dynamics (MRJ
state).

While the proposed algorithm tolerates some disk
overlapping, the residual overlapping area is negligible (<0.1%
when the gap is null) and it is possible to completely avoid
overlap by adding a small gap between disks (set as input
parameter of AxonPacking). Such small overlap is obtained
by turning off the constant velocity toward the center when
overlapping occurs.

Figure 6 shows that the optimal solution, although very
stable, oscillates toward an optimal value. This oscillation is
attributed to the bouncings between disks, that was minimized
by using velocities much smaller than the disks diameter (0.01
µm/iteration for attraction and 0.1 µm/iteration for repulsion
vs. diameters >0.2 µm). No stopping criteria was implemented
here. Instead, the number of iterations was set to a large value
(N = 30000), which was experimentally found to be sufficient to
obtain a stable solution in our simulations (see one example in
Figure 6). Thanks to the good reproducibility of the simulations,
we were able to generate a dataset of axon packing for a variety of
diameter distributions, gaps 1 and fiber density5.

Using Axonpacking for Modeling White
Matter
AxonPacking makes a couple of assumption and simplifications
in order to model the white matter. First, the algorithm assumes
perfectly circular and non-deformable axons. This choice was
motivated by the observation that most of the axons are
qualitatively circular on electron microscopy or coherent anti-
stokes Raman spectroscopy (Perge et al., 2012; Bégin et al., 2014;
Zaimi et al., 2016). However, axons, and more particularly the
large ones, can show some deformation with more elliptical or
even tortuous shapes. These deformations would allow slightly
higher density that the ones found in this work. Future work
could consider controlled deformations of the circular shape.

Second, AxonPacking assumes a fixed gap 1 between axons.
This gap is necessary to leave enough space for the extracellular
matrix and the glial cells. As observed in histological images,
there exists a variation of the average gap between axons (Zaimi
et al., 2016) that could be attributed to different category and
proportion of glial cells between regions (Olude et al., 2015).
In this work, the goal was to find the global effect of the gap
between axons on metrics fr, MVF, and FVF. However, a fixed
gap in each regions is a strong assumption that could be refined
by considering a gap distribution. Note that a fixed gap could

5https://github.com/neuropoly/axonpacking/tree/master/results.

also affect the diffusion models, such as the tortuosity model
(Alexander et al., 2010) and the time-dependent diffusion model
(Fieremans et al., 2008, 2016; Burcaw et al., 2015).

Third, AxonPacking assumes that axons are packed with
maximum density, as suggested by the natural tendency of white
matter organization (Perge et al., 2009). This trend might deviate
from the true organization across white matter pathways and
peripheral nerves, across species and pathologies. In order to
adapt the simulation for these different scenarios, user can adapt
the gap between axons.

Fourth, AxonPacking considers that axon fibers are parallel.
While this assumption doesn’t hold in regions that present a
fanning or tortuosity of the fibers, this assumption holds in a
couple of structures of the central nervous system, such as the
spinal cord. This is confirmed in the spinal cord by a consistency
of microstructural MRI metrics (axon diameter index, fiber
density) along the spinal cord (Duval et al., 2015). However, it
is important to stress that even in structures that consist of highly
parallel fibers, some dispersion can be observed, as shown in
the spinal cord (Grussu et al., 2015) and in the corpus callosum
(Budde and Annese, 2013). This is a major issue for modeling
approaches, many of which rely on the assumption of perfectly
parallel cylinders in a 3D arrangement. When this assumption is
not valid, this can have a large impact on the inferred parameters.

Fifth, white matter is not only composed of myelinated
axons but also contains blood vessels, nerve cells body, fissures,
and lakes containing cerebrospinal fluid. In future work, more
realistic representation of the white matter can be included in the
packing algorithm.

Sixth, all axons in AxonPacking are myelinated axons. While
non-myelinated axons also exist in the white matter (Biedenbach
et al., 1986; Lamantia and Rakic, 1990), their fraction is
generally small. For example, the proportion of myelinated
axons (by raw count) among all axons ranges from 69 to 97%
in the monkey corpus callosum (Lamantia and Rakic, 1990).
Moreover, the mean diameter of the unmyelinated fibers is much
smaller than the myelinated one, respectively, 0.18 and 2.2 µm
(Biedenbach et al., 1986), which somewhat minimizes the impact
of unmyelinated fibers on the calculation of FVF. Again, future
work can address this issue if desired by the modeling study.

Finally, the relationship between g-ratio and axon caliber
(Figure 1D) might differ between species and regions, which
could impact the values found for FVF, MVF, and fr.
More advanced relationships that use a probabilistic approach
could be considered in future versions of AxonPacking.
AxonPacking could be applied to other species exhibiting
different microstructure properties, such as monkey (Lamantia
and Rakic, 1990), human (Aboitiz et al., 1992), or rat (Leenen
et al., 1985).

Simulating the Variation of fr, MVF, and FVF
in the White Matter
In this study, we chose a range of 1 (distance between the
edge of axons) from 0 to 1.1 µm. This range was chosen by
measuring the distance between a few axons in a couple of regions
of the cat spinal cord (data not shown). Future work will try to
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draw the probability distribution of the gaps between axons on
electron microscopy images. Result section “Application in the
white matter” shows how FVF, fr, and MVF vary as a function of
1 for different diameter distributions. Several observations can
be reported.

First, for a gap 1 = 0, a change in diameter distribution
mostly impacts MVF (10% variation in our simulations) and
fr (∼7% variation) with inverse trends. The presence of large
axons lowers MVF because large axons have bigger g-ratio and
thus proportionally less myelin (see Figure 1D). Thinner myelin
leaves space for the intra-axonal water, increasing fr. We observe,
however, very small impact on FVF (∼1%).

Second, we observe a larger sensitivity to the gap 1 for fr than
MVF. For instance, in the cuneatus tract, fr(1 = 0)−fr(1 = 1.1)
= 0.25 while MVF(1 = 0)−MVF(1 = 1.1) = 0.11. In addition,
fr is more sensitive to differences of diameter distribution than
MVF. This observation is in agreement with MRI experiments: a
larger standard deviation for metric fr (0.04) than MVF (0.02)
was measured in the human spinal cord white matter (Duval
et al., 2017). Note also that values obtained with AxonPacking
(Figure 7F) are in agreement with the values obtained with MRI
[mean(fr) = 0.51, mean(MVF) = 0.27 and mean(FVF) = 0.66].
These values also provide upper bounds for the different metrics
(values at 1 = 0).

Third, FVF as a function 1 varies differently depending on
axon diameter distribution. Indeed, in regions presenting large
axons, a small gap (e.g., 1 < 0.1∗µ) only has a small impact on
the calculated volume fractions. However, when axon diameters
are small, a smaller gap will yield a drop of FVF. The same effect
is observed on fr and MVF curves. As a result, MVF is robust to
the mean axon diameter when the ratio 1/µ is close to 0.3 (the
three curves converge). In this regime, MVF is driven mostly by
the g-ratio.

Note that the curves reported on Figure 7 can also be
used to choose the right gap 1 in order to generate
synthetic axonal packing with particular fiber density or
(MVF). Also, these results can be used as a lookup table to

estimate parameters fr, MVF or FVF knowing the diameter
distribution and one of the three parameters without running the
simulator.

CONCLUSION

AxonPacking is a novel open-source software for simulating
white matter microstructure, in which axons are assumed to be
parallel cylinders. AxonPacking generates random disk packing
with user-defined diameter distribution and gaps between
the disks, and then computes the following microstructure
features: (MVF), (FVF) and restricted water fraction (fr).
AxonPacking can be useful for validating diffusion models
as well as for enabling researchers to study the interplay
between microstructure parameters when evaluating qMRI
methods. AxonPacking can be downloaded at https://github.
com/neuropoly/axonpacking.
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