
METHODS
published: 10 February 2017

doi: 10.3389/fninf.2017.00013

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2017 | Volume 11 | Article 13

Edited by:

Arjen Van Ooyen,

Vrije Universiteit Amsterdam,

Netherlands

Reviewed by:

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

Hans Ekkehard Plesser,

Norwegian University of Life Sciences,

Norway

Wolfram Schenck,

Bielefeld University of Applied

Sciences, Germany

*Correspondence:

Weiliang Chen

w.chen@oist.jp

Received: 06 October 2016

Accepted: 27 January 2017

Published: 10 February 2017

Citation:

Chen W and De Schutter E (2017)

Parallel STEPS: Large Scale

Stochastic Spatial Reaction-Diffusion

Simulation with High Performance

Computers.

Front. Neuroinform. 11:13.

doi: 10.3389/fninf.2017.00013

Parallel STEPS: Large Scale
Stochastic Spatial Reaction-Diffusion
Simulation with High Performance
Computers
Weiliang Chen* and Erik De Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan

Stochastic, spatial reaction-diffusion simulations have been widely used in systems

biology and computational neuroscience. However, the increasing scale and complexity

of models and morphologies have exceeded the capacity of any serial implementation.

This led to the development of parallel solutions that benefit from the boost in

performance of modern supercomputers. In this paper, we describe an MPI-based,

parallel operator-splitting implementation for stochastic spatial reaction-diffusion

simulations with irregular tetrahedral meshes. The performance of our implementation

is first examined and analyzed with simulations of a simple model. We then demonstrate

its application to real-world research by simulating the reaction-diffusion components

of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite

morphologies. Simulation results indicate that our implementation is capable of achieving

super-linear speedup for balanced loading simulations with reasonable molecule density

and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs

more than 3,600 times faster than its serial SSA counterpart, and achieves more than

20-fold speedup relative to parallel simulation with 100 processes. In a more realistic

scenario with dynamic calcium influx and data recording, the parallel simulation with

1,000 processes and no load balancing is still 500 times faster than the conventional

serial SSA simulation.

Keywords: STEPS, parallel simulation, stochastic, spatial reaction-diffusion, HPC

INTRODUCTION

Recent research in systems biology and computational neuroscience, such as the study of
Purkinje cell calcium dynamics (Anwar et al., 2014), has significantly boosted the development
of spatial stochastic reaction-diffusion simulators. These simulators can be separated into two
major categories, voxel-based and particle-based. Voxel-based simulators, such as STEPS (Hepburn
et al., 2012), URDME (Drawert et al., 2012), MesoRD (Hattne et al., 2005), and NeuroRD (Oliveira
et al., 2010), divide the geometry into small voxels where different spatial variants of the Gillespie
Stochastic Simulation Algorithm (Gillespie SSA) (Gillespie, 1976) are applied. Particle-based
simulators, for example, Smoldyn (Andrews and Bray, 2004) andMCell (Kerr et al., 2008), track the
Brownian motion of individual molecules, and simulate molecular reactions caused by collisions.
Although greatly successful, both voxel-based and particle-based approaches are computationally
expensive. Particle-based simulators suffer from the requirement of tracking the position and

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00013
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00013&domain=pdf&date_stamp=2017-02-10
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:w.chen@oist.jp
https://doi.org/10.3389/fninf.2017.00013
http://journal.frontiersin.org/article/10.3389/fninf.2017.00013/abstract
http://loop.frontiersin.org/people/22060/overview
http://loop.frontiersin.org/people/132/overview

Chen and De Schutter Parallel STEPS

movement of every molecule in the system. While tracking
individual molecules is not required for voxel-based simulators,
the exact solution of Gillespie SSA is highly sequential and
inefficient for large-scale simulation due to the massive amount
of SSA events (Dematté and Mazza, 2008).

There is a major need for more efficient stochastic spatial
reaction-diffusion simulation of large-scale systems. Over the
years several efforts have achieved considerable success, both
in algorithm development and software implementation, but
increasing simulation scale and complexity have significantly
exceeded the gains in speed.

Since the introduction of the original Gillespie SSA,
performance of voxel-based simulators has been substantially
improved thanks to new algorithms and data structures. Giving
N as the number of possible kinetic events (reactions and
diffusions) in the system, the computational complexity of a
single SSA iteration has been reduced from O(N) with the
Direct method (Gillespie, 1976), to O(log(N)) with Gibson and
Bruck’s modification (Gibson and Bruck, 2000), to O(1) with
the composition and rejection SSA (Fricke and Schnakenberg,
1991; Slepoy et al., 2008). Approximate solutions for well-stirred
systems, such as the well-known tau-leaping method (Gillespie,
2001) can also be applied to the spatial domain (Marquez-Lago
and Burrage, 2007; Koh and Blackwell, 2011), providing further
speedup with controllable errors. It is clear, however, that the
performance of a serial simulator is restricted by the clock speed
of a single computing core, while multi-core CPU platforms have
become mainstream.

One possible way to bypass the clock speed limitation is
parallelization, but development of an efficient and scalable
parallel solution has proven challenging. An optimistic Parallel
Discrete Event Simulation (PDES) solution has been applied
to the exact Gillespie SSA, achieving a maximum 8x speedup
with a 12-core cluster (Dematté and Mazza, 2008). This
approach has been further investigated and tested with different
synchronization algorithms available for PDES systems (Wang
et al., 2009), such as Time Warp (TW), Breathing Time Bucket
(BTB) and Breathing Time Warp (BTW). Their results indicate
that while considerable speedup can be achieved, for example
5x speedup with 8 cores using the BTW method, speed decays
rapidly once inter-node communication is involved, due to
significant network latency. Another optimization attempt using
the PDES solution with thread-based implementation achieved
a 9x acceleration with 32 processing threads (Lin et al., 2015).
All the foregoing studies show scalability limitations due to
the dramatic increase in rollbacks triggered by conflicting
diffusion events between partitions, even with support from
well-developed PDES algorithms.

Parallelization of approximate SSA methods has also been
investigated. D’Agostino et al. (2014) introduced a parallel
spatial tau-leaping solution with both Message Passing Interface
(MPI)-based and Graphics Processing Unit (GPU)-based
implementations, achieving a 20-fold acceleration with 32
CPU cores, and about 50x on a 192-core GTX-Titan. Two
variants of the operator-splitting approach, originating from the
serial Gillespie Multi-Particle (GMP) method (Rodríguez et al.,
2006), have been independently employed by Roberts (Roberts

et al., 2013) and Vigelius (Vigelius et al., 2011). Both GPU
implementations achieve more than 100-fold speedup compared
to the CPU-based serial SSA implementations. It is worth noting
that the above-mentioned parallel solutions divide simulated
geometries into sub-volumes using cubic mesh grids, which may
not accurately represent realistic morphologies (Hepburn et al.,
2012).

Several studies of parallel particle-based implementations
have been reported. Balls et al. (2004) demonstrated their
early attempt at parallel MCell implementation under the KeLP
infrastructure (Fink et al., 1998) with a 64-core cluster. Two
GPU-based parallel implementations of Smoldyn have also been
reported (Gladkov et al., 2011; Dematté, 2012); both show
100∼200-fold speedup gains compared to the CPU-based serial
Smoldyn implementation.

Here we introduce an MPI-based parallel implementation
of the STochastic Engine for Pathway Simulation (STEPS)
(Hepburn et al., 2012). STEPS is a GNU-licensed, stochastic
spatial reaction-diffusion simulator implemented in C++ with
a Python user interface. The main solver of serial STEPS
simulates reaction and diffusion events by applying a spatial
extension of the composition and rejection SSA (Slepoy et al.,
2008) to sub-volumes of unstructured tetrahedral meshes. Our
parallel implementation aims to provide an efficient and scalable
solution that can utilize state-of-the-art supercomputers to
simulate large scale stochastic reaction-diffusion models with
complex morphologies. In Section Methods we explain the
main algorithm and details essential to our implementation. In
Section Results, we then showcase two examples, from a simple
model to a complex real-world research model, and analyze the
performance of our implementation with their results. Finally, we
discuss possible future developments of parallel STEPS in Section
Discussion and Future Directions.

METHODS

We choose theMPI protocol for CPU clusters as the development
environment of our parallel implementation, since it is currently
the best-supported parallel environment in academic research.
Modern clusters allow us to explore the scalability of our
implementation with a massive number of computing nodes,
and provide insights for further optimization for super-large-
scale simulations. The MPI-based implementation also serves
as the foundation of future implementations with other parallel
protocols and hardware, such as GPU and Intel Xeon Phi clusters.

Previous attempts (Dematté and Mazza, 2008; Wang et al.,
2009; Lin et al., 2015) to parallelize the exact Gillespie SSA
have shown that system rollbacks triggered by straggler cross-
process diffusion events can negate any performance gained from
parallelization. The issue is further exacerbated for MPI-based
implementations due to significant network latency. To take full
advantage of parallelization, it is important to relax exact time
dependency of diffusion events and to take an approximate,
time-window approach that minimizes data communication and
eliminates system rollbacks. Inspired by the GMP method, we
developed a tetrahedral-based operator-splitting algorithm as the

Frontiers in Neuroinformatics | www.frontiersin.org 2 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

fundamental algorithm of our parallel implementation. The serial
implementation of this algorithm and its accuracy have been
discussed previously (Hepburn et al., 2016). Here we discuss
implementation details of the parallel version.

Initialization of a Parallel STEPS Simulation
To initialize a parallel STEPS simulation, the user is required
to provide the biochemical model and geometry to the parallel
solver. For user convenience, our parallel implementation
accepts the same biochemical model and geometry data used as
inputs in the serial SSA solver. In addition, mesh partitioning
information is required so that tetrahedrons can be distributed
and simulated. Partitioning information is a simple list that
can be generated automatically using the grid-based partitioning
solution provided in the STEPS utility module, or more
sophisticated, third-party partitioning applications, such asMetis
(Coupez et al., 2000). The STEPS utility module currently
provides necessary support functions for format conversions
between STEPS and Metis files.

Assuming that a set of tetrahedrons is hosted by an MPI
process p, {tet|tet is hosted by p}, parallel STEPS first creates a
standard Gillespie SSA system for all reactions in each hosted
tetrahedron. This includes the population state of all molecule
species and propensities of reactions. For each reaction Rtet,p, it
also creates an update dependency list deps(Rtet ,p), that is, a list of
reactions and diffusions that require an update if Rtet,p is chosen
and applied by the SSA. Since a reaction only affects molecule
states and propensities of reactions and diffusions within its
own tetrahedron, the above information can be stored locally
in p. The localized storage of SSA and dependency information
significantly reduces memory consumption for each process
compared to a serial SSA implementation, which is crucial to
simulator performance. We will further address its importance
with simulation results in section Results.

The simulation also stores the set of hosted diffusion processes
{Dtet,p|Dtet,p is in tet hosted by p} and the dependency list
deps(Dtet , p) for each diffusionDtet,p. In addition, if a tetrahedron
tet is a boundary tetrahedron of p, in other words, the molecule
state of tet is affected by diffusions in tetrahedrons hosted by
other MPI processes rather than p, a species update dependency
list for every diffusive species Stet,p in tet is also created. The
species update dependency list, deps(Stet ,p), is defined as the list
of reactions and diffusions that are hosted by p, and that require
an update if the count of Stet,p is modified by cross-process
diffusion. The species dependency list allows each MPI process
to update hosted reactions and diffusions independently after
receiving molecule change information from other processes,
thus reducing the need for cross-process communication.

Furthermore, a suitable diffusion time window is determined
according to the biochemical model and geometry being
simulated (Hepburn et al., 2016). Given dS,tet as the local diffusion
rate for diffusive species S in tetrahedron tet, each process
p computes a local minimal time window τp = min 1

dS,tet
,

over all diffusive species in every hosted tetrahedron. Collective
communication is then performed to determine the global
minimum, τ = min(τp), which is set as the diffusion time
window for every process in the simulation. Note that τ is

completely determined by the biochemical model and geometry,
and remains constant regardless of changes in the molecule
population. Therefore, continual updates of τ are not required
during the simulation.

The final step is to initialize the molecule population state
of the simulation, which can be done using various API
functions provided in parallel STEPS. Once this is completed,
the simulation is ready to enter the runtime main loop described
below.

Runtime Main Loop
The runtime main loop for each MPI process is shown in
Algorithm 1 in Supplementary Material. When a process is asked
to execute the simulation from time t to tend, a remote change
buffer for cross-process data communication is created for each
of the neighboring processes of p. Details of the buffer will be
discussed later.

The entire runtime [t, tend] is divided into iterations of the
constant time window τ , the value of which is computed during
initialization. At the start of every time window, each process
first executes the Reaction SSA operator for the period of τ . The
mean number of a molecule species S present in a tetrahedron tet
during τ is used to determine the number of S to be distributed
among neighbors of tet. Therefore, in addition to the standard
exact SSA routine, the process also updates time and occupancy
for each reactant and product species (Hepburn et al., 2016).

The parallel solver treats diffusion events differently, based
on ownerships of tetrahedrons involved. If both source
and destination tetrahedrons of a diffusion event are in a
single process, diffusion is applied directly. If a diffusion is
cross-process, that is, the source tetrahedron and destination
tetrahedron are hosted by different processes, the change to the
source tetrahedron is applied directly, while the change to the
destination tetrahedron is registered to the corresponding remote
change buffer. Once all diffusion events are applied or registered,
the buffers are sent to associated remote processes via non-
blocking communication, where molecule changes in destination
tetrahedrons are applied.

The algorithm is designed for optimal operation in a
parallel environment. Most of its operations can be performed
independently without network communication. In fact, the
only data communication required is the transfer of remote
change buffers between neighboring processes. This has two
important implications. First and foremost, the communication
is strictly regional, meaning that each process only communicates
to a small subset of processes with which it shares geometric
boundaries, regardless of the overall scale of the simulation.
Secondly, thanks to the non-blocking communication, each
process can start the Reaction SSA Operator for the next
iteration t1, as soon as it receives remote change buffers for the
current iteration t0 from all neighboring processes and applies
those changes (Figure 1). Therefore, data communication can be
hidden behind computation, which helps to reduce the impact of
network latency.

Since the remote change buffer holds the only data being
transferred across the network, it is important to limit its size
so that communication time can be reduced. Furthermore, an

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 1 | Schematic illustration of different runtime stages of two processes, p1 and p2, assuming that p1 is the only neighboring process of p2.

Once p2 receives and applies the remote change buffer from p1 for iteration t0, it can immediately start the reaction SSA computation for iteration t1, without waiting

for p1 to complete iteration t0. Due to non-blocking communication mechanism, the actual data transfer may take place any time within the communication period.

Data communication between p1 and its neighboring processes except p2 is skipped for simplification.

efficient registering method is also required since all molecule
changes applied to remotely hosted tetrahedrons need to be
recorded. Algorithm 2 in Supplementary Material and Figure 2

illustrate the procedure and data structure for the registration.
Instead of recording every cross-process diffusion event, the
remote change buffer records the accumulated change of a
molecule species in a remotely hosted tetrahedron. Thus, the size
of the remote change buffer has an upper bound corresponding to
the number of remotely-hosted neighboring tetrahedrons and the
number of diffusive species within those tetrahedrons. The lower
bound is zero if no cross-process diffusion event occurs during
an iteration. The remote change buffer is a vector that stores
entries of molecule changes sequentially. Each entry consists of

three elements, the destination tetrahedron tet
′

, the diffusive
species S, as well as its accumulated change mtet

′
,S. All elements

are represented by integers. For every possible cross-process
diffusion event, Dtet→tet

′
,S, the host process stores a location

marker Loctet′ ,S, that indicates where the corresponding entry is
previously stored in the buffer. When a cross-process diffusion
event occurs, the host process of the source tetrahedron first
compares the destination tetrahedron and information about the
diffusive species to the entry data stored at the marked location in
the buffer. If the data match the record, the accumulated change
of this entry is increased according to the diffusion event. Each
buffer is cleared after its content has been sent to corresponding
processes, thus a mismatch of entry information indicates that a
reset has taken place since the previous registration of the same
diffusion event, in which case a new entry is appended to the
end of the buffer and the location of this entry is stored at the
location marker for future reference. Both accessing entry data
and appending new entries have constant complexity with C++

FIGURE 2 | Schematic illustration of the remote change buffer data

structure. For every cross-process diffusion event taking place in tet, it first

compares its destination tetrahedron and species information with the entry

data stored at Loc
tet

′
,S

of the remote change buffer. If the match is successful,

the accumulated change of this entry is increased, otherwise a new entry is

appended to the buffer.

Standard Template Library (STL) vectors, providing an efficient
solution for registering remote molecule changes.

RESULTS

Because the accuracy of the solution method has been examined
previously (Hepburn et al., 2016), here we mainly focus on
the performance and scalability of our implementation. The
implementation passed all validations, and simulation results

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

were checked with serial SSA solutions. It is worth mentioning
that the diffusion time window approximation unavoidably
introduces small errors into simulations, as discussed in the
publication above. Simulations reported in this paper were run
on OIST’s high performance cluster, “Sango.” Each computing
node on Sango has two 12-core 2.5 GHz Intel Xeon E5-2680v3
processors, sharing 128 GiB of system memory. All nodes are
interconnected using 56 Gbit/s InfiniBand FDR. In total, Sango
comprises 10,224 computing cores and 60.75 TiB of main
memory. Due to the sharing policy, only a limited number
of cores could be used for our tests. Cluster conditions were
different for each test and in some cases, computing cores
were scattered across the entire cluster. Unfortunately, cluster
conditions may affect simulation performance. To measure this
impact and to understand how our implementation performs
under real-life cluster restrictions, we repeated the tests multiple
times, each starting at a different date and time with variable
cluster conditions. For simulations with the simple model
(Section Reaction-Diffusion Simulation with Simple Model and
Geometry) we were able to limit the number of cores used
per processor to 10. We were unable to exert the same control
over large-scale simulations due to resource restriction. In
all cases, hyper-threading was deactivated. Our results show
that the standard deviations in wall-clock time amount to
∼1% of the mean results; therefore, only mean results are
reported.

Simulation performance was measured by both speedup and
efficiency. Each simulation was run for a predefined period,
and the wall-clock time was recorded. Given a problem with
fixed size, the average wall-clock time for a set of repeated
simulations to solve this problem is denoted as Tp, where p
is the number of MPI processes used in each simulation. The
speedup of a parallel simulation with p processes relative to one
with q processes is defined as Sp/q = Tq / Tp. Specifically, the
speedup of parallel simulation with p processes relative to its
serial SSA counterpart is defined as Sp/SSA = TSSA / Tp, where
TSSA is the wall-clock time for the same simulation run by the
serial SSA solver. Note that while sharing many similarities, the
parallel operator-splitting implementation and the serial SSA
implementation have different algorithms, data structures as well
as core routines, so there is no guarantee that S1/SSA equals one.
We further define the strong scaling efficiency of a simulation
with p processes relative to one with q processes as Ep/q =

Sp/q ·
q
p . Strong scaling efficiency is used to investigate the

scalability performance of parallel implementations of fixed-size
problems.

Scalability of a parallel implementation can also be studied
by scaling both process count and problem size of the
simulation together, called the weak scaling efficiency. Given
TN,p as the wall-clock time of a p-process simulation with
problem size N, and TkN,kp as the wall-clock time of another
simulation in which both problem size and the number of
processes are multiplied by k times, we define the weak
scaling efficiency as Ek = TN,p /TkN,kp. We will investigate
both scalability performances of our implementation in later
sections.

Reaction-Diffusion Simulation with Simple
Model and Geometry
We first examine simulation results of a fixed-size reaction-
diffusion problem. The simulatedmodel (Table 1) was previously
used to benchmark our serial spatial SSA solver (Hepburn
et al., 2012) and to test the accuracy of our serial operator-
splitting solution (Hepburn et al., 2016). It consists of 10
diffusive species, each with differing diffusion coefficients
and initial molecule counts, and 4 reversible reactions with
various rate constants. The model was simulated in a 10 ×

10 × 100µm3 cuboid mesh with 3363 tetrahedrons. It is
worth mentioning that different partitioning approaches can
affect simulation performance dramatically, as will be shown
hereafter. Here we partitioned the tetrahedrons linearly based
on the y and z coordinates of their barycenters (the center
of mass) where the numbers of partitions of each axis for
a simulation with p processes was arranged as [Partsx =

1, Partsy = 5, Partsz = p/5]. At the beginning of each
simulation, species molecules were placed uniformly into the
geometry, and the simulation was run for tend = 20 s, after
which the wall-clock time was recorded. We started each
series of simulations from p = 5 and progressively increased
the number of processes in increments of 5 until p = 300.
Each series was repeated 30 times to produce an average
result.

Speedup and strong scaling efficiency are reported relative
to the simulation result with 5 processes, in other words,
Sp/5 and Ep/5. By increasing the number of processes,
simulation performance of the fixed-size problem improves
dramatically. In fact, the simulation maintains super-linear
speedup until p ≈ 250 (Figure 3A). While efficiency decreases
in general, it remains above 0.8 with p = 300 (Figure 3B),
where on average each process hosts approximately 10
tetrahedrons.

TABLE 1 | Simple reaction-diffusion model.

Species Diffusion Coefficient (µm2/s) Initial Count

A 100 1,000

B 90 2,000

C 80 3,000

D 70 4,000

E 60 5,000

F 50 6,000

G 40 7,000

H 30 8,000

I 20 9,000

J 10 10,000

Reaction Rate Constant

A+ B ⇄ C kf : 1, 000 (µM·s)−1, kb : 100s−1

C+ D ⇄ E kf : 100 (µM·s)−1, kb : 10s−1

F +G ⇄ H kf : 10 (µM·s)−1, kb : 1s−1

H+ I ⇄ J kf : 1 (µM·s)−1, kb : 1s−1

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 3 | Strong scaling performance of parallel simulations with a simple model and geometry. Each series starts from p = 5 and progressively increases

to p = 300. Both speedup and efficiency are measured relative to simulations with p = 5. (A) Simulations maintain super-linear speedup until p ≈ 200. (B) In general,

efficiency decreases as p increases, but remains above 0.8 in the worst case (p = 300). (C,D) Tcomp accounted for most of the acceleration, as it is the most

time-consuming segment during simulation; it maintains super-linear speedup throughout the whole series. However, as Tcomp decreases, Tidle becomes a critical

factor because its change is insignificant once p exceeds 100.

In addition to the overall wall-clock time, we also recorded
the time cost of each algorithm segment in order to analyze
the behavior of the implementation. The total time cost for the
simulation Ttotal is divided into three portions. The computation
time Tcomp includes the time cost for the reaction SSA and the
cost of diffusion operations within the process (corresponds to
the Reaction SSA Operator and Diffusion Operator in Algorithm
1 in Supplementary Material, colored black and red in Figure 1).
The synchronization time Tsync includes the time cost for
receiving remote change buffers from neighboring processes,
and the time cost for applying those changes (corresponds to
the Cross-Process Synchronization Period in Algorithm 1 in
Supplementary Material, colored yellow and blue in Figure 1).
The time spent waiting for the buffer’s arrival, as well as the
wait time for all buffers to be sent after completion of reaction
SSA, is recorded as the idle time, Tidle (corresponds to the Idle
Period in Algorithm 1 in Supplementary Material, colored white
in Figure 1). In summary,

Ttotal = Tcomp + Tsync + Tidle,

A detailed look at the time cost distribution of a single series
trial (Figure 3C) suggests that the majority of the speedup is
contributed by Tcomp, which is consistently above the theoretical
ideal (Figure 3D), thanks to the improved memory caching
performance caused by distributed storage of SSA and to
update dependency information mentioned above. The result
shows that Tsync also decreases significantly as the number
of processes increases; however, as the number of boundary
tetrahedrons is limited in the simulations, Tsync contributes
the least to overall time consumption (Figure 3C). Another
important finding is that the change ofTidle becomes insignificant
when p > 100. Since Tcomp and Tsync decrease as p increases, Tidle

becomes progressively more critical in determining simulation
performance.

To further study how molecule density affects simulation
performance, we repeated the above test with two new settings,
one reduces the initial count of each molecular species by 10x,
and the other increases molecule counts by 10x (Figure 4A).
We named these tests “Default,” “0.1x” and “10x,” respectively.
Speedups relative to the serial SSA counterparts Sp/SSA are

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 4 | Strong scaling performance of simulations with different molecule density. (A) Speedups relative to simulations with p = 5. Simulations with low

molecule density (0.1x) achieve smaller speedups compared to the default and high density (10x) cases. (B) In general, simulation with higher molecule density and

larger scale of parallelization achieves higher speedup relative to its serial SSA counterpart. (C) In the 0.1x cases, Tcomp rapidly decreases and eventually drops below

Tidle; thus, the overall speedup is less significant. (D) In the 10x cases, Tcomp remains above Tidle, therefore its contribution to speedup is significant throughout the

series.

also reported for comparison (Figure 4B). As the number of
molecules in the system increases, the simulation achieves better
speedup performance. This is because in the 0.1x simulations
Tcomp quickly decreases below Tidle, and the speedup becomes
less significant as Tidle is mostly consistent throughout the
series (Figure 4C). In the 10x simulations Tcomp maintains its
domination, thus simulations achieve similar speedup ratio as
the default ones (Figure 4D). This result also indicates that
Sp/SSA greatly depends on molecule density. In general, parallel
simulations with high molecule density and high number of
processes can achieve higher speedup relative to the serial SSA
counterpart (Figure 4B).

Mesh coarseness also greatly affects simulation performance.
Figure 5 shows the results of simulations with the same model,
geometry, and dimensions, but different numbers of tetrahedrons
within the mesh. Simulations with a finer mesh generally take
longer to complete because while the number of reaction events
remains similar regardless of mesh coarseness, the number
of diffusion events increases with a finer mesh. The number
of main loop iterations also increases for finer mesh due to
the inverse relationship between the diffusion time window τ

and the local diffusion rate dS,tet (Figure 5B). This leads to
increases of all three timing segments (Figure 5C). Nevertheless,
giving n_tets as the number of tetrahedrons simulated, the
relative time cost of the simulation, that is, Ttotal/n_tets,
decreases more significantly for a finer mesh (Figure 5D),
indicating improved efficiency. It is further confirmed in
Figure 5E as both 13,009 and 113,096 cases achieve dramatic
relative speedups from parallelization, where the 113,096 series
is the most cost-efficient with high process counts. This
is because in these simulations, reaction events take place
stochastically over the whole extent of the mesh with no
specific “hot-spot,” due to the homogeneous distribution of
molecules and similar sizes of tetrahedrons. Therefore, the
average memory address distance between two consecutive
reaction events in each process is determined by the size of
partitions hosted by the process. This distance is essential
to memory caching performance. In general, smaller hosted
partitions mean shorter address distances and are more cache-
friendly. The performance boost from the caching effect is
particularly significant for simulations with a fine mesh because
the address space frequently accessed by the main loop cannot

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 5 | Strong scaling performance of simulations with different mesh coarseness. (A) Meshes with the same geometry and dimensions, but different

numbers of tetrahedrons are simulated. (B) While the number of reaction events remains similar across mesh coarseness, both the number of diffusion events and the

number of main loop iterations increase for the finer mesh. (C) Time distribution of simulations with p = 300, all three segments increase as the number of

tetrahedrons increases. (D) Finer mesh results in a more significant decrease of relative time cost, defined as Ttotal/n_tets, improving efficiency. (E) Speedups relative

to T5. Simulation with finer mesh achieves much higher speedup in massive parallelization, thanks to the memory caching effect.

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

fit in the cache completely when a small number of processes is
used.

To investigate the weak scaling efficiency of our
implementation, we used the “Default” simulation with 300
processes as a baseline, and increased the problem size by
duplicating the geometry along a specific axis, as well as by
increasing the number of initial molecules proportionally.
Table 2 gives a summary of all simulation settings. As the
problem size increases, the simulation efficiency progressively
deteriorates (Figure 6). While ∼95% efficiency is maintained
after doubling the problem size, tripling the problem size
reduces the efficiency to ∼80%. This is an expected outcome
of the current implementation, because although the storage
of reaction SSA and update dependency information are
distributed, each process in the current implementation still
keeps the complete information of the simulation state, including
geometry and connectivity data of each tetrahedron, as well as the
number of molecules within. Therefore, the memory footprint
per process for storing this information increases linearly with
problem size. The increased memory footprint of the simulation
state widens the address distances between frequently accessed
data, reducing cache prefetching performance and consequently
the overall simulation efficiency. Optimizing memory footprint
and memory caching for super-large-scale problems will be a
main focus of our next development iteration. Our result also
indicates that geometry partitioning plays an important role in
determining simulation performance, as extending the mesh
along the z axis gives better efficiency than extending it along the
y axis, even though they have similar numbers of tetrahedrons.
This can be explained by the increase of boundary tetrahedrons
in the latter case. Since the number of boundary tetrahedrons
determines the upper-bound of the size of remote change buffer
and consequently the time for communication, reducing the
number of boundary tetrahedrons is a general recommendation
for geometry partitioning in parallel STEPS simulations.

Large Scale Reaction-Diffusion Simulation
with Real-World Model and Geometry
Simulations from real-world research often consist of reaction-
diffusion models and geometries that are notably more complex
than the ones studied above. As a preliminary example, we
extracted the reaction-diffusion components of a previously
published spatial stochastic calcium burst model (Anwar et al.,
2013) as our test model to investigate how our implementation
performs with large-scale real-world simulations. The extracted
model consists of 15 molecule species, 8 of which are diffusive, as

TABLE 2 | Simulation settings for weak scalability study.

Geometry Dimensions (µm3) Initial Count Num. Processes

10× 10× 100 Default 300

10× 10× 200 2x 600

10× 20× 100 2x 600

10× 10× 300 3x 900

10× 30× 100 3x 900

well as 22 reactions. Initial molecule concentrations, reaction rate
constants and diffusion coefficients were kept the same as in the
published model.

The Purkinje cell sub-branch morphology, published along
with the model, was also used to generate a tetrahedral mesh
that is suitable for parallel simulation. The newly generated
mesh has 111,664 tetrahedrons, and was partitioned using Metis
and STEPS supporting utilities. As discussed before, reducing
boundary tetrahedrons is the general partitioning strategy for
parallel STEPS simulations. This is particularly important for
simulations with a tree-like morphology because a grid-based
partitioning approach used for the previous models cannot
capture and utilize spatial features of such morphology. The
sub-branch mesh for our simulation is partitioned based on the
connectivity of tetrahedrons. Specifically, a connectivity graph
of all tetrahedrons in the mesh was presented to Metis as
input. Metis then produced a partitioning profile which met
the following criteria. First of all, the number of tetrahedrons
in each partition was similar. Secondly, tetrahedrons in the
same partition were all connected. Finally, the average degree of
connections is minimal. Figure 7 shows the mesh itself as well as
two partitioning profiles generated for p = 50 and p = 1000. As
a preliminary test, this partitioning procedure does not account
for any size differences of tetrahedrons and the influence from
the biochemical model and molecule concentrations, although
their impacts can be significant in practice. At present, some of
these factors can be abstracted as weights between elements in
Metis; however, substantial manual scripting is required and the
solution is project-dependent.

To mimic the calcium concentration changes caused by
voltage-gated calcium influx simulated in the published results
(Anwar et al., 2013), we also extracted the region-dependent

FIGURE 6 | Weak scaling performance of the implementation. (A) The

default 10× 10× 100µm3 mesh is extended along either the y or z axis as

problem size increases. (B) Weak scaling efficiencies relative to the default

case (p = 300).

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 7 | (A) Tetrahedral mesh of a Purkinje cell with sub-branch morphology. This mesh consists of 111,664 tetrahedrons. (B) Partitioning generated by Metis for

p = 50 and p = 1000. Each color segment indicates a set of tetrahedrons hosted by a single process.

calcium influx profile from the results, which can be applied
periodically to the parallel simulation. Depending on whether
this profile is applied, the parallel simulation behaved differently.
Without calcium influx, the majority of simulation time was
spent on diffusion events of mobile buffer molecules. As these
buffer molecules were homogeneously distributed within the
mesh, the loading of each process was relatively balanced
throughout the simulation.When calcium influx was applied and
constantly updated during the simulation, it triggered calcium
burst activities that rapidly altered the calcium concentration
gradient, consequently unbalancing the process loading. It
also activated calcium-dependent pathways in the model and
increased the simulation time for reaction SSA operations.

Two series were simulated, one without calcium influx and
data recording, and the other one with the influx enabled and
data recorded periodically. Each series of simulations started
from p = 50, and finished at p = 1,000, with an increment of
50 processes each time. Both series of simulations were run for
30 ms, and repeated 20 times to acquire the average wall-clock
times. For the simulations with calcium influx, the influx rate
of each branch segment was adjusted according to the profile
every 1 ms, and the calcium concentration of each branch was
recorded to a file every 0.02 ms, as in the original simulation.
Figure 8A shows the recorded calcium activity of each branch
segment over a single simulation trial period, which exhibits great
spatial and temporal variability as reported previously (Anwar
et al., 2013). A video of the same simulation is also provided
in the Supplementary Material (Video 1). As a consequence of
calcium influx changes, process loading of the series was mostly
unbalanced so that simulation speedup and efficiency were
significantly affected. However, a substantial improvement was
still achieved (Figures 8B,C). Figure 9 demonstrates the loading
of an influx simulation with 50 processes, where the imbalance
can be observed across processes and time. To improve the

performance of simulations with strong concentration gradients,
a sophisticated and efficient dynamic load balancing algorithm is
required (see Discussion).

Finally, to test the capability of our implementation for full
cell stochastic spatial simulation in the future, we generated a
mesh of a full Purkinje dendrite tree from a publically available
surface reconstruction (3DModelDB; McDougal and Shepherd,
2015, ID: 156481) and applied the above model to it. To the
best of our knowledge, this is the first parallel simulation of
a mesoscopic level, stochastic, spatial reaction-diffusion system
with full cell dendritic tree morphology. The mesh consisted of
1,044,155 tetrahedrons. Because branch diameters of the original
reconstruction have been modified for 3D printing, the mesh
is not suitable for actual biological study, but only to evaluate
computational performance. Because of this, and the fact that
no calcium influx profile can be acquired for this reconstruction,
we only ran simulations without calcium influx. The simulation
series started from p = 100, and progressively increased to p =

2000 by an increment of 100 processes each time. The maximum
number of processes (p = 2000) was determined by the fair-
sharing policy of the computing center. We repeated the series 20
times to produce the average result. Figure 10A gives an overview
of the full cell morphology as well as a zoom-in look at the mesh.
Both speedup and efficiency relative to simulation with p = 100
(Figures 10B,C) show super-linear scalability and has the best
performance with p = 2000. This result suggests that simulation
performance may be further improved with a higher number of
processes.

All parallel simulations above perform drastically better than
their serial SSA counterparts. For each of the test cases above,
20 realizations were simulated using the serial SSA solver in
STEPS, and average wall-clock times are used for comparison.
The speedups relative to the serial SSA simulations are shown
in Figure 11. Even in the most realistic case, with dynamically

Frontiers in Neuroinformatics | www.frontiersin.org 10 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 8 | Calcium burst simulations with a Purkinje cell sub-branch morphology. (A) Calcium activity of each branch segment over a single trial period,

visualized by the STEPS visualization toolkit. Calcium activity shows large spatial and temporal variability, which significantly affects the speedup (B) and efficiency (C)

of the simulation.

Frontiers in Neuroinformatics | www.frontiersin.org 11 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 9 | Process loading of a calcium burst simulation with sub-branch morphology and calcium influx, using 50 processes. (A) Time-cost

distribution for each process shows the loading imbalance across processes. (B) The computation time cost per recording step for each process varies significantly

during the simulation. Each curve in the figure represents one process. The three peaks in each curve are caused by the three burst periods (Figure 8A).

updated calcium influx as well as data recording, without any
special load balancing treatment, the parallel simulation with
1000 processes is still 500 times faster than the serial SSA
simulation. The full cell parallel simulation without calcium
influx achieves an unprecedented 3600-fold speedup with 2000
processes. This means with full usage of the same computing
resources and time, parallel simulation is not only faster than
single serial SSA simulation, but is also 1.8 times the speed of
batch serial SSA simulations.

DISCUSSION AND FUTURE DIRECTIONS

Our current parallel STEPS implementation achieves significant
performance improvement and good scalability, as shown in
our test results. However, as a preliminary implementation, it
lacks or simplifies several functionalities that could be important
for real-world simulations. These functionalities require further
investigation and development in future generations of parallel
STEPS.

Currently, STEPS models with membrane potential as well
as voltage-dependent gating channels (Hepburn et al., 2013)
cannot be efficiently simulated using the parallel solver because
a scalable parallelization of the electric field (E-Field) sub-system
is still under development. This is the main reason why we
were unable to fully simulate the stochastic spatial calcium burst
model with Purkinje sub-branch morphology in our example,
but relied on the calcium influx profile extracted from a previous
serial simulation instead. The combined simulation of neuronal
electrophysiology and molecular reaction-diffusion has recently
raised interest, as it bridges the gap between computational
neuroscience and systems biology, and is expected to be greatly
useful in the foreseeable future. To address such demand, we are

actively collaborating with the Human Brain Project (Markram,
2012) on the development of a parallel E-Field, which will be
integrated into parallel STEPS upon its completion.

As analyzed in the results, the majority of the performance
speedup is contributed by the reduction of Tcomp, thanks
to parallel computing. Eventually Tidle becomes the main
bottleneck, as it is mostly constant relative to the process count,
unlike Tcomp which decreases consistently. This observation
suggests two future investigational and developmental directions,
maximizing the speedup gained from Tcomp, and minimizing
Tidle.

Maximizing the speedup gained from Tcomp is important
to real-world research because significant performance
improvement needs to be achieved with reasonable computing
resources. Adapting advanced algorithms and optimizing
memory caching are two common approaches to achieve this
goal. At present, we mainly focus on further optimizing memory
footprint and caching ability for super-large scale simulations.
In the current implementation, although reaction SSA and
propensity update information are distributed, each process
still stores complete information of the simulation state. This
noticeably affects the weak scalability of our implementation
(Figure 6). The redundant information is so far required for
the purpose of interfacing with other non-parallel sub-systems,
such as serial E-Field, but we will investigate whether state
information can be split, based on the demand of individual
processes.

Process load balancing plays a crucial role in determining
the idle time of the simulation Tidle, and consequently the
maximum speed improvement the simulation can achieve. In
an unbalanced-loading simulation, processes will always be idle
until the slowest one finishes, thus dramatically increasing Tidle.
This issue is essential to spatial reaction-diffusion simulations

Frontiers in Neuroinformatics | www.frontiersin.org 12 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

FIGURE 10 | Performance of a reaction-diffusion simulation with a mesh of a complete Purkinje dendrite tree. (A) Morphology of the mesh and a close

look at its branches. The mesh consists of 1,044,155 tetrahedrons. (B) Speedup relative to the simulation with p = 100 shows super-linear scalability. (C) Efficiency

also increases as p increases, suggesting that better efficiency may be achieved with more processes.

FIGURE 11 | Speedups of parallel calcium burst simulations relative to

their serial SSA counterparts, including sub-branch simulations with

and without calcium influx, and the full cell simulation without calcium

influx. The dashed curve assumes that p processes are used to simulate a

batch of p serial SSA realizations of the full cell simulation.

as high concentration gradients of molecules can be observed
in many real-world models, similar to our calcium burst
model. Because molecule concentrations change significantly
during simulation due to reactions and diffusion, the loading
of each process may change rapidly. While adding model and
initial molecule concentration information to the partitioning
procedure may help to balance the loading for early simulation,
the initial partitioning will eventually become inefficient as
molecule concentrations change. An efficient load balancing
algorithm is required to solve this problem. The solution
should be able to redistribute tetrahedrons between processes
automatically on the fly based on their current workloads.
Data exchange efficiency is the main focus of the solution,
because constantly copying tetrahedron data between processes
via network communication can be extremely time consuming,
and may overshadow any benefit gained from the rebalancing.

In its current status, our parallel STEPS implementation
constitutes a great improvement over the serial SSA solution.
The calcium burst simulation with Purkinje cell sub-branch
morphology, dynamic calcium influx, and periodic data
recording is representative of the simulation condition and

Frontiers in Neuroinformatics | www.frontiersin.org 13 February 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

requirements of typical real-world research. Similar models that
previously required years of simulation can now be completed
within days. The shortening of the simulation cycle is greatly
beneficial to research as it provides opportunities to further
improve the model based on simulation results.

CODE AVAILABILITY

Parallel STEPS can be accessed via the STEPS homepage (http://
steps.sourceforge.net), or the HBP Collaboration Portal (https://
collaboration.humanbrainproject.eu). Simulation scripts for this
manuscript are available at ModelDB (https://senselab.med.yale.
edu/modeldb/).

AUTHOR CONTRIBUTIONS

WC designed, implemented and tested the parallel STEPS
described, and drafted the manuscript. ED conceived and

supervised the STEPS project and helped draft the manuscript.
Both authors read and approved the submission.

ACKNOWLEDGMENTS

This work was funded by the Okinawa Institute of Science and
Technology Graduate University. All simulations were run on the
“Sango” cluster therein. We are very grateful to Iain Hepburn of
the Computational Neuroscience Unit, OIST, for discussion and
critical review of the initial draft of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2017.00013/full#supplementary-material

Video 1 | Data recording of a calcium burst simulation with Purkinje cell

sub-branch morphology, visualized using STEPS visualization toolkit.

REFERENCES

Andrews, S. S., and Bray, D. (2004). Stochastic simulation of chemical reactions

with spatial resolution and single molecule detail. Phys. Biol. 1, 137–151.

doi: 10.1088/1478-3967/1/3/001

Anwar, H., Hepburn, I., Nedelescu, H., Chen, W., and De Schutter, E. (2013).

Stochastic calcium mechanisms cause dendritic calcium spike variability. J.

Neurosci. 33, 15848–15867. doi: 10.1523/jneurosci.1722-13.2013

Anwar, H., Roome, C. J., Nedelescu, H., Chen, W., Kuhn, B., and De

Schutter, E. (2014). Dendritic diameters affect the spatial variability of

intracellular calcium dynamics in computer models. Front. Cell. Neurosci.

8:168. doi: 10.3389/fncel.2014.00168

Balls, G. T., Baden, S. B., Kispersky, T., Bartol, T.M., and Sejnowski, T. J. (2004). “A

large scale monte carlo simulator for cellular microphysiology,” in Proceedings

of 18th International Parallel and Distributed Processing Symposium (Santa Fe,

NM), Vol 42, 26–30.

Coupez, T., Digonnet, H., andDucloux, R. (2000). Parallel meshing and remeshing.

Appl. Math. Model. 25, 153–175. doi: 10.1016/S0307-904X(00)00045-7

D’Agostino, D., Pasquale, G., Clematis, A., Maj, C., Mosca, E., Milanesi, L.,

et al. (2014). Parallel solutions for voxel-based simulations of reaction-

diffusion systems. Biomed. Res. Int. 2014, 980501–980510. doi: 10.1155/2014/

980501

Dematté, L. (2012). Smoldyn on graphics processing units: massively parallel

Brownian dynamics simulations. IEEE/ACM Trans. Comput. Biol. Bioinform.

9, 655–667. doi: 10.1109/TCBB.2011.106

Dematté, L., and Mazza, T. (2008). “On Parallel Stochastic Simulation of Diffusive

Systems,” in Computational Methods in Systems Biology Lecture Notes in

Computer Science. eds M. Heiner and A. M. Uhrmacher (Berlin, Heidelberg:

Springer Berlin Heidelberg), 191–210.

Drawert, B., Engblom, S., and Hellander, A. (2012). URDME: a modular

framework for stochastic simulation of reaction-transport processes in complex

geometries. BMC Syst. Biol. 6:76. doi: 10.1186/1752-0509-6-76

Fink, S. J., Baden, S. B., and Kohn, S. R. (1998). Efficient run-time support for

irregular block-structured applications. J. Parallel Distrib. Comput. 50, 61–82.

doi: 10.1006/jpdc.1998.1437

Fricke, T., and Schnakenberg, J. (1991). Monte-Carlo simulation of an

inhomogeneous reaction-diffusion system in the biophysics of receptor cells.

Z. Phy. B Condens. Matter 83, 277–284. doi: 10.1007/BF01309430

Gibson, M. A., and Bruck, J. (2000). Efficient exact stochastic simulation of

chemical systems with many species and many channels. J. Phys. Chem. A 104,

1876–1889. doi: 10.1021/jp993732q

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

doi: 10.1016/0021-9991(76)90041-3

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of

chemically reacting systems. J. Chem. Phys. 115:1716. doi: 10.1063/1.1378322

Gladkov, D. V., Alberts, S., D’Souza, R. M., and Andrews, S. (2011). “Accelerating

the Smoldyn spatial stochastic biochemical reaction network simulator using

GPUs,” in Society for Computer Simulation International (San Diego, CA),

151–158.

Hattne, J., Fange, D., and Elf, J. (2005). Stochastic reaction-

diffusion simulation with MesoRD. Bioinformatics 21, 2923–2924.

doi: 10.1093/bioinformatics/bti431

Hepburn, I., Cannon, R., and De Schutter, E. (2013). Efficient calculation of the

quasi-static electrical potential on a tetrahedral mesh and its implementation

in STEPS. Front. Comput. Neurosci. 7:129. doi: 10.3389/fncom.2013.00129

Hepburn, I., Chen, W., and De Schutter, E. (2016). Accurate reaction-diffusion

operator splitting on tetrahedral meshes for parallel stochastic molecular

simulations. J. Chem. Phys. 145, 054118–054122. doi: 10.1063/1.4960034

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). STEPS: efficient

simulation of stochastic reaction–diffusion models in realistic morphologies.

BMC Syst. Biol. 6:36. doi: 10.1186/1752-0509-6-36

Kerr, R. A., Bartol, T. M., Kaminsky, B., Dittrich, M., Chang, J.-C. J., Baden, S.

B., et al. (2008). Fast monte carlo simulation methods for biological reaction-

diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30,

3126–3149. doi: 10.1137/070692017

Koh, W., and Blackwell, K. T. (2011). An accelerated algorithm for discrete

stochastic simulation of reaction–diffusion systems using gradient-based

diffusion and tau-leaping. J. Chem. Phys. 134:154103. doi: 10.1063/1.3572335

Lin, Z., Tropper, C., Ishlam Patoary, M. N., McDougal, R. A., Lytton, W. W.,

and Hines, M. L. (2015). “NTW-MT: a multi-threaded simulator for reaction

diffusion simulations in neuron,” in Proceedings of the 3rd ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation (London, UK),

157–167.

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55.

doi: 10.1038/scientificamerican0612-50

Marquez-Lago, T. T., and Burrage, K. (2007). Binomial tau-leap spatial stochastic

simulation algorithm for applications in chemical kinetics. J. Chem. Phys. 127,

104101–104110. doi: 10.1063/1.2771548

McDougal, R. A., and Shepherd, G. M. (2015). 3D-printer visualization of neuron

models. Front. Neuroinform. 9:18. doi: 10.3389/fninf.2015.00018

Oliveira, R. F., Terrin, A., Di Benedetto, G., Cannon, R. C., Koh, W., Kim,

M., et al. (2010). The role of type 4 phosphodiesterases in generating

microdomains of cAMP: large scale stochastic simulations. PLoSONE 5:e11725.

doi: 10.1371/journal.pone.0011725

Roberts, E., Stone, J. E., and Luthey-Schulten, Z. (2013). Lattice Microbes: high-

performance stochastic simulation method for the reaction-diffusion master

equation. J. Comput. Chem. 34, 245–255. doi: 10.1002/jcc.23130

Frontiers in Neuroinformatics | www.frontiersin.org 14 February 2017 | Volume 11 | Article 13

http://steps.sourceforge.net
http://steps.sourceforge.net
https://collaboration.humanbrainproject.eu
https://collaboration.humanbrainproject.eu
https://senselab.med.yale.edu/modeldb/
https://senselab.med.yale.edu/modeldb/
http://journal.frontiersin.org/article/10.3389/fninf.2017.00013/full#supplementary-material
https://doi.org/10.1088/1478-3967/1/3/001
https://doi.org/10.1523/jneurosci.1722-13.2013
https://doi.org/10.3389/fncel.2014.00168
https://doi.org/10.1016/S0307-904X(00)00045-7
https://doi.org/10.1155/2014/980501
https://doi.org/10.1109/TCBB.2011.106
https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1006/jpdc.1998.1437
https://doi.org/10.1007/BF01309430
https://doi.org/10.1021/jp993732q
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1063/1.1378322
https://doi.org/10.1093/bioinformatics/bti431
https://doi.org/10.3389/fncom.2013.00129
https://doi.org/10.1063/1.4960034
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1137/070692017
https://doi.org/10.1063/1.3572335
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1063/1.2771548
https://doi.org/10.3389/fninf.2015.00018
https://doi.org/10.1371/journal.pone.0011725
https://doi.org/10.1002/jcc.23130
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chen and De Schutter Parallel STEPS

Rodríguez, J. V., Kaandorp, J. A., Dobrzynski, M., and Blom, J. G. (2006).

Spatial stochastic modelling of the phosphoenolpyruvate-dependent

phosphotransferase (PTS) pathway in Escherichia coli. Bioinformatics 22,

1895–1901. doi: 10.1093/bioinformatics/btl271

Slepoy, A., Thompson, A. P., and Plimpton, S. J. (2008). A constant-time

kinetic Monte Carlo algorithm for simulation of large biochemical

reaction networks. J. Chem. Phys. 128:205101. doi: 10.1063/1.29

19546

Vigelius, M., Lane, A., and Meyer, B. (2011). Accelerating reaction-diffusion

simulations with general-purpose graphics processing units. Bioinformatics 27,

288–290. doi: 10.1093/bioinformatics/btq622

Wang, B., Yao, Y., Zhao, Y., Hou, B., and Peng, S. (2009). “Experimental

analysis of optimistic synchronization algorithms for parallel simulation of

reaction-diffusion systems,” in International Workshop on High Performance

Computational Systems Biology, (Trento).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Chen and De Schutter. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 February 2017 | Volume 11 | Article 13

https://doi.org/10.1093/bioinformatics/btl271
https://doi.org/10.1063/1.2919546
https://doi.org/10.1093/bioinformatics/btq622
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers
	Introduction
	Methods
	Initialization of a Parallel STEPS Simulation
	Runtime Main Loop

	Results
	Reaction-Diffusion Simulation with Simple Model and Geometry
	Large Scale Reaction-Diffusion Simulation with Real-World Model and Geometry

	Discussion and Future Directions
	Code Availability
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

