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Functional Connectivity has demonstrated to be a key concept for unraveling how

the brain balances functional segregation and integration properties while processing

information. This work presents a set of open-source tools that significantly increase

computational efficiency of some well-known connectivity indices and Graph-Theory

measures. PLV, PLI, ImC, and wPLI as Phase Synchronization measures, Mutual

Information as an information theory based measure, and Generalized Synchronization

indices are computed much more efficiently than prior open-source available

implementations. Furthermore, network theory related measures like Strength, Shortest

Path Length, Clustering Coefficient, and Betweenness Centrality are also implemented

showing computational times up to thousands of times faster than most well-known

implementations. Altogether, this work significantly expands what can be computed in

feasible times, even enabling whole-head real-time network analysis of brain function.

Keywords: Functional Connectivity, complex networks, graph-theory, brain-computer interface (BCI),

electroencephalogram (EEG), magnetoencephalography (MEG), neuro-feedback

INTRODUCTION

Experimentalists have always tried to measure better and faster. By better measuring, we can think
of capturing properties of the experimental data with improved sensibility. This is a very difficult
task, which usually involves sophisticated paradigms and computationally intensive formulations,
such as the ones described later in this work. By faster measuring, wemean reducing computational
times given a fixed context. This work concentrates on the latter, increasing computational
efficiency, both by reducing unnecessary calculations (i.e., adopting lower level programming
languages) and by taking advantage of parallel hardware architectures. Computational efficiency
allows experimental setups otherwise unreachable in common circumstances, empowering new
applications and reducing developing times for new advances. One such new applications is
brain-computer interface (BCI), which forges a direct real-time connection between brain and
machine (van Gerven et al., 2009), with clinical applications which are becoming very relevant–
see for instance an updated review (Moxon and Foffani, 2015). But also, importantly, faster
measures enable a real-time feedback loop which allows interaction with brain function beneath
the cognitive level and facilitates experimentally testing hypotheses, especially in combination with
other techniques such as transcranial stimulation—in any of its variants (Filmer et al., 2014).
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Brain Functional Connectivity (FC) and Graph-Theory
related measures enable the study of long- and short-
range non-linear interactions between cortical brain regions,
characterizing the structural properties of networks defined
by these interactions. The assessment of FC and effective
brain connectivity (EC; Friston, 2011) has become one of
the most active fields of research in systems neuroscience.
Indeed, it is already well-established that some brain functions
are not localized in specialized areas or modules but rather
they reside within the interactions between brain areas (see,
e.g., Horwitz, 2003; Medaglia et al., 2015 and references
therein). Thus, functional specialization and integration are
complementary concepts, and a thorough study of brain function
through neurophysiological time-series necessarily involves the
estimation of the statistical dependence between signals from
different brain areas.

Some time-domain traditional measures (such as correlation
coefficient) capture only linear associations between neural
signals, are prone to outliers in the data and their interpretation
is not always straightforward (Quian Quiroga et al., 2002).
Thus in this work we focus on some measures of non-linear
interaction between neurophysiological time-series. Currently,
there exists a plethora of bivariate indices for this purpose
(Pereda et al., 2005; Bonita et al., 2014; Wang et al., 2014).
Those based on phase synchronization (PS) are among the
most commonly used. Information theory-based indices such
as mutual information (MI; Shannon and Weaver, 1949) are
theoretically more suitable for this purpose, as they assess
a more general form of statistical association (both linear
and non-linear) between two time series (Kinney and Atwal,
2014), and detect, in principle, both amplitude and cross-
frequency synchronization (Pompe et al., 1998). Finally, there
is a third set of FC measures that are worth assessing when
analysing brain activity from neurophysiological data, namely
those based on the concept of generalized synchronization (GS;
Pereda et al., 2005; Stam, 2005; Sugihara et al., 2012). Such
indices require the previous reconstruction of the state spaces
of the systems under study from their time series, normally
using the well-known Takens’ theorem (Takens, 1980), and
the estimation of distances between delayed vectors in n-
dimensional reconstructed state spaces. Nonetheless, in return
for this added complexity, when carefully tailored (Chicharro
and Andrzejak, 2009), they are able to provide information not
only on the extent of dependence, but also on its directionality,
making them an excellent complement to both PS-based indices
and MI.

Although the brain has long been understood as a network, it
was not until the end of the twentieth century that the interest
in non-linear dynamical systems rolled into coupled dynamical
systems, giving birth to the notion of complex networks. As
in many other parts of nature, brain features absent at the
single unit level emerge at the group level. It is precisely at
this juncture where graph theoretical analysis, when applied to
systems neuroscience, allows a richer understanding of brain
function. Thus, we believe that any set of algorithms aimed at
the real-time characterization of brain function should include
complex networks measures.

From the stance of graph theory, brain networks can be
characterized under different approaches. Many important works
have contributed to settle a common terminology. Among them,
Boccaletti et al. (2006) can be considered as a general and
comprehensive outline of the field, whereas others such as
Bullmore and Sporns (2009) provide a detailed account of the
application of this methodology to neuroscience.

Given a network is a defined collection of vertices (nodes)
and links (edges) between pairs of nodes, we will consider here
the most typical approach, by which each node in a network
represents a sensor or a brain region and links represent FC
between sensors or regions, defining a connectivity matrix (also
termed as adjacency matrix or graph; Rubinov and Sporns, 2010;
Friston, 2011).

Recently, researchers in the field have recognized the
importance of developing computational platforms and
toolboxes that integrate many of these FC and graph-theory
indices, in a way that can make them accessible to a wider
scientific community (see, e.g., Seth, 2010; Niso et al., 2013;
Wang et al., 2014 for outstanding examples; see Figure 1 for a
description of neurophysiological time-series functional network
real-time analysis). The computational cost associated with some
of these measures has also revealed the need for using high-
performance computing facilities such as multicore multi-CPU
and Graphics Processing Units (GPUs; Wollstadt et al., 2014) to
estimate these indices in a reasonable time.

Indeed, in the framework of BCIs and neuro-feedback, if
we are to estimate FC and network patterns of a subject
from his/her whole head electroencephalography (EEG) (or
magnetoencephalography, MEG) to decide whether to proceed
with certain feedback or identify a certain outline, it is necessary
to develop a computational platform that can optimally carry
out the calculation. Matlab1, as a true standard in science,
is a good example of how scripting languages empower agile
development while sometimes losing computational efficiency.
In this context, it seems valuable to investigate how specific
functions can improve total efficiency of an application
by adopting lower level programming strategies capable of
running either on normal computers, embedded devices, or
heterogeneous supercomputing deployments at the same time.
This is probably the reason why Matlab has a wide-ranging set of
tools to help interface with lower level code. Among all, external
interface API2 which allows calling C/C++ applications as if they
were built-in functions, combined with the portability of C/C++

between operating systems and computing architectures is the
reason that justifies the effort we describe in this work.

Here we describe a set of tools, written in portable C/C++,
which are capable of estimating the most commonly used
FC indices from the families described above, as well as
various complex network measures routinely used in systems
neuroscience. We first provide a self-sustained methodological
review of previously mentioned FC and graph-theory network
indices. Secondly, we propose an implementation which

1MATLAB, The MathWorks, Inc., Natick, Massachusetts, United States.
2http://www.mathworks.com/help/matlab/programming-interfaces-for-c-c-
fortran-com.html
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FIGURE 1 | Describes a notion of neurophysiological time-series functional network real-time analysis. Considering multiple channels, time-series are

acquired and subsequently processed in windows: noise filtering, Functional Connectivity, and graph theoretical measures need to be processed in less time than the

window acquisition time.

is compiled using OpenMP3 C/C++ application program
interface (Dagum and Menon, 1998) and is accessible directly
through Matlab’s command line interface. Finally, we compare
computation efficiency—in terms of execution time- between this
implementation and previous well-known open-source examples
which are developed in pure Matlab code (parallelized or
not with the use of Mathworks’ Parallel Computing Toolbox).
As we will see, by fully exploiting multicore architecture of
modern processors, our implementation is, to the best of our
knowledge, the most efficient one currently available for typical
registration times. It allows for real-time estimation of brain FC
patterns even with typical hardware architectures, without the
need for expensive workstations or access to a supercomputing
infrastructure. The complete source code and a Windows 64
bit precompiled implementation are freely accessible at http://
juangpc.github.io/FastFC/.

MATERIALS AND METHODS

As indicated above, we have included three different families of
FC indices in this work: PS and GS indices and MI. Henceforth,
we briefly describe each of these types of synchronization and the
indices selected within them.

PS Indices
PS indices are arguably amongst the most popular methods to
estimate functional connectivity between two neurophysiological
signals (and more specifically, EEGs—see, e.g., Vinck et al., 2011;
Porz et al., 2014; Cohen, 2015 for recent examples). The concept
of PS and its estimation from time series date back to 1996, when
Rosenblum et al. (1996), in a seminal paper, demonstrated that,
in regimes of weak coupling, the phases of two (possibly chaotic)
oscillators may synchronize even if their amplitudes remain
uncorrelated. Shortly afterwards, Tass et al. (1998) demonstrated
the applicability of this concept in human neuroscience. Since
then, there have been many applications in different contexts,

3http://openmp.org/wp

where PS indices have proven successful to estimate the degree of
FC between two EEGs signals (see, e.g., Pereda et al., 2005; Vinck
et al., 2011 and references therein).

Estimating PLV and PLI between two signals relies on the
definition of the instantaneous phase for each signal, while ImC
and wPLI rely on the computation of Fourier spectra and cross-
spectrum between them:

Define the Phase of Each Individual Signal
Given a broad band, real valued signal xk(t) (recorded from
an EEG electrode or alternatively, representing the activity of
a reconstructed neural source as estimated from the scalp EEG
using any source reconstruction method), we have to transform
it into a complex-valued, narrow band signal using a suitable
mathematical transformation—such as the Hilbert (HT), the
Fourier (FT), or theWavelet Transform. Regarding PLV and PLI,
we implemented a HT-based phase definition which involves two
differentiated stages. We first filtered the signals in the frequency
band of interest by means of a Finite Impulse Response (FIR)
filter, which was applied twice to the data, once forwards and once
backwards, and after performing circular padding, to ensure,
thanks to the linear response of the filter, producing exactly zero
phase distortion and minimum border effects and therefore not
introducing any spurious phase coupling between the signals.
Then, we applied the HT to produce the analytic representation
of xk(t). Thus, we first obtain the HT of this signal:

x̃k(t) =
1

π
p.v.

∫ ∞

−∞

xk(τ )

t − τ
dτ (1)

where p.v. denotes the Cauchy principal value. Note that the HT
is actually the convolution of xk(t) with the tempered distribution
p.v. 1/π t, and can be obtained easily in the frequency domain
as the product of both Fourier transforms. Then, the analytic
representation of xk(t) is the complex-valued signal defined as:

xak(t) = xk(t)+ i x̃k(t) (2)
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From (2), it is straightforward to define the phase as:

φk(t) = atan
x̃k(t)

xk(t)
(3)

Estimation of the PS Indices
Given two signals, the condition of PS is formally established as

∣

∣nφk(t)−mφl(t)
∣

∣ < const (4)

Where || stands for absolute value. Namely, the difference
between the two unwrapped phases remains bounded by a
combination of positive integers m and n (the case m = n = 1
is the most usually found in practice). In practice, the estimation
of PS consists in studying the distribution of the cyclic relative
phase:

ϕkl(t) = (φk(t)− φl(t))mod2π (5)

The most commonly used method to study this distribution is
by calculating the mean phase coherence (Lachaux et al., 1999;
Mormann et al., 2000; also termed phase locking value, PLV):

PLV =

∣

∣

∣

〈

eiϕkl(t)
〉∣

∣

∣
(6)

Where 〈〉 will stand for average value here on. Defined in this
way (6), ranges between 0 (no PS) and 1 (perfect PS), although
in real life data, its value is always in between these two extreme
ones. In the analysis of neurophysiological data, especially EEG,
a known issue is the influence on PLV of volume conduction
effects and the choice of the reference (see, e.g., Marzetti et al.,
2007; Porz et al., 2014; Cohen, 2015; Chella et al., 2016 for recent
studies dealing with this issues). Consequently, Nolte et al. (2004)
proposed the imaginary part of the coherency (ImC) as an index
of PS that showed no influence of either common references or
volume conduction (see specifically Marzetti et al., 2007; Chella
et al., 2016 for in depth analysis of the reference influence in the
ImC and interesting ways to prevent problems), due to the fact
that these problems would affect separate sensors with negligible
time delay, which is true given the quasi-stationary description of
Maxwell equations holds for typical MEG and EEG signals. Thus,
the ImC index is defined as the imaginary part of the Coherency,
which is in turn, defined as:

C =
〈X〉

√

〈

|Z1|
2
〉 〈

|Z2|
2
〉

(7)

where Z is the Fourier Spectra of each signal and X is the
cross-spectrum between each pair.

Stam et al. (2007) suggested an alternative index to overcome
the strong influence of the phase of the coherency present in ImC.
This index termed phase lag index (PLI), is also insensitive to zero
lag coupling and is therefore not affected by volume conduction.
PLI is defined as

PLI =
∣

∣

〈

sign (ϕkl(t))
〉∣

∣ (8)

where sign(x) is the sign function {+1∀x > 0;−1∀x < 0}.

Vinck et al. (2011) further improved this definition by
introducing the weighted PLI (wPLI), giving a different weight to
each of the values of the relative phase (the closer they are to zero,
the most likely they are to be affected by measurement noise, and
the lower the weight they receive):

wPLI =

∣

∣

〈

img(X)
〉∣

∣

〈∣

∣img(X)
∣

∣

〉 =

∣

∣

〈∣

∣img(X)
∣

∣ sign
(

img(X)
)〉∣

∣

〈∣

∣img(X)
∣

∣

〉 (9)

where img(X) denotes imaginary part of the cross-spectrum.
Although, in principle, PLI or wPLI should be the optimal

choice given their properties, there exists neurologically
meaningful couplings between brain areas that take place at zero
lag (Vicente et al., 2008), and these would be missed by both
PLI and wPLI. Not surprisingly, recent results (Christodoulakis
et al., 2014; Porz et al., 2014) show that there is no such thing as
a perfect PS index, and indeed PLV can sometimes be better than
either PLI or wPLI at uncovering differences between groups or
conditions. As described later, we included all four indices in the
present implementation.

Estimation of the Significance of the Indices
Finally, as an additional step, it is always convenient to estimate
whether a given value of any of the PS indices described above
(or any other FC index, for that matter) is significantly different
from zero, i.e., it is the result of true FC between the data or just
a spurious value due to, for example, shortness of the data. For
this purpose, different types of surrogate data can be used (Thiel
et al., 2006; Romano et al., 2009), yet the construction of a good
set of such surrogates and the subsequent estimation of any of
the PS indices from this set is unfeasible if we are to keep the
computational time within a certain bound. There is, however,
an alternative that can be applied in the specific case of the PLV,
and which we also include in this work. It is based on the fact
that the PLV is also the mean resultant length of the circular
distribution of the relative phase (Mardia and Jupp, 2000). For
this measure, there exist well-established tests of uniformity of
the distribution, which allow the estimation of the probability—
p-value—for a given length of the relative phase series, given that
the corresponding PLV value has been obtained by chance. In the
corresponding function, we use the approximation due to Wilkie
(1983) of the Rayleigh test, whereby the probability is of PLV
being greater of a certain value K for Nsamples is estimated as:

Pr(NsamplesPlV
2 > K) = exp

{[

1+ 4Nsamples + 4(N2
samples

− NsamplesK)
]1/2

− (1+ 2Nsamples)
}

(10)

Although this approximation is based on the assumption that
consecutive values of the phases are approximately independent,
which is not completely fulfilled, it has the advantage of providing
a continuous, parametric estimation of the p-value associated to
each PLV, without the need to construct the surrogates. These p-
values can be later corrected for multiple comparisons using, e.g.,
False Discovery Rate (Benjamini and Hochberg, 1995), thereby
providing a good estimation of the significance of each PLV.
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Mutual Information
The MI is, from a theoretical point of view, the best option
to determine the degree of FC between two signals under the
most general interpretation (Kinney and Atwal, 2014). In fact,
whereas the calculation of the PS and GS indices require previous
transformation of the signal as pre-processing steps, in the case of
the MI it is only necessary to estimate the individual (marginal)
and the joint entropies of the data. As we will see, however, this
apparently very simple concept is not without its complications.

Formally, the MI for a discrete pair of random variables
(signals) X and Y is defined as:

MI(X,Y) =
∑

yi∈Y

∑

xi∈X

p(x, y) log

(

p(x, y)

p(x)p(y)

)

(11)

where p(x), p(y) and p(x, y) are the marginal probability
distribution functions and the joint marginal one, respectively.
For independent processes, the joint probability factorizes as
the product of both marginal probabilities, the logarithm and
therefore the MI also equals zero. If, on the other hand, the
processes are not independent, but there is any kind of statistical
dependence between them, the joint probability is higher than
the product of the marginal ones and the MI is greater than zero.
Alternatively, the MI can be also defined as a combination of
entropies:

MI(X,Y) = H(X)+H(Y)−H(X,Y) (12)

Either way, the practical estimation of the MI and its application
in the context of FC and complex networks presents two
problems: estimation of probabilities from finite time-series and
normalization.

Estimation of the Probability from Data
This is arguably the most complicated part of the calculation
of the MI. The naïve estimation of the probabilities, which
is based on the binning of the ranges of X and Y, implicitly
assumes that the relative frequency of a given value estimated
from this binning equals its probability. Although it is the
fastest implementation (Wang et al., 2014), as it is based on
the individual and the joint histogram, it is also known to
produce biased estimations of the MI (Kraskov et al., 2004;
Hlavackova-Schindler et al., 2007), because such equality is only
valid in the limit of infinite data samples (the well-known Law of
Large Numbers). Even sophisticated binning strategies, such as
using bins of unequal size to maximize the individual entropies;
do not completely eliminate this bias in practical applications.
Therefore, more elaborated estimations of the probabilities are
called for, in order to eliminate such bias. After extensive search
in previous literature and testing of different options, we decided
to follow the implementation of Kraskov et al. (2004), which is
based on an estimation of the MI that makes use of the k-nearest
neighbors’ statistics for the estimation of the entropies. According
to the latest theoretical as well as practical results, Kraskov’s
implementation has proven to be the most adequate algorithm
for practical applications, showing statistical properties that
excel those of more modern and sophisticated estimations of
correlation such as themaximal information coefficient (MIC).

The practical calculation of the MI is complicated. Firstly,
the calculation depends on the reliable estimation of both the
marginal and the joint probability density functions, which is
known to be a very complicated task for short, noisy time
series (Kraskov et al., 2004; Hlavackova-Schindler et al., 2007;
see also Kugiumtzis and Kimiskidis, 2015). Secondly, the MI
is non-normalized, which means that it is (theoretically) zero
for completely independent signals but, unlike most other
FC measures, it is not 1 for completely dependent signals.
Should these complications be overcome, however, the MI
(and specifically its estimation based on k-nearest neighbor’s
strategies) is deemed as one of the most powerful (both in general
terms and statistically speaking; Kinney and Atwal, 2014) FC
measures at hand.

Normalization of the MI
As commented above, one problem with the MI is that, whereas
it is (theoretically at least) zero for completely independent data,
its value is not bounded in the case such independence does not
hold. Instead, its upper limit for completely dependent signals
depends on the individual entropies of each data signal (which is
exactly the problem that the MIC was supposed to solve). This
implies that a value of the MI of, say, 0.3 for two signals may
in fact result from a higher connection than a value of 0.25 from
another two (possibly more complex) ones. This acute issue may
become serious if we are to compare the degree of FC in two
different situations or populations based solely on MI.

Different normalization procedures are possible. Among
them, two possibilities are common, both making use of
the individual entropies as normalizing factors. They are the
symmetric uncertainty (Witten et al., 2011), defined as:

U(X,Y) = 2
MI(X,Y)

H(X)+H(Y)
(13)

and the total correlation

MI(X,Y)

min[H(X),H(Y)]
(14)

which are both normalized to 1.

GS Indices
As remarked in the Introduction, at the beginning of the
1980s, the Dutch mathematician F. Takens proved a theorem
(Takens, 1980) whereby, under general conditions, it is possible to
reconstruct the state space of a complex dynamical system (even
non-linear systems in chaotic regime) using the consecutive
values of one of its time series. Indeed, he demonstrated that,
given the time series xk(t), the delayed vectors defined as:

Xi = (xk(i), xk(i+ τ ), ..., xk(i+ (m− 1)τ )) (15)

are equivalent to the original state vectors. In (8), m is the so-
called embedding dimension, which has to be at least equal to
the dimension of the original system, and τ is the delay time,
which has to ensure that two consecutive components of the
vector are (almost) independent. Usually, m is estimated using
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the heuristic approach termed false nearest neighbors, whereas
τ can be estimated using the autocorrelation or the auto-MI
function of the data (Kantz and Schreiber, 2004).

In the case of FC studies, this idea allows for a sophisticated
assessment of the degree of statistical dependence between two
signals, x and y. For this purpose, delayed state vectors Xi and
Yi are first reconstructed from xk(t) and yk(t), as in . Then, let ai,j
(respectively, bi,j) be the time indices of the k nearest neighbors of
Xi (resp. Yi). The existence of FC between both time-series entails
that there exists a functional transformation between the state
space of Xi and Yi, and therefore if two states are close in the state
space ofXi, they are also close in Yi ’s. The amount of connectivity
can be measured using different bivariate indices (Pereda et al.,
2005; Niso et al., 2013). We have included several of them, which
we describe henceforth.

Similarity Index S
It is the earliest developed index of GS from two time series
(Arnhold et al., 1999). It is defined as:

S(k)(X|Y) =
1

N

N
∑

i=1

R
(k)
i (X)

R
(k)
i (X|Y)

(16)

where R(k)i (X) is the average Euclidean distance between the Xi

and its k nearest neighbors, with time indices ai,j, and R
(k)
i (X|Y)

is the same but calculated considering the indices of the nearest
neighbors of Yi, this is, bi,j. The existence of GS between Xi and
Yi produces that these k so-called Yi -conditioned neighbors of
the reconstructed vectors of Xi are closer to them than should
be expected by chance, thus the ratio in and the index itself
are close to 1 (and equal to 1 for identical signals). On the
other hand, if there is no GS, the Yi -conditioned neighbors are
equivalent to vectors randomly chosen in the attractor, and the
index is close (but not equal) to 0. The corresponding version in
the reconstructed state space of Yi, S(k)(Y|X) can be calculated
analogously.

H Index
The similarity index above is the simplest implementation
of a bivariate GS index relying on the comparison between
nearest and conditioned neighbors. However, it has been shown
(Schmitz, 2000; Pereda et al., 2001; Quian Quiroga et al., 2002)
that it is not the best choice when there is special interest on the
directionality of the interaction. Besides, its value for completely
independent signals is not zero, but depends on the average size
of the reconstructed attractor, which in turn changes with the
complexity of each signal as well as with the number of available
data points. Instead, a variation of this index, termedH, has been
proposed, which is defined as:

H(k)(X|Y) =
1

N

N
∑

i=1

log

(

Ri(X)

R
(k)
i (X|Y)

)

(17)

where Ri(X) is the average distance between Xi and any other
reconstructed vector in Xi (the so-called radius of the attractor).
Clearly, H equals 0 for independent signals, no matter the size of

the attractor, yet it is not normalized (i.e., its upper bound does
depend on the individual signals).

M Index
Addressing some of the problems inherent to S and H, a
more appropriate way of normalizing the distances was defined
(Andrzejak et al., 2003):

M(k)(X|Y) =
1

N

N
∑

i=1

Ri(X)− R
(k)
i (X|Y)

Ri(X)− R
(k)
i (X)

(18)

In this case, for independent signals, the numerator (and
therefore the index) equals zero, whereas for identical signals,
the ratio equals 1. Still, the difference between and the analogous
expression in the state space of Yi is sometimes misleading when
drawing conclusions on the directionality of the interaction.

L Index
Recently, Chicharro et al. (Chicharro and Andrzejak, 2009)
proposed an improved version of the M index above, which
uses ranked statistics of distances, instead of directly using space
state distances, thus granting the L index with greater robustness
against outlier situations, a lower noise susceptibility and an
improved sensitivity specially interesting when characterizing
low coupling.

L(k)(X|Y) =
1

N

N
∑

i=1

Gi(X)− G
(k)
i (X|Y)

Gi(X)− G
(k)
i (X)

(19)

Here,G(k)
i (X) = (k+1)/2 are the average rank distances between

anyXi and its k nearest neighbors andGi(X) = N/2 is the average
ranked distance metric for the remaining states. The ranking
procedure ensures that these two distances are constant for all
i and for every signal, as they only depend on N and k. The only
remaining distance, which is the one affected by the degree of FC

between the signals, isG(k)
i (X|Y). Hence L, being a ranked version

of M, has shown better robustness against noise.

Complex Network Analysis
Considering a graph is a structured collection of N nodes
and L links between them, a functional brain network can be
defined based on neuro-dynamical interactions between brain
regions. These interactions are here defined based on FC values,
and as FC indices—normalized or not—are real-valued, the
network is defined as weighted. Thus, a functional brain network
is represented by its connectivity matrices, where rows and
columns denote nodes and matrix entries denote links.

While discussing optimal methodological procedures for
extracting brain networks from neurophysiological signals, it
is clear that histology studies of brain networks come to the
conclusion that the nervous system does not appear as a
completely random nor a completely regular reality (DeFelipe,
2010). It is rather a set of random patterns that probably drive the
brain through its development and therefore express themselves
through their function. Although this expression allows for much
controversy on the actual procedure (Bialonski, 2012; Zanin et al.,
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2012; Hutchison et al., 2013). Weak and non-significant links
are believed to represent spurious connections; these links tend
to obscure the backbone topology of the network, as defined
by strong and significant connections, and as a result are often
discarded. For simplicity, sometimes FC indices are thresholded,
making the network binary as the adjacency matrix is populated
with {0, 1} values.

In this work we will focus on a reduced set of commonly
used weighted network indices. These are: strength (S), Clustering
coefficient (C), shortest path length (L), and betweenness centrality
(B). They enable the study of network properties such as
node importance (S), functional segregation (C), functional
integration (L), small-worldness (C and L), network motifs
(L), network centrality (B), and network resilience (L and B).
Concepts thoroughly described in Rubinov and Sporns (2010),
a study where one of the most well-known open-source toolbox
for brain network analysis Brain Connectivity Toolbox4 (BCT)
is described; our implementation of complex network measures
derives directly from it.

Strength
Considering a link (i, j) as a connection between nodes i and
j (i, j ∈ N) , defined by a weight wi,j ∈ [0,∞) or [0, 1] for
normalized FC indices (should binarization be required, ai,j ∈

{0, 1} is a binary weight related to the existence of a link between
nodes i and j). As described in Rubinov and Sporns (2010),
the number of links in the network is lb =

∑

i,j∈N
ai,j, or lw =

∑

i,j∈N
δ
(

wi,j
)

, where here and henceforth the superscripts b and w

stand for binary and weighted normalized networks, respectively
and δ = 1 if

(

wi,j 6= 0
)

. The strength S of each node is understood
as the sum of its links. This way:

Si =
∑

j∈N

ai,j (20)

for binary networks, and

Swi =
∑

j∈N

wi,j (21)

for weighted networks.
The global S of a network is the average S of all its nodes.

Interestingly, themean network strength can be used as ameasure
of the density of the network, and along with network degree,
many network features can be measured through their influence
on the degree and strength distribution (Boccaletti et al., 2006).

Clustering Coefficient
Focusing on how the network segregates information (usually
interpreted as a measure of subnetwork specialization) the C of
the network is defined as

Cw =
1

n

∑

i∈N

Cw
i =

1

n

∑

i∈N

2twi
ki(ki − 1)

(22)

4Brain Connectivity Toolbox. https://sites.google.com/site/bctnet/

Ci represents each node’s C, with (Ci = 0 for ki < 2), ki is the
degree of the node i and the number of triangles twi around a node
i, is defined by the geometric mean of triangles around it:

twi =
1

2

∑

j,h∈N

(

wijwihwjh

)1/3
(23)

C describes the likelihood that the neighbors of a vertex are also
connected among them. It is the fraction of triangles around a
node, and is equivalent to the fraction of nodes’ neighbors that
are neighbors of each other, thus quantifying the inclination of
network elements to form local clusters. The notion of triangles
is important, since it is directly related to the robustness and
error tolerance of the network (Boccaletti et al., 2006), and help
understand how well-grained subnetworks of neighbors are.

Shortest Path Length
Following Watts’ definitions (Watts and Strogatz, 1998) of
network integration measures, we can study how easily
information can spread through the network. For which the most
characteristic index is the shortest path length, which is directly
related to the robustness and error tolerance of the network
(Boccaletti et al., 2006).

To define this index, it is necessary to first introduce the
notion of path, as a sequence of linked nodes that never visit a
single node more than once5. The characteristic path length is
then defined as the average shortest path length in the network:

dwij =
∑

auv∈gi→j

f (wuv) (24)

where f is a map defining link length (inversely related to
weights) and gi→j is the shortest weighted path between i and j.
Considering a global network average of this metric, we measure
how well the network integrates information with the index L:

Lw =
1

n

∑

i∈N

Lwi =
∑

i∈N

∑

j∈N
dwij

n− 1
(25)

with Lwi being the average distance between node i and all other
nodes.

By their indices L and C, the structural properties of a graph
can be quantified. Lmeasures a global property, while Cmeasures
the locality of a neighborhood (Watts and Strogatz, 1998).
Typically, in neuroscience, noise and other methodological
problems yield networks with many vertices where every node is
connected to every other. By studying the amount of C and L we
can characterize the small-worldness (Watts and Strogatz, 1998)
and other features like efficiency and randomness of the network.

Betweenness Centrality
It is the number of all shortest paths in the network that contain
a given node. Nodes with high values of betweenness centrality

5different from walks, which are sequences of linked nodes that may visit a single
node more than once.
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participate in a large number of shortest paths. It can be defined
as (e.g., Freeman, 1979)

bi =
1

(N − 1)(N − 2)

∑

h,j∈N
h6=j,h6=i,j 6=i

ρhj(i)

ρhj
(26)

where ρhj is the number of shortest paths between nodes h and
j, and ρhj(i) is the number of shortest paths between these two
nodes that pass through node i. High centrality emphasizes that
a node can reach others with a relatively short route, this is, it is a
vertex closely connected to others.

RESULTS

We pursue contributing to the field not only by committing
a set of tools for FC and network analysis, but also by giving
the reader an opportunity to predict plausible computational
time improvement for the set of FC and network measures we
are presenting, under their specific hardware implementation.
Given the wide range of possibilities among neurophysiological
techniques and specific procedures within them, in terms
of numbers of sensors, sampling frequencies and time-series
duration, we will express our results in terms of number of
samples, and number of sensors when appropriate, thereby
avoiding any loss of generality.

We would like to emphasize that improvements correlate
with the number of samples or sensors considered. However,
we do want to present our results under challenging, yet
reasonably common conditions as those of real-time EEG or
MEG processing. This way, we feel that 32 or 64 channels each
with 1000 samples represent a common situation. Regarding
network analysis, challenges rise with the number of nodes in
the network; we therefore tested our implementation up to 4000
nodes, but note that for sensor or source-reconstructed level
analysis, the number of nodes in the brain FC network is typically
around 102.

Hardware Aspects
Computational times certainly do depend on the hardware
architecture of the computer doing the work. Therefore, we
report here results for two different hardware setups. The first
one (setup A) consists of a high-end professional server graded
setup with a dual CPU board with two Intel Xeon processors
(10 physical cores each). The second one (setup B) is based on a
consumer graded computer Intel-i7 CPU (with 4 physical cores).
Both setups are thoroughly described in the Supplementary
Material. This should help the reader estimate execution time
improvements for his/her specific setup. Hyper-threading was
enabled in both cases.

Software Aspects
Different versions of each implementation have been developed
as Matlab scripts and C/C++ implementations. Matlab
MEX-files development application interface has enabled
us to write these custom C/C++ programs to be called as
regular Matlab functions, adding the convenience of the Matlab

environment to a more efficient execution. Regarding this
implementation, whenever possible, we only made use of the
standard C library, thus making the development portable
and platform independent. However, in the case of zero-phase
distortion filtering and PS indices we do use the FFTW library
for computing the discrete FT and HT of arbitrary input sizes.
This library is free software, freely distributed under the terms
of the GNU General Public License with versions for all major
operating systems, and according to benchmarks publicly
available6, FFTW’s performance is typically superior to that of
any publicly available FFT software and is even competitive with
vendor-tuned codes.

In terms of precision, we are confident that the typical signal-
to-noise ratio in neurophysiological time-series makes the use
of double precision floating-point (DPFP) arithmetic excessive,
thus we have developed all functions using internally single
precision floating-point (SPFP) arithmetic, allowing for some
savings in terms of memory, memory bandwidth, and perhaps
a few processing cycles.

Regarding the MI, our implementation is based on previously
existing software written in C++ for Linux operating system.
Therefore, we have maintained C++ as the language in this case.

Shared-memory parallelism in C/C++ has been achieved
through the set of compiler directives and library functions
specified by the OpenMP C/C++ application program interface
in the latest version supported by the compiler7, consequently
maintaining portability. We decided to use OpenMP over other
solutions such as POSIX threads or native windows thread
interface, to preserve such compatibility between operating
systems and ecosystems. We are aware that FFTW is capable
already of multithread execution, however to avoid possible
inconsistencies between versions of OpenMP in different
platforms we have decided to use a single-thread version of the
FFTW library and parallelize on top of that.

Following each implementation, we proceed to experiment
with variable data arrangements. As explained before, instead
of considering explicit sampling frequencies, we report results
in terms of execution times for various sample lengths and
channels configuration, leaving the reader to accommodate
these to specific acquisition setups. We analyzed random
time-series consisting of 8 to 200 channels, and 102 up
to 104 samples per channel for each FC index and each
implementation (see figures in theOnline Resource for additional
information).

PS Indices PLV, PLI, and wPLI
PS indices are fairly easy to implement in practice, yet the need
for different pre-processing steps (filtering and phase extraction
for PLV and PLI and Fourier spectra for ImC and wPLI) might
create some hassle. We will briefly review the currently available
open-source versions of PS indices and will then show the
results in terms of speed-up of this implementation in both
setups.

6http://www.fftw.org/benchfft
7Microsoft Visual Studio supports up to OpenMP v2.0. See
https://msdn.microsoft.com/en-us/library/tt15eb9t(v=vs.100).aspx
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Currently Available Versions
To the best of our knowledge there are three different open-
source implementations of the PS indices, thus, we used
these implementations to check and validate our hypothesis of
efficiency improvement:

DAMOCO
Rosenblum and colleagues have developed a Matlab toolbox for
Data Analysis with Models of Coupled Oscillators8. This toolbox
includes the implementation of PLV, filtering, and Hilbert
transform. They are all in plain Matlab code not optimized
for multichannel data. PLI and wPLI are not included, nor the
estimation of the statistical significance of the PLV index.

FieldTrip
The popular toolbox for EEG/MEG analysis9 includes filtering
and phase estimation scripts, as well as estimators of the
four PS indices (without considering PLV’s significance). These
implementations are written in Matlab, and most importantly,
the calculation requires input data to be formatted in FieldTrip
data files, which adds further constraints limiting its convenience
in third-party applications.

EEGLab
This globally used toolbox for EEG (and sometimes also MEG)
analysis10 includes filtering and phase estimations scripts, as
well as estimators of PLV and PLI (with no estimation of their
significance) all developed in Matlab language. Again, the same
issues as in the case of FieldTrip, it is required to work with data
in EEGLab format.

Our Implementation
We have developed two separate functions, one accounts for PLV
and PLI and a second one that computes wPLI and ImC. This
is due to the fact that both PLV and PLI are most efficiently
calculated based on the analytic signal of each sensor, while wPLI
and ImC are based on the spectrum estimation for which a
non-overlapping set of computations is required.

Regarding PLV and PLI, firstly, a Matlab implementation was
programmed. These are fairly direct algorithms which can fit in
a few lines of code. This version was subsequently parallelized in
different ways, by using Matlab’s built-in bsxfun function and/or
Mathworks’ Parallel Computational Toolbox parfor structure.
Finally, a multithreaded C-mex file implementation was also
developed. This last version dynamically selects the optimum
number of threads (typically the number of logical processors)
in the computer. The implementation of PLV can very well-
constitute an illustrative example on how much effort must
be devoted into a C-mex implementation against a Matlab
implementation, as the dozen lines of code of the latter are
equivalent to the 250 lines of code of the former. At the
same time, it might constitute a just as illustrative example of
the efficiency benefits of using C-mex implementation through
Mathworks’ MEX-interface, in a worst case scenario. Matlab’s

8DAMOCO. http://www.stat.physik.uni-potsdam.de/∼mros/damoco2.html
9FieldTrip. http://www.fieldtriptoolbox.org
10EEGLab. http://sccn.ucsd.edu/eeglab

PS implementation is quite optimized indeed, but still, C-
mex implementation is around an order of magnitude faster
than Matlab’s. We therefore conclude that a low margin for
improvement for an algorithm in C vs. Matlab is around an order
of magnitude and much lower than in other cases.

Our implementation accounts for the border effect due to
HT, by practically discarding phases within a distance from the
beginning or the end of the time-series. This feature is specified
when calling the function, defining the number of samples since
the beginning and before the end of the time series, to be
alienated from further PS analysis.

Our final multithreaded C-mex implementation, allocates at
most 6 ·Nsamples ·Nsensors SPFP Bytes11 in main memory. This can
be one of the main advantages for high-channel-density setups,
because as our implementation is based on shared memory
parallelism, there is very little memory duplication between
threads as opposed to PCT’s workers.

As described in Mathworks’ External Interface
documentation, since MATLAB 7.3(R2006b) there is support for
64-bit indexing, enabling these routines to deal with variables
with up to 248-1 elements on 64-bit platforms. We tested two
different C-mex implementations of the PS indices; one avoiding
it and compiled with—compatilbeArrayDims flag, and another
explicitly issuing 64-bit indexing by using mwSize and mwIndex
types and compiling with –largeArrayDims flag. We found that
the latter version is consistently around 30% slower than the
former and therefore did not use it for subsequent developments
(see Figure 2).

Regarding wPLI and ImC, the developed function follows
Fieldtrip’s implementation for wPLI. In it, Fourier spectra is first
computed for each signal through a Welch’s method with ∼5
windows12 with 50% overlapping between them. Subsequently,
cross-spectrum and Coherence are computed for every pair of
input signals in order to define both indices.

Zero-Phase Distortion Filtering
Although slightly off-topic in relation with the theory of FC and
network analysis, in this work we have included an optimized
implementation of a filter. Typically, any neurophysiological
signal is very susceptible to various sources of noise and as among
the different strategies known in literature, we believe the most
basic and widely used is to filter the signal. But most importantly,
it is mandatory to narrow band-pass filter any signal from which
PS is to be studied prior to the definition of the phase itself. We
provide an implementation of zero-phase distortion FIR filtering
routine, capable of removing unwanted frequency components
form the signal and improving the signal-to-noise ratio of the
brain signals, thereby improving the accuracy of FC measures
(see Rulkov et al., 1995; Quian Quiroga et al., 2002; Chicharro
and Andrzejak, 2009 for revisions on the behavior of different FC
measures under controlled noise). Therefore, as in most cases it
is advisable to filter any neurophysiological time-series, and in
some cases it is required, we expect to help increase the speed of

11SPFP is the number of Bytes a single-precision floating point number shatters,
typically, 4 (Bytes).
12The length of each signal is divided by 4.5 and the result is transformed into an
integer number of windows.

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2017 | Volume 11 | Article 8

http://www.stat.physik.uni-potsdam.de/$\sim $mros/damoco2.html
http://www.fieldtriptoolbox.org
http://sccn.ucsd.edu/eeglab
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


García-Prieto et al. Efficient Computation of Functional Brain Networks

FIGURE 2 | Illustrates execution times (in seconds and measured with tic;toc; Matlab’s built-in functions) of Phase Synchronization indices

computation for a 128 sensor setup with variable number of samples. Measures for different combinations of sensors (between 8 and 200) can be found in the

Supplementary Material. It is surprising to find PCT-based parallelization an order of magnitude slower than straight-forward Matlab implementation.

FC calculations including this version of a zero-phase distortion
filtering function.

Let us review some key aspects of time-series filtering
which are directly related to our implementation. Filtering
can operate in different domains: in time domain, filtering
can be understood as a convolution; in frequency domain,
filtering can be understood as an array multiplication. This
equivalence, generally known as the circular convolution theorem,
allows avoiding a discrete convolution operation which requires
O(N2

samples
) operations by instead implementing two FFT

O(NsampleslogNsamples) and an array multiplication O(Nsamples),
allowing a drastic reduction in execution times. As the filter needs
to be applied in both forward and inverse directions in order
to avoid phase distortion, by filtering in the frequency domain
we attain a theoretical increase in computational efficiency by a
factor of

O

(

2Nsamples

2logNsamples + 1

)

(27)

which ranges between 102 and 104 for typical sample lengths (see
Figure 3).

The development of our implementation has been closely
guided by Matlab’s Digital Signal Processing toolbox filtfilt
function, in order to avoid introducing unnecessary confusion
in an already well-established processing stage. Thus, the
output is the same as the one obtained through that
function13.

The filter is specified through its numerator array and it is
transformed into the frequency domain. Prior to the filtering, the
data are mirror padded at both sides by an amount of samples
13With a slight difference derived from implementing single-precision floating-
point instead of double precision floating-point arithmetic.

given by the filter dimension and the filter is zero padded to
match subsequent length, all in order to reduce border effects.
Filtering is then carried out efficiently in the frequency domain
after applying the FFT to both the padded data and the filter itself
(see Table 1 for different execution times).

MI
As previously discussed, there are different implementations of
MI, most of them based on the naïve approach described above,
that involves the estimation of probabilities (marginal and joint
ones) using binning strategies. However, the approach based
on k-nearest neighbors statistics as described in Kraskov et al.
(2004) and recently reviewed in Kinney and Atwal (2014) is
arguably one of the most suitable ones for large experimental
datasets. Thus, we focused our attention, as starting points,
on two efficient open-source implementations of this strategy,
already in C++.

Currently Available Versions

TIM
This is a cross-platform open-source C++ library for the
estimation of information-theory measures from continuous-
valued time series14.

MILCA
This is the implementation of the authors of ref. (Kraskov et al.,
2004)15 in C++ code. This turned out to be the fastest and
most accurate one, and as we describe here, we therefore used
it as a starting point for our development. We compare our
implementation against it.

14TIM. http://www.cs.tut.fi/∼timhome/tim/tim.htm
15MILCA.http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/
MILCA/MILCA
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FIGURE 3 | Shows measures of speed-up ratio improvement of our implementation of zero-phase distortion FIR filter function over Matlab’s Digital

Signal Processing toolbox filtfilt function for different numbers of channels and samples. Filter dimension is fixed as 1/5 sample length. Note how,

surprisingly, improvement ratio is higher in setup B. Text description in each graph specifies Matlab’s filtfilt function execution time for 128 sensors. Showing how, as

expected, execution times are lower in setup A. Note also how the speed-up ratios are very similar to the expected outcome of 102–103, considering the stated

theoretical analysis.

TABLE 1 | Shows execution times measured with tic;toc; Matlab built-in

functions, for zero-phase distortion FIR filtering while processing random

time series of 2 × 103 samples for two different configurations of 64 and

128 channels.

No. of channels Times Speed-up

Matlab’s filtfilt C-mex Impl.

Setup A 64 37 ms 0.15 ms 64 ×

128 54 ms 0.17 ms 28 ×

Setup B 64 71 ms 0.83 ms 86 ×

128 148 ms 1.3 ms 114 ×

Last column illustrates speed-up ratio between Matlab version and this C-mex version.

Our Implementation
This MI implementation is based on a free program distributed
in relation to former work (Kraskov et al., 2004), which is freely
distributed within the MILCA toolbox. A Matlab version of their
function for calculating the MI can be found in MILCA, being
in fact a wrapper function that calls a C++ function outside
Matlab’s environment. This implementation will be alluded here
as Matlab MILCAMI version.

One problem we identified in the Matlab version of MILCAs
MI is that the interface between both environments (C++

program and Matlab) is a text file, thus making communication
extremely inefficient. Our two main contributions to MILCA’s
implementation are to make it compatible with Windows Visual
Studio compiler, and most importantly to change how the
function receives data, making use of Matlab’s MEX interface
and being able to directly access Matlab’s variables. We finally

added multithread compatibility to our implementation, which
substantially increased computation efficiency (see Table 2 for
execution times for different implementations).

In order to allow the calculation of any of the two normalized
versions of the MI (by or by (14) some other way), our
implementation estimates not only (13) but also the individual
entropies of each of the signals considered. This way we give users
the possibility of implementing a MI normalization scheme to
their liking.

It is worth noting that we also tested the feasibility of including
in the platform the abovementioned MIC index (Reshef et al.,
2011; Kinney and Atwal, 2014), which is normalized per
definition and allegedly presents also very good statistical
properties as an associated measure. Yet, on the one hand, the
latest results seem to suggest thatMIC is not better than Kraskov’s
MI implementation (Kinney and Atwal, 2014). On the other
hand, even the fastest implementations of MIC (Tang et al., 2014)
are orders of magnitude slower than the MI implementation
we have obtained, which render this former index as unsuitable
for real-time estimations of FC patterns (see Figure 4 for MI
program execution times).

GS Index S, H, M, and L
Currently Available Versions
As far as we are aware, there are only two open-source
implementations of the GS indices considered. Both Matlab
based implementations:

One is included in the very elegant work of Chicharro and
Andrzejak (2009) and freely distributed as online material for
that publication. All S, H, M, and L indices are computed
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TABLE 2 | Shows execution times for different implementations of each

Functional Connectivity index, while processing random time-series of

103 samples for two different configurations of 32 and 64 channels.

No. of channels Execution time [S] Speed-up

Matlab Matlab PCT C-mex

PHASE SYNCH.

Setup A 32 268 × 10−3 1.8 2 × 10−3 134 ×

64 1 5 5 × 10−3 208 ×

Setup B 32 455 × 10−3 2.2 5 × 10−3 87 ×

64 2 6 12 × 10−3 152 ×

MUTUAL INFORMATION

Setup A 32 127 18 858 × 10−3 148 ×

64 505 59 2.4 210 ×

Setup B 32 144 36 2.2 65 ×

64 515 138 8.2 63 ×

GENERALIZED SYNCH

Setup A 32 642 94 469 × 10−3 1368 ×

64 2.4 × 103 340 1.2 2026 ×

Setup B 32 593 178 991 × 10−3 598 ×

64 2.4 × 103 628 2.5 975 ×

Times are expressed in seconds and measured with tic;toc; Matlab’s built-in functions.

Matlab versions are parallelized with Mathworks’ Parallel Computing Toolbox (PCT). A

wider perspective on the influence of PCT in terms of efficiency is drawn here. When

computing Phase Synchronization, the computation is so fast that deployment of parallel

executions through PCT appears to be slower than normal implementation. When the task

to be parallelized lasts long enough, as in the case of Mutual Information and Generalized

Synchronization indices, PCT demonstrates a very efficient tool to improve computational

efficiency, as there are very few modifications in the codes that stand beneath first

and second columns of results. Last column illustrates speed-up ratio between C-mex

implementation and Matlab column.

with an additional closely related N index described in Quian
Quiroga et al. (2002). This implementation is not optimized for
parallel implementation although it can be parallelized through
Mathwork’s Parallel Computational Toolbox.

HERMES16

A Matlab toolbox with a very complete set of indices and a
convenient user interface freely distributed for the assessment of
FC in EEG and MEG data (Niso et al., 2013).

None of them are optimized for performance and neither
takes advantage of the existence of multicore multi-CPU.

Our Implementation
Our implementation does not follow any of the previous Matlab
based implementations. Instead, we developed our version
in standard C (multithreaded through OpenMP) following
the algorithms described in Chicharro and Andrzejak (2009)
and references therein, with the only difference of using
single-precision floating point representation instead of double
precision. We then tested execution times between our version
and previous Matlab based implementations.

16http://hermes.ctb.upm.es/

All S, H, M, and L indices share the need to populate a
reconstructed state space which instead of building sequentially,
we manage to build implicitly while distances between every
pair of reconstructed states are being accounted for. Besides,
considering situations where the reconstructed embedded space
is very populated, if the user considers it optimal to subsample the
embedded reconstructed system, our version is capable of such
subsampling, achieving a speed-up directly proportional to this
subsampling.

Once distances are computed and stored, the algorithm
calculates minimum distances. S, H, and M, could be computed
even faster than in the present work because there are
constrained by L, which considers ranked statistics and the
ranking procedure, entails a first step consisting in the sorting
of all the distances. This procedure grants this index a more
reliable estimation of the directionality of the interaction, which,
is also normalized between 0 and 1 for independent (resp.
identical) signals but, on the other hand, it is precisely the
sorting which makes this index the most computationally
demanding of all the GS indices described here. For simplicity
we present here a version that computes all four indices
at the same time, including L, which is therefore the
limiting factor in terms of computational efficiency in our
implementation17.

In certain situations, as it can clearly be seen in Figure 5, when
the input matrix is big enough (thousands of samples in setup A
and B) this can lead to out-of-memory problems as is the case
of GS. The problem is that by construction, all implementations
are prepared to accept an input matrix with the complete set
of channels. This problem can be easily solved by calling the
function by pairs of sensors, decreasing efficiency but allowing
for much bigger sample lengths.

In order to help predict if a specific number of samples and
channels might fit into a known setup, during its execution both
floating-point and integer arithmetic take place.

Themaximum amount ofmainmemory used will beNsensors×
(

2N2
samples

+
(

k+ 1
)

Nsamples

)

× SPFP for the floating point

computations and
(

2N2
samples

+ Nsamples

)

× Nsensors × INT for

integer operations.18

Complex Networks Indices
When a network has been characterized through FC, its
adjacency matrix is populated with real-valued weights. Thus, we
have implemented some complex networks indices for weighted
networks, with or without directions depending on the FC index
measured. Parallelization of network indices calculation is hard.
Therefore, in this case only two versions of each index will be
compared.

17Should the reader want to compute S, H, or M but not L, despite being less
robust in noisy situations, a more efficient implementation of our program which
computes only S, H, and M without the need for sorting is available in the
repository.
18SPFP is the number of Bytes a single-precision floating point number shatters,
typically, 4 Bytes. And analogously INT represents the length of an integer value,
which is usually 4 Bytes as well.
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FIGURE 4 | shows the MI program execution times (in seconds) for a 128 sensor setup with variable number of samples. As opposed to the case of PS,

the MI parallelization through Mathworks Parallel Computing Toolbox is faster than straight Matlab execution, and both around two orders of magnitude slower than

C-mex version.

Currently Available Versions
Multiple network analysis software packages are freely available
on the web. Among these packages, some concentrate on
calculating measures for large networks, while others are
visualization software. We focus here on command-line
environments like Matlab.

Brain Connectivity Toolbox (BCT; Rubinov and Sporns,
2010). It is probably the most well-known set of functions to
compute network theoretic measures. We are aware that BCT
already includes a C++ implementation of most of the routines;
however, as stated in their user manual, there is currently no
efficient interface between BCT and Matlab’s environment. We
will try to fill this gap with an original implementation of a subset
of those indices included in BCT.

Our Implementation
In some cases, our implementation of brain connectivity
measures follow very closely the implementation described and
implemented in BCT. We had doubts while deciding whether
to implement weighted or binary and directed or undirected
network measures; we decided to concentrate on weighted
adjacency matrices (both directed and undirected) because it
seems more related to the type of networks usually created when
working with FC-based networks.

Strength—S is trivial to implement. It needs no additional
memory to be reserved (apart from inputs and outputs) and can
be implemented by a cumulative sum algorithm. We are certain
this index should be included in this work as a representative
example of situations when probable gain of C-mex implantation
of an algorithm is unlikely. As it can be seen in Figure 6, C-
mex implementation is dozens of times slower than Matlab’s
implementation. Through profiling, we are sure that C-mex

implementation is dragged by the extensive use of pow function
and as internally Matlab uses Intel’s Math Kernel Library Basic
Linear Algebra Subroutines (BLAS) and Linear Algebra Package
(LAPACK) when running on Intel processors (which is the
case throughout this work), the probable cause for such large
efficiency gap is the optimization performed by these packages
of the matrix-oriented pow function.

Clustering coefficient—C implementation closely follows the
definitions of Rubinov and Sporns (2010). As a first attempt we
implemented the definition of clustering coefficient as of Watts
and Strogatz (1998) but that resulted in a very slow version.
We then implemented the version proposed in Rubinov and
Sporns (2010) with a much more efficient execution. Memory
requirement is limited to (Nnodes

2+Nnodes)×DPFP+Nnodes×INT
in our implementation.

Regarding shortest path length—L, we implement a new
approach based on its definition. For each node, we find the
shortest path to other nodes in the network applying Dijkstra’s
algorithm for weighted graphs. Following both (Boccaletti et al.,
2006; Rubinov and Sporns, 2010) we set the definition of the
length of each link as the inverse value of the weight—FC value,
and replicate BCT results.

In terms of memory usage, L uses a set of backup registered
arrays, and therefore an amount of memory directly related
to the number of processors (logical cores) dedicated for its
calculation. Thus, free memory must be kept above Nprocessors ×
(

Nnodes ×
(

2× Addr + INT
)

+ N2
nodes

SPFP + N2
nodes

INT
)

when
calling the function.

Lastly, betweenness Centrality—B, which is considered
an essential measure in many other areas in science, was
implemented here following Brandes implementation (Brandes,
2001). It ranks network nodes highlighting their position in the
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FIGURE 5 | Shows GS program execution times (in seconds) for a 128 sensor setup with variable number of samples. It is in this case where C-mex

implementation speeds-up over both Matlab based versions (straight Matlab and parallelized through Mathworks’ Parallel Computing Toolbox) is most remarkable.

This algorithm is by far the most demanding in terms of memory, as distances between reconstructed states have to be characterized pairwise. Lack of memory starts

to be a problem in both setups when dealing with thousands of samples per sensor for the C-mex implementation. An easy solution is to segment the computation of

the FC matrix in several sub-networks.

FIGURE 6 | Shows complex network indices execution times (in seconds) for both the original Matlab implementation (based on Brain Connectivity

Toolbox) and C-mex implementations presented in this work. We consider different number of nodes ranging from 100 up to 4000. An interesting outlook is

described here; Strength index takes more or less the same to compute, even though C-mex version is more difficult to develop and maintain, and each compilation is

restricted to an operating system. Clustering Coefficient appears to be much slower in the C-mex version; we believe this is related to the extensive use of the pow

function (critically optimized for matrix calculations in the Matlab environment). Shortest Path Length and Betweenness are the most complex algorithms developed

though the effort seems fruitful as C-mex implementations are between 2 and 3 orders of magnitude faster.

network by solving the single-source shortest-paths problem,
with no recursion in the implementation, assuming the graph as
undirected and weighted. We implement Dijkstra’s algorithm as
it is a very efficient solution for finding shortest paths between

nodes in a network prior to finding B. While searching for paths
instead of a Fibonacci heap, we implement a linked-list of ordered
paths avoiding the need for sorting which usually leads to this
algorithms poor scalability. It is also important to note that the
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network matrix must have zeroed the main diagonal. Auto links
are not accepted in this implementation. The maximummemory
usage by this function is given by

Nprocessors

((

Nnodes × 2× Addr + INT
)

+
(

N2
nodes + Nnodes

)

INT
)

+ ... N2
nodes (SPFP + INT) + NnodesINT (28)

In our final version of this index, we have decided to keep L
measures within B results as this adds very little overheads while
allowing computing two indices at the same time.

Information Sharing Statement
The majority of the source code described in this work
is completely original, but not all. The MI routines are
modified versions of Mutual Information Least-dependent
Component Analysis (MILCA) which is free software
distributed under General Public License (GPLv2) license.
All Generalized Synchronization related code, Zero-Phase
distortion filtering related code and Phase Synchronization
related code are original, however the last two make use of
FFTW precompiled libraries, which are also free software
distributed under GPL. All the source code and executable
binaries included in this work, are distributed under GNU
GPLv3 at http://juangpc.github.io/FastFC/.

DISCUSSION

The aim of this work is to share an efficient implementation
of a set of tools for estimating some well-known FC and
graph-theoretic network measures and to give a self-sustained
methodological review of these indices, describing some
well-known previous open-source implementations. We have
developed four families of measures totalling 10 different indices
and a filtering function, all directly available from Matlab’s
command line interface. Which, given the ubiquity of Matlab in
science and particularly in neuroscience, we hope renders them
beneficial to FC and complex brain networks related studies by
significantly decreasing computational times, while controlling
the friction inherent in adopting new functions.

By real-time estimation we mean that the time necessary to
calculate the network patterns is more or less the same as the
time necessary to record the data. In fact, for a typical sampling
frequency of 500 Hz, the FC network patterns of 2 s of data (103

samples) from a 32-channel EEG requires less than a second
of computational time each, enabling the possibility to interact
directly with the subject based on its FC properties, while the task
is on-going within a neuro-feedback scheme.

We have achieved a speed-up ratio ranging from the hundreds
in the case of PS indices (which are the fastest ones), low and
high hundreds in case of the MI and fluctuating from hundreds
to thousands in the case of GS indices (the slowest ones). But
most importantly, the execution times obtained in all cases
allow the most efficient estimation of the network patterns,
drastically reducing computational times under all circumstances
and enabling new setups that were not feasible before. Regarding
PS indices, which are calculated extremely fast, it is even possible

to obtain a real-time estimation of the network patterns for the
whole frequency range of an EEG/MEG.

Few studies dealing with real-time—or close to real-time—
FC based measures have been published so far. However, as
described before, these studies suffer from the need to lighten
computational weight usually by restricting to a series of ROIs
or reducing the number of channels. Either solution disables
proper network analysis characterization of the whole brain.
But these results suggest that both FC and effective connectivity
of brain networks should be taken into consideration as an
effective dimensionality reduction technique for BCI and neuro-
feedback setups. In Daly et al. (2012) it has been shown how
inter-regional connectivity can positively impact BCI accuracy
and speed, which can only improve if taking into consideration
whole-head high-density FC estimation. Moreover, an example
of its application to MEG data in epilepsy, this index has been
recently used to assess the outcome of surgery in a follow up study
of lesional epilepsy patients (van Dellen et al., 2014).

In terms of programming, we have tried to avoid repetition
of calculations; reuse and storing prevailing over recalculating.
We kept all the implementations as single-file-programs, in order
to help further implementations and facilitate other toolboxes
adding this implementation to theirs. The development has
maintained portability as a main priority by only making use
of the standard C-mex library or libraries supported under
different environments, thus making the development portable
and platform independent. Although, one major inconvenience
in any C-mex based parallelization is that each compilation is
restricted to its operating system. Further developments oriented
toward embedded devices or heterogeneous computing devices
might use initiatives like OpenCL19, CUDA20, OpenGL21,
OpenACC22, or OpenMP for GPU based computing, we consider
C to be the most valid interaction language between all of them.

We have included some graph-theoretical network measures
in this work that actually increase computational times in
relation to most well-known Matlab implementation. Clustering
Coefficient, for instance can be hundreds of times slower
than BCT’s Matlab version. We have decided to include these
developments in case they help future implementations in
specific computing devices. Furthermore, we have developed
different versions of each implementation, measuring execution
times and increasing knowledge on how much improvement
shall be expected from further or analogue implementations.
Thus, a significant amount of effort has been devoted to
describe the interesting landscape of results obtained. We hope
this experience can aid any researcher who is considering the
effort of improving computational efficiency of an algorithm
within Matlab’s environment with PCT or through C-mex
implementation and parallelization; our results should allow for
reasoned or educated predictions of improvements.

In terms of hardware influences, differences in performance
between setups are constant and consistent with the expected
outcome of setup A being faster than B. For small sample

19www.khronos.org/opencl/
20www.nvidia.com/object/cuda_home_new.html
21www.khronos.org/opencl/
22www.openacc-standard.org/
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sizes though, lack of differences can be caused by differences in
memory bandwidth due to error-correcting code memory being
used in setup A, and CPU frequency. It is difficult to be sure.

In general terms, the lesson is that differences in execution
times caused by improving hardware setup up are only significant
when the amount of data is big or when using the C-mex
implementation. Regarding PCT, we feel that for the purpose of
a general speeding up, PCT takes only a very tiny fraction of
the development time in contrast to C-mex solution. And its
results very much depend on regular Matlab execution times.
Apparently, there is a fixed time penalty for launching the
workers in the parallel pool and when each worker’s execution
times are measured in milliseconds, it does not make sense to use
PCT parallelization. In terms of task complexity while developing
the code, under a worst case scenario C-mex will increase the
complexity of the task by an order of magnitude and might
decrease computational times by two or three times that factor.
But if Matlab’s implementation is very condensed and relies on
few function calls, C-mex’s implementation can be much slower
than Matlab’s. Matlab has reported to use Intel’s Math Kernel
library optimized for matrix calculations; even considering
inefficiencies of scripting languages, when only called a few times,
Matlab’s functions prove to be well-optimized. Surprisingly, a
counter example is filtfilt function. Interestingly Matlab itself
uses FFTW library for FFT calculations, even though this
function’s efficiency can be radically increased with our C-mex
frequency domain based parallel implementation. Furthermore,
for our examples we have specified mode 2 optimization
for FT computation, which corresponds to FFTW_ESTIMATE
optimization mode within FFTW’s vocabulary. Therefore, results
could only improve if using more optimized procedures, as
described in FFTW’s user guide. A matter of much interest and
controversy for many years (Moler, 1995), a parallel Matlab
implementation has not yet been accomplished. Since Matlab
2008a version, some algebra and numeric functions such as fft
in Matlab are multithread. But still we consider much of C-
mex improvement is due to the use of OpenMP thread-based
parallelization throughout the computation.

Part of the future developments that rise from this work
consist on investigating whether (and how much) GPU based
computations might further increase computational efficiency.
Development of GPU processors driven by the game consumer
industry has produced outstanding achievements and a change
in the way scientists see GPU computation (Nickolls and Dally,
2010). Creating an incessant stream of successfully translated
algorithms and applications into GPU makes us believe it is

worth studying the advantages and disadvantages of porting
FC and network indices to GPU oriented implementations
(see Rosales et al., 2015; Wollstadt et al., 2014 for a close
related example). Thus, as a community we shall make sure
this field takes full advantage of heterogeneous multicore
CPU/GPU architectures. In this context, we expect that further
implementations based on CUDA or other standards like
OpenGL can benefit from this work extracting full capabilities of
these devices.

Overall, we hope this work can assist neuroscientific
experiments with stimulation protocols dependent on FC and
network theory related measures. As EEG is probably the most
common neurophysiological technique, we concentrated on it
with examples and use cases throughout the text, although
this work and its conclusions can easily be adapted to other
techniques.
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